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Abstract: MM-129 is a novel inhibitor targeting BTK/PI3K/AKT/mTOR and PD-L1, as it possesses
antitumor activity against colon cancer. To evaluate the safety profile of MM-129, we conducted a
toxicity study using the zebrafish and rodent model. MM-129 was also assessed for pharmacokinetics
features through an in vivo study on Wistar rats. The results revealed that MM-129 exhibited
favorable pharmacokinetics with quick absorption and 68.6% of bioavailability after intraperitoneal
administration. No serious adverse events were reported for the use of MM-129, confirming a
favorable safety profile for this compound. It was not fatal and toxic to mice at an anticancer
effective dose of 10 µmol/kg. At the end of 14 days of administering hematological and biochemical
parameters, liver and renal functions were all at normal levels. No sublethal effects were either
detected in zebrafish embryos treated with a concentration of 10 µM. MM-129 has the potential as a
safe and well-tolerated anticancer formulation for future treatment of patients with colon cancer.

Keywords: anticancer drug; zebrafish; safety profile; colon cancer; pharmacokinetic

1. Introduction

In the drug development process, it is crucial to anticipate possible side effects and
predict toxicity before starting clinical trials of potential drug candidates. Drug toxicity is a
key reason for drug failure in terms of clinical trials and drug withdrawal from the market.
Modern pharmacotherapy based on extensive testing and validation of efficacy and safety
utilizing various methodologies can increase the chances that a drug will reach consumers.

1,2,4-triazine derivatives have been reported to possess a diverse spectrum of biologi-
cal activities, including antifungal, antibacterial, anti-inflammatory, antianxiety, hypoten-
sive, diuretic and anti-glaucomatous [1–4]. They are also of great interest in the field of
medicinal chemistry as novel anticancer therapeutic agents due to their peculiar reactivity
and mechanisms of action with respect to hitherto used drugs. Some derivatives of the
pyrazolo[4,3-e][1,2,4]triazine ring system were evaluated against different types of tumor
cell lines including lung and breast colon and they showed antiproliferative activity al-
ready in the micromolar range [5–7]. MM-129 (pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine
sulfonamide) is a chemical compound obtained by chemical synthesis. It has a similar chem-
ical structure to seliciclib (roscovitine), which is the first selective oral cyclin-dependent
kinase (CDK) inhibitor to enter the clinical trial (NCT03774446). Preclinical studies showed
antitumor activity of seliciclib in a broad range of human tumor xenografts [8]. It plays
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a key role in regulating the cell cycle, promoting its progression or transition between
the individual phases. It also blocks RNA II polymerase, lowers the expression of Bcl-2,
Mcl-1, and XIAP genes, and increases p53 expression, which in turn leads to cell death via
apoptosis. The results of the latest research indicate this compound, by inhibiting Cdk5
and blocking p53 degradation, significantly weakens programmed death-ligand 1 (PD-L1)
expression, promoting anti-tumor immune response [9].

We have recently shown that MM-129 effectively inhibits tumor development in both
zebrafish xenografts and mice Foxn1nu/cmdb challenged with DLD-1 and HT-29 cells.
We also found that it has the ability to reduction of PD-L1 expression with a simultaneous
attenuate intracellular pathways promoting tumorigenesis inducing cell cycle arrest, like
protein kinase B (Akt), mammalian target of rapamycin (mTOR), CDK2 and Bruton’s
tyrosine kinase (BTK) (Figure 1) [10]. BTK is a member of the Tec family of nonreceptor
protein tyrosine kinases which plays an important role in the development of B cell lym-
phoma and other solid tumors, including breast, ovarian, prostate and colon cancer [11–13].
Inhibition the activity of BTK through the use of ibrutynib or sorafenib effectively inhibits
the neoplastic process. BTK inhibitors have been FDA-approved as the front-line treatment
for B cell malignancy CLL/SLL. Future treatment strategy of solid tumors has yet to be
fully evaluated [14,15].
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Figure 1. Schematic representation of possible anticancer mechanisms of MM-129. Abbrevia-
tions: BTK—Bruton’s tyrosine kinase; JAK—non-receptor tyrosine kinase; STAT—signal transducer
and activator of transcription; mTOR—mammalian target of rapamycin; Akt—protein kinase B;
PI3K—phosphoinositide 3-kinases; PDL1—Programmed death-ligand 1; MM-129—pyrazolo[4,3-
e]tetrazolo[4,5-b][1,2,4]triazine sulfonamide.

Present mechanistic observation revealed that MM-129 possesses a cytotoxic, antipro-
liferative and proapoptotic activity and its effectiveness is much higher compared with the
standard chemotherapy for colorectal cancer, i.e., 5-fluorouracil (5-FU) [16]. Despite promis-
ing pharmacological features, the possible toxic effects of MM-129 need to be carefully
evaluated in order to optimize their design and applicability. The aim of the present study
was to evaluate the pharmacokinetics features and safety profile of MM-129, a promising
drug candidate against colon cancer. The toxicity study in zebrafish was also performed,
which is acceptable and commonly used drug toxicity screening model. Short and long-
term toxicities using BALB/ccmdb mice were conducted to determine the adverse effects
of MM-129 when administered in a single dose, or in multiple doses during a period of
14 days respectively. In addition, we analyzed the effect of MM-129 on platelet functions
and the coagulation system in rats.
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2. Materials and Methods
2.1. Zebrafish Husbandry

The zebrafish embryos were maintained in an environmentally controlled room
(28.0 ± 1.0 ◦C with a light/dark cycle) in accordance with the guidelines established by
the Research Animals Department of the RSPCA (Royal Society for the Prevention of
Cruelty to Animals). According to EU Directive 2010/63/EU, the earliest life-stages of
zebrafish (embryo and eleutheroembryo cultures) are regarded as equivalent to an in vitro
cell culture; therefore, they do not fall into the regulatory framework dealing with animal
experiments. In our experiment we used zebrafish larvae younger than 120 hpf (hours
post-fertilization); hence, an ethic approval was not required. Zebrafish embryos were
obtained from mating adults, maintained and raised as described previously [17,18].

2.2. Zebrafish Toxicity Evaluation

The FET (Fish Embryo Toxicity) test was conducted with some modifications [19].
New fertilized wild type (WT) zebrafish embryos (0–2 hpf) exhibiting normal development
or 72 hpf larvae were transferred to 24-well plates filled with a standard E3 medium and a
series of concentrations of MM-129 (10, 30 and 100 µM, Department of Chemistry, Siedlce
University of Natural Sciences and Humanities, Siedlce, Poland). Dimethyl sulfoxide
(DMSO, Sigma-Aldrich, Saint Louis, MO, USA) was used as a drug solvent. The final con-
centration of DMSO in the wells did not exceed the damaging concentration of above 0.1%.
The control embryos were incubated in an embryo medium in the presence of 0.1% DMSO.
The embryos were inspected under stereomicroscope equipped with a camera at 24, 48, 72
and 96 h of treatment. The experiments were carried out in triplicate and 20 embryos were
used for each group. Every 24 h, up to four apical observations were recorded as indicators
of lethality: coagulation of fertilized eggs, lack of somite formation, lack of detachment of
the tail-bud from yolk sac and lack of heart-beat. Early spontaneous movement rate after
24 h and hatching rate after 48, 72 and 96 h were also observed. Additional developmental
alterations (heart rate, total body length) and embryo malformations, such as pericardial
edema, yolk sac edema, tail curvature, somite formation and scoliosis, were recorded at
96 h (Figure 2).
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For the toxicity test with 72 hpf larvae three replicates were performed. For each
replicate, 20 objects were used in each concentration and 20 larvae were used as a control
(0.1% DMSO). The larvae were monitored at 24 and 48 h after the treatment. The survival



Pharmaceutics 2021, 13, 1222 4 of 19

rate, heart rate, total body length and morphological deformities were examined and
documented using a stereomicroscope equipped with a camera.

After completing the observations, all remaining embryos/larvae were euthanized
using a buffered tricaine methanesulphonate solution as per the OECD test guideline 236
(Organization for Economic Co-operation and Development 2013).

2.3. Animals and Housing

A total of 12 male Wistar rats (pharmacokinetic study), 15 male Wistar rats (assessment
of hemostatic parameters) and 64 Balb/ccmdb mice (toxicity study) were purchased from
the Centre of Experimental Medicine at the Medical University of Bialystok and acclimated
to the laboratory conditions for 3 days. The animals were housed in a standard 12 h
light/dark cycle in temperature (22 ± 2 ◦C) and humidity (55 ± 5%) controlled room,
were allowed free access to autoclaved standard pellet food and tap water throughout
the experiments and grouped in cages as appropriate (Ssniff R-Z V1324). The animals’
health status was monitored throughout the experiments by a health surveillance program
according to FELASA (Federation of European Laboratory Animal Science Associations)
guidelines. The research protocol was approved by the Local Ethical Committee on Animal
Testing (Permit No. 17/2019 (26.03.2019), 58/2020 (21.10.2020) and No. 5/WNP/2021
(17.02.2021) and conducted in accordance with ARRIVE (Animal Research: Reporting of In
Vivo Experiments) guidelines, Directive 2010/63/EU of the European Parliament and of
the Council on the protection of animals used for scientific purposes and the national laws.

2.4. Pharmacokinetics and Tissue Distribution of MM-129 in Rats

The rats were divided into three groups; the first group was given a single dose of
10 µmol/kg MM-129 intravenously via the femoral vein, the second group was given a
single dose of 10 µmol/kg MM-129 intraperitoneally, and the third group was given a
single dose of 10 µmol/kg MM-129 orally by gastric gavage. The dose was chosen based
on our preliminary study, in which we assessed the anticancer activity of MM-129 [10].
MM-129 was prepared in a 10% DMSO. The rats were anesthetized by an intraperitoneal in-
jection of pentobarbital (45 mg/kg), and blood was collected on K2-EDTA as anticoagulant
via common carotid artery at 10, 20, 30, 60, and 120 min following MM-129 administra-
tion. After centrifugation at 10,000 rpm for 5 min at 4 ◦C, the plasma was transferred
into polyethylene tubes and kept frozen until analysis at −80 ◦C. The rats were used to
determine the tissue distribution of MM-129. The studied compound was administered in
a single dose of 10 µmol/kg intraperitoneally. MM-129 was prepared as described above.
The rats were anesthetized by an intraperitoneal injection of pentobarbital (45 mg/kg), and
lungs, liver, spleen, brain, kidney, and small and large intestine were isolated rapidly from
rats at 60 min following MM-129 administration, and immediately frozen until analysis at
−80 ◦C.

The MM-129 concentrations were determined by high-performance liquid chromatog-
raphy (HPLC). The chromatographic equipment included the Agilent Technologies 1260 se-
ries LC system composed of G1321 binary pump VL, G1379B degasser, G1329A autosam-
pler, G1330B thermostat for autosampler, G1316A column thermostat and G1315C a diode
array detector. The column effluent was monitored with diode array detector at 278 nm.
The mobile phase was composed of 1.4% formic acid containing 30% of acetonitrile and it
was pumped at a flow rate of 0.3 mL/min. In order to estimate MM-129 concentrations,
the 100 µL plasma samples were deproteinized with 20 µL of 2 M perchloric acid, the
100 mg tissue samples were prepared by adding 300 µL of 20% trichloroacetic acid and
centrifuged at 12,000× g for 30 min at 4 ◦C. The supernatant fluid was passed through
WATERS 0.22 µm filters, and 5 µL was injected into the HPLC system for analysis. The
prepared samples were separated on the Symmetry Waters C18 column (150 mm × 2.1 mm,
3.5 µm). Plasma concentration of MM-129 was expressed in µmol/L, whereas its levels in
tissue samples were presented in nmol/g.
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2.5. Unbound MM-129 Concentration Analysis

The unbound MM-129 concentration analysis was conducted using the rapid equilib-
rium dialysis device (Thermo Scientific, Waltham, MA, USA) according to the manufacturer
instructions. Sodium citrate-anticoagulated pooled plasma was obtained from healthy rats
by centrifugation of whole blood at 3500× g for 20 min at 4 ◦C. Spiked MM-129 rat pooled
plasma samples (0.5 mL) at the concentration of 50 µM were dialyzed against phosphate
buffered saline (0.75 mL) at pH 7.4 for 4 h. Total and unbound MM-129 concentration was
measured using the HPLC method described above.

2.6. Toxicity Studies of MM-129 in Mice

Groups of 24 (short-term observation) and 40 (long-term observation) BALB/ccmdb
(no significant differences between groups) aged 4–6 weeks were randomly divided into
four groups (6 and 10 per experimental group respectively) and treated with a vehicle
(control) alone (10% DMSO/phosphate-buffered saline (PBS), 0.2 mL) or MM-129 at a dose
of 10, 20, 40 µmol/kg. These three doses were selected from the earlier toxicity study in the
zebrafish model, where we have barely seen any sublethal alternations or mortality. More
than 70% mortality rate observed for first 24 hpf in the highest concentration of 100 µM,
prevented from using this concentration for further animal studies. In all groups, abnormal
behavior, respiratory pattern, motor activities, reflexes, change in skin and fur, body weight
changes, morbidity and mortality were monitored at 5, 15, 30, 45, 60 min and 24 h (24 h
experiment) and once daily till the end of the experiment (14 days experiment) (Figure 3).

Pharmaceutics 2021, 13, 1222 5 of 19 
 

 

2.5. Unbound MM-129 Concentration Analysis 
The unbound MM-129 concentration analysis was conducted using the rapid equi-

librium dialysis device (Thermo Scientific, Waltham, MA, USA) according to the manu-
facturer instructions. Sodium citrate-anticoagulated pooled plasma was obtained from 
healthy rats by centrifugation of whole blood at 3500× g for 20 min at 4 °C. Spiked MM-
129 rat pooled plasma samples (0.5 mL) at the concentration of 50 μM were dialyzed 
against phosphate buffered saline (0.75 mL) at pH 7.4 for 4 h. Total and unbound MM-129 
concentration was measured using the HPLC method described above. 

2.6. Toxicity Studies of MM-129 in Mice 
Groups of 24 (short-term observation) and 40 (long-term observation) BALB/ccmdb 

(no significant differences between groups) aged 4–6 weeks were randomly divided into 
four groups (6 and 10 per experimental group respectively) and treated with a vehicle 
(control) alone (10% DMSO/phosphate-buffered saline (PBS), 0.2 mL) or MM-129 at a dose 
of 10, 20, 40 μmol/kg. These three doses were selected from the earlier toxicity study in 
the zebrafish model, where we have barely seen any sublethal alternations or mortality. 
More than 70% mortality rate observed for first 24 hpf in the highest concentration of 100 
μM, prevented from using this concentration for further animal studies. In all groups, 
abnormal behavior, respiratory pattern, motor activities, reflexes, change in skin and fur, 
body weight changes, morbidity and mortality were monitored at 5, 15, 30, 45, 60 min and 
24 h (24 h experiment) and once daily till the end of the experiment (14 days experiment) 
(Figure 3). 

 
Figure 3. Schematic representation of the study protocol to evaluate the safety of MM-129 in short and long-term toxicity 
study in BALB/ccmdb mice. Abbreviations: MM-129—pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine sulfonamide. 

No sedation or anesthesia was used throughout the treatment period. Mice were elec-
tively anesthetized with a mixture of isoflurane and oxygen on day 2 or day 14 to assess 
the short and long-term toxicity respectively. A part of blood was taken from the right 
ventricle on the standard anticoagulant for the evaluation of hematological parameters: 
white blood cells (WBCs), red blood cells (RBCs), hemoglobin (HGB), hematocrit (HCT), 
mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpus-
cular hemoglobin concentration (MCHC), platelets (PLT) in a blood analyzer (ABC Vet, 
Horiba, Germany). The remaining amount was centrifuged, and biochemical parameters: 
alanine aminotransferase (ALT), aspartate aminotransferase (AspAT), total bilirubin, cre-
atinine (CREA), amylase (AMYL), blood urea nitrogen (BUN), lactate dehydrogenase 
(LDH), creatine kinase (CK) and inorganic phosphorus (Pi) were measured in serum by 
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Figure 3. Schematic representation of the study protocol to evaluate the safety of MM-129 in short and long-term toxicity
study in BALB/ccmdb mice. Abbreviations: MM-129—pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine sulfonamide.

No sedation or anesthesia was used throughout the treatment period. Mice were
electively anesthetized with a mixture of isoflurane and oxygen on day 2 or day 14 to
assess the short and long-term toxicity respectively. A part of blood was taken from the
right ventricle on the standard anticoagulant for the evaluation of hematological param-
eters: white blood cells (WBCs), red blood cells (RBCs), hemoglobin (HGB), hematocrit
(HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean
corpuscular hemoglobin concentration (MCHC), platelets (PLT) in a blood analyzer (ABC
Vet, Horiba, Germany). The remaining amount was centrifuged, and biochemical parame-
ters: alanine aminotransferase (ALT), aspartate aminotransferase (AspAT), total bilirubin,
creatinine (CREA), amylase (AMYL), blood urea nitrogen (BUN), lactate dehydrogenase
(LDH), creatine kinase (CK) and inorganic phosphorus (Pi) were measured in serum by
the automated clinical biochemical analyzer (Mindray BS 120, Darmstadt, Germany). At
the time of necropsy, several tissues/multiple organs (kidney, spleen, liver, bone mar-
row) were collected from each mouse and evaluated for the presence of toxic lesions and
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collected immediately for histopathological examination. For histopathological studies,
tissues were routinely placed in paraffin blocks and then sectioned by a Leica 2025 rotating
microtome. Glass slides with affixed 4 µm-thick tissue sections were prepared, stained
with (hematoxylin and eosin) H&E and evaluated under a light microscope.

2.7. Analysis of Hematological Parameters in Rats

A total of 15 male Wistar rats (272.2 ± 20.0 g) were anesthetized by intraperitoneal
injection of pentobarbital (45 mg/kg). For the in vitro platelet aggregation study, the blood
was collected into 3.13% trisodium citrate in a volume ratio of 9:1 from the heart of the
rat. Platelet aggregation was measured after incubation of blood (500 µL) and MM-129
solution (500 µL) in the final concentration of 10 µM or 10% DMSO solution in 0.9% NaCl
(500 µL) for 20 min at 25 ◦C, and then for 15 min at 37 ◦C. The changes in impedance were
registered during 6 min after collagen addition (10 µg/mL) using Chrono-log aggregometer
(Chrono-log Corp., Havertown, PA, USA).

For the in vivo study, the blood samples were collected from the hearts and the
platelets were counted at 60 min following the intraperitoneal injection of the vehicle (10%
DMSO/0.9% NaCl, 10 mL/kg) or MM-129 (40 µmol/kg, 10 mL/kg) in the blood analyzer
(ABC Vet, Horiba, Germany). At the same time, platelet aggregation was measured after
the incubation of the part blood (500 µL) and 0.9% NaCl solution (500 µL) according to
the method described above. The remaining amount of sodium citrate anticoagulated
blood was centrifuged at 3500× g for 10 min at 4 ◦C, and the plasma was deep-frozen
(−80 ◦C) until further assays could be performed. Activated partial thromboplastin time
(aPTT), prothrombin time (PT) and international normalized ratio (INR) was automatically
determined by an optical method (Coag Chrom 4000, Bio-Ksel, Grudziadz, Poland), adding
routine laboratory reagents (Bio-Ksel, Grudziadz, Poland).

2.8. Statistical Analysis

Shapiro–Wilk’s W test of normality was used for data distribution analysis. The
normally distributed data were analyzed using a one-way analysis of variance (ANOVA)
or unpaired Student t-test and shown as mean ± SD. Non-Gaussian data were presented as
a median (full range) and analyzed using the non-parametric Kruskal–Wallis test or Mann–
Whitney test. The Kaplan–Meier method was used for survival analysis. The statistical
analysis was conducted using the GraphPad Prism software (Version 7.04). The differences
were deemed statistically significant when p < 0.05.

3. Results
3.1. The Effects of MM-129 on Zebrafish Embryo/Larvae Development
3.1.1. Embryos of 0–2 hpf

The survival and early embryonic development were examined at 24, 48, 72 and
96 h after exposure to MM-129. There were no significant differences between untreated
embryos and embryos incubated with 0.1% DMSO. Mortality or developmental malfor-
mations in untreated embryos was not recorded at any time of the observation. Figure 4A
show that at 96-h post-exposure the recorded survival was 90%, 68% and 15%, respectively
in the group of embryos exposed to MM-129 at 10, 30 and 100 µM. The most prominent
effects on the embryo survival and development were present at the beginning of treatment
in these studied groups. Embryo phenotypic features were analyzed at 24 hpf (Figure 4E)
and 96 hpf (Figure 4F). At the concentration of 100 µM malformations, such as spinal scol-
iosis, pericardial and yolk sac edema and tail curvature were observed (92%) (*** p < 0.001)
(Figure 4C,F), whereas at the concentration of 30 µM and 10 µM these malformations were
less frequent (8%) or none respectively.
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Figure 4. Survival rate (A,B) lack of sublethal alternations (C,D) for zebrafish embryos 0–2 hpf and larvae at 72 hpf exposed
to MM-129 concentrations or vehicle (VEH) for 96 h. Lethal (E) and sublethal (F) alternations for zebrafish embryos
0-2 hpf exposed to MM-129 concentrations or vehicle (VEH) for 24 and 96 h. Sublethal alternations (F) for zebrafish
embryos 0-2 hpf and larvae at 72 hpf exposed to MM-129 concentrations or vehicle (VEH) for 96 h. Data are shown as
mean ± SD. * p < 0.05; ** p < 0.01; *** p < 0.001, vs. VEH within the group, n = 60 for each concentration. Abbreviations:
MM-129—pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine sulfonamide; VEH—vehicle.

The embryo hatching rate, determined by counting of zebrafish larvae outside the
eggshell, was observed at 48 and 72 hpf, as hatching normally occurs during this period.
The hatching rate of untreated embryos was approx. 27% at 48 hpf and 100% at 72 hpf.
About 13% less of the embryos treated with 10 µM of MM-129, hatched at 72 hpf (* p < 0.05).
MM-129 at the concentrations of 30 and 100 µM also delayed the hatching of 19% and 55%
embryos respectively (** p < 0.01) (Figure 5A).
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observed only in the highest concentration of MM-129 (46%). In contrast, MM-129 added 
at concentrations of 10 and 30 μM did not cause significant larvae death throughout the 
assay (Figure 4B). About 64% of the larvae exposed to 100 μM of MM-129 showed body 
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Figure 5. Hatching rate (A) for zebrafish embryos at 0–2 hpf exposed to MM-129 concentrations or vehicle (VEH) for
96 h; early spontaneous movement rate (B) for zebrafish embryos at 0–2 hpf exposed to MM-129 concentrations or VEH
at 24 h of incubation; heart rate (C) and total body length (D) of zebrafish embryos 0-2 hpf at 96 h of incubation. Data
are shown as mean ± SD; * p < 0.05; ** p < 0.01; vs. VEH within the group, n = 60 for each concentration. Abbreviations:
MM-129—pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine sulfonamide; VEH—vehicle; hpf—hour post–fertilization.

Spontaneous movement was recorded from 18 to 28 hpf. In control embryos, side-
to-side alternating contractions initiated at 18 hpf, and gradually reached a peak of
4 bends/min at 24 hpf and then fluctuated in this way for nearly 4 h. In MM-129-treated
embryos, a spontaneous movement initiated at a similar time and exhibited the same
bending frequency in all studied groups (Figure 5B). Exposure to MM-129 did not affect
the cardiac function of zebrafish embryos reflected as HR (heart rate) compared to the
control at any time of the observations (Figure 5C). Interestingly, we noticed that embryo
development was slowed when treated with 10 µM (* p < 0.05) and 30 µM (** p < 0.01) of
MM-129, reflected as a reduction in total body length (96 hpf) (Figure 5D) and a higher
proportion of chorionated embryos at 72 hpf (Figure 5A).

3.1.2. Larvae of 72 hpf

Then, we performed a toxicity study for MM-129 in 72 hpf larvae, at the time when
larvae were drug treated in most xenograft studies [16,20–22]. Increased mortality was
observed only in the highest concentration of MM-129 (46%). In contrast, MM-129 added
at concentrations of 10 and 30 µM did not cause significant larvae death throughout the
assay (Figure 4B). About 64% of the larvae exposed to 100 µM of MM-129 showed body
deformities (** p < 0.01). We observed body curvature as well as yolk sac edema. For the
lower doses, no significant malformations or developmental abnormalities were observed
during the evaluation until the end point (Figure 4D,F). MM-129 at all concentrations
resulted no major changes at heart rate and total body length (Figure S1).
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3.2. Pharmacokinetics of MM-129 in Rats

MM-129 was administered to rats in the dose of 10 µmol/kg either intravenously,
intraperitoneally, or orally to assess its pharmacokinetic properties. We found that MM-129
was quickly absorbed, with the time (Tmax) required to reach the maximum plasma drug
concentration (Cmax 2.22–4.69 µmol/L) being 10–30 min after i.p. administration with
relatively high bioavailability (68.6%). The plasma concentration-time curves of MM-129
after intravenous and intraperitoneal administration are shown in Figure 6.
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Figure 6. Pharmacokinetics curves of MM-129 in rats’ plasma. Results are presented as a median
with lower and upper limits. Abbreviations: MM-129—pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine
sulfonamide; iv, intravenous; ip; intraperitoneal.

The unbound fraction of MM-129 was 45%. It had an elimination half-life of 52–75 min
after intraperitoneal administration (ip) at a dose of 10 µmol/kg. Area under the curve
(AUC0–120min) ranged in value from 183 to 310 and 220 to 401 after intraperitoneal and
intravenous administration respectively. The highest concentration measured at 60 min
after a single dose of intraperitoneal administration of 10 µmol/kg MM-129 was observed
in the small intestine, followed by the large intestine, kidney, lung, spleen, liver, and
testicles. MM-129 levels in the brain were below the limit of detection. The pharmacokinetic
parameters are listed in Table S1. The metabolism and elimination of MM-129 will be the
subject of a separate study pending the identification of its key metabolites.

3.3. Toxicity Study of MM-129 in Mice
3.3.1. Short-Term Administration

No deaths were reported during 24 h exposition. MM-129 at all doses did not produce
signs of toxicity in mice over the observation period. Animals treated with higher doses
showed transient sedation, ataxia, and inhibition of motor activity 15–30 min after adminis-
tration. The effects were found to be dose-dependent, mild in the lower dose and marked
in the higher dose. No clinical signs were observed in the skin and fur, eyes and mucus
membrane (nasal), respiratory rate, autonomic effects (salivation, perspiration, piloerection,
urinary incontinence, and defecation) and central nervous system (drowsiness, gait, ptosis,
tremors and convulsion) among mice treated with MM-129. There were no significant
MM-129-related effects on body weight in mice treated for 24 h at doses of 10, 20 µmol/kg.
Only the highest dose resulted in slight/significant body weight loss (Figure 7A).
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The hematological blood analysis did not reveal any important changes in all MM-129-
treated groups. The morphological characteristics of animals undergoing the therapy were
similar to untreated animals. Most of the parameters remained within the normal range in
all animals. We observed only a slightly decreased level of MHCH after the administration
of MM-129 at the doses of 40 µmol/kg (Table S2). Blood chemistry (BUN, CREA, AMYL,
CK, Pi) did not change after single intraperitoneal administration of MM-129 at doses of
10, 20, and 40 µmol/kg (Table S3). We noted a significant/dose-dependent increase in
ALT (alanine aminotransferase) after the administration of MM-129 at doses of 10 and
40 µmol/kg and an increase in AspAT (aspartate aminotransferase) after the exposition to
the highest dose (Figure 8A,C). Additionally, this dose also resulted in a significant increase
in total bilirubin (Table S3). These disturbances were confirmed in the histopathological
examination of the liver (Figure 8E,F).

3.3.2. Long-Term Administration

In the long-time study, MM-129 treatment-related mortalities were recorded in animals
treated with a dose of 20 and 40 µmol/kg (Figure 9). The dose of 20 µmol/kg caused 40%
of deaths in mice within the first week, and induced the incidence of low hypoactivity
in some animals. At the higher dose of 40 µmol/kg, the mortality rate increased to 60%
(6/10), and clinical signs of toxicity, such as hypoactivity, asthenia, and piloerection were
more pronounced. MM-129 at a dose 10 µmol/kg did not produce mortality and signs of
toxicity in mice over the observation period.

No significant differences were noted in mean baseline body weight between the
randomized treatment groups. The mean body weight for control animals increased from
16.78 ± 0.97 g at a baseline to 18.63 ± 0.41 g at day 14. Virtually, all of the vehicle-treated
as well as MM-129-treated mice gained weight during the observation period. Mean body
weight gain was 1.7 ± 0.45 g and it was similar in mice receiving MM-129 at 10, 20 and
40 µmol/kg. There were no significant MM-129-associated effects on body weight in the
surviving mice treated for 14 days at all doses (Figure 7B).

The values of hematological parameters of surviving animals treated with MM-129
were comparable with that of control (Table S2). MM-129 at a dose of 20 µmol/kg caused
an increase in MCH and MCHC. Similarly, an increase in the value of MCHC was observed
in animals treated with the highest dose. MM-129 did not induce treatment-related adverse
effects with general behavior, and biochemical parameters (Table S3). No abnormalities
were noticed in urinalysis (BUN and CREA) and in liver panel of treated animals compared
with control animals (Figure 8B,D).
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Figure 8. Alanine transaminase (ALT) (A,B) and aspartate transaminase (AST) (C,D) in mice treated with MM-129
concentrations or vehicle (VEH) after short-term administration (A,C) and long-term administration (B,D). Representative
micrographs of tissue sections of liver, (original magnification, 10) (E) and selected clinical and gross necropsy observations
of liver during safety study in mice after short-term and long-term administration of MM-129 and VEH (F). Original
magnification, 10; hematoxylin and eosin staining. Data are shown as mean ± SD; * p < 0.05 vs. VEH within the
group, n = 3–10. Abbreviations: ALT—alanine transaminase; AspAT—aspartate aminotransferase; MM-129—pyrazolo[4,3-
e]tetrazolo[4,5-b][1,2,4]triazine sulfonamide; VEH—vehicle.
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No erythroid, myeloid or lymphoid hypoplasia was encountered in the bone marrow
of any of MM-129 treated mice (Table S4). There were proerythroblasts in all bone marrow
smears. In most animals, a moderate number of megakaryocytes producing platelets and
resting was present. In mice treated with a dose of 40 µmol/kg, an increased percentage of
promyelocytes compared with the control group was found. However, this alternation was
not reflected in peripheral blood parameters.

3.3.3. Organ Morphology

Necropsy and histopathological examinations were performed on the liver, spleen,
kidneys and heart of each animal to assess the damage to the internal organs or tissues
after 24 h and 14 days after the termination of the experimental procedure. A routine
histopathological examination showed normal spleen, kidneys and heart morphology of
the vehicle-injected animals (Figure 10). The specimens of these organs in all MM-129
treated groups did also not show any pathological features, whereas MM-129 associated
pathology of the liver tissue was seen in mice, after the first 24 h of the experiment. Though
the image of the liver lobules construction was preserved, yet 24 h after MM-129 injection
the analysis of liver showed a large area of hepatocyte necrosis, neutrophilic infiltration
and hepatic hyperemia in animals treated with doses of 20 and 40 µmol/kg (Figure 8E,F).
For both groups, severe necrotic changes of hepatocytes were found in 4/5 of the cases
(80%). In turn, two and three animals showed mild necrotic changes, which were from the
control and MM-129 (10 µmol/kg) treated groups respectively. In turn, all the submitted
organs essentially showed normal histology after a long-term exposition to MM-129 at
all doses.

3.4. The Effect of MM-129 on Platelet Function and Coagulation Parameters in Rats

MM-129 at a concentration of 10 µM did not change collagen-induced platelet aggre-
gation in in vitro conditions. A similar effect was observed 1 h after the intraperitoneal
administration of MM-129 at a dose of 40 µmol/kg. There was no statistical difference in
PLT, aPTT, PT and INR in the rats treated with the tested drug (Table S5).
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4. Discussion

The currently used therapies are often associated with major side effects and specific
disorders, such as hand-foot syndrome or hematological disorders in the case of 5-FU or
neuro-, oto- and nephrotoxicity in the case of oxaliplatin and with the appearance of the
multidrug resistance (MDR) phenotype. The increase in the mortality rate, drug resistance
phenomena and side effects of the current chemotherapeutic strategies against colorectal
cancer (CRC) demand a necessity for intensified research with new drugs.

Our previous observations in in vivo conditions clearly showed that MM-129, a novel
1,2,4-triazine derivative at a dose of 10 µmol/kg, effectively inhibits tumor progression,
leading to a significant reduction in tumor volume and mass in mouse xenografts [10].
Furthermore, it turned out to be more potent in inhibiting tumor growth compared with
5-FU [10,16].

Here, we aimed to estimate potential toxicity of MM-129 in the zebrafish model and
its toxicokinetic profile in rodents. In recent years Danio rerio have been adopted as a model
for the genetics study, drug development, toxicology, and drug safety screening [23]. It
has become a prominent vertebrate model for assessing the toxicity of drugs and chemi-
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cals [24–27]. It possesses unique advantages: small size, ease of breeding, large numbers
of progeny (high confidence in statistical analysis) and high grade of similarity [22]. Ze-
brafish genes have homologous to human genes of approximate 70%, they also possess
similarities with respect to nervous and cardiovascular systems, liver, pancreas, intestine,
gallbladder, and certain metabolic pathways [23]. Numerous studies indicate that drug
toxicity screening with zebrafish is informative, and that this model can be used to predict
some drug responses and toxicity in humans [28–33]. We examined the effects of various
MM-129 concentrations on survival, morphological, and behavioral parameters in zebrafish
embryos and larvae. Because previous observation of Gutiérrez-Lovera showed that the
toxicity data of a compound evaluated in vitro and in a FET test at 0 hpf do not guarantee
a reliable toxicity determination, and the additional toxicity studies using 72 hpf larvaes
are necessary, we have selected two treatment time points for this model: 0–2 hpf stage
(embryo) and 72 hpf stage (larvae) [21].

MM-129 at the highest used concentration (100 µM) demonstrated the lowest survival
rate, regardless of zebrafish developmental stage and exposure time. However, the rates
of lethality were more pronounced in embryo stage than in larvae. This is in line with
the previous finding that early zebrafsh stages are more sensitive to external stimuli,
including toxicants, chemicals, and mechanical stresses [34]. Additionally, MM-129 was
previously reported to block cell division in the zebrafish embryo model at the 4-cell
embryonic stage, which could have caused part of the embryos to slow development and
death [16]. On the other hand, it is worth emphasizing that an anticancer effective dose of
MM-129 (10 µM) did not affect the survival or embryonic development of zebrafish larvae,
which indicates that it is non-toxic to normal cells retaining the ability to successfully
inhibit tumor growth. In addition to the OECD test guideline 236 endpoints, we assessed
developmental abnormalities which often preceded mortality to better understand the role
that sublethal effects can have in the evaluation of toxicity from exposure to MM-129. The
assessed sublethal endpoints included heart rate, pericardial and yolk sac edema, body
curvature and length. Since the heart is the first internal organ to form and function during
zebrafish development, at approximately 24–48 hpf, heartbeats can reflect toxicological
impact [35]. Yolk sac edema is also an important toxicological endpoint because it provides
a vital nutritive material for larval movement and plays an important role in the early
development of zebrafish [36]. Pericardial and yolk sac edema, tail curvature, and spinal
scoliosis only at the highest concentration of MM-129 were observed. Lower concentrations
did not induce cardiac defects (typically manifested as pericardial edema) and other
developmental abnormalities of zebrafish larvae at 96 hpf. MM-129 did not either affect
the number of spontaneous movement, considered as a neurotoxicity marker in studies
on behavioral changes due to chemical exposure [37]. Results from the zebrafish toxicity
study clearly demonstrate a favorable safety profile of MM-129. Moreover, it seems to
have better features in comparison with selicinib. Matrone et al. reported the absence of
swimming activity, lack of heartbeat and tail blood flow at 57% of the embryos treated
with selicinib at 5 µM [38]. It should be emphasized that this concentration is two times
lower than the lowest of MM-129 used in our experiments. Furthermore, several larvae
malformations, such as curved body (50%) and edema (82% for both mild and severe)
was observed in the group of larvae exposed to selicinib at 5 µM. For comparison, MM-
129 at concentrations 10 and even 30 µM resulted in no major changes in embryonic
malformations or developmental abnormalities.

Animal models, despite some limitations, are still widely used in pharmaceutical
research to predict human toxicity. Preclinical toxicology studies for novel anticancer
agents are necessary to proceed to phase I clinical trials. The primary aim of safety
evaluation is to identify a safe clinical starting dose and potential human toxicities. At the
initial stage of rodent-based studies, we applied an analytical HPLC method to assess the
pharmacokinetic properties of MM-129. It has a satisfactory preclinical pharmacokinetic
profile, but after oral administration, its levels in plasma were below the limit of detection.
The favorable pharmacokinetics of MM-129 after intraperitoneal administration provided
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a basis for choosing this route of administration in further experiments. We found that
MM-129 is rapidly eliminated from the rat plasma with the circulation half-time of about
60 min. In turn, selicinib, which has a similar chemical structure to MM-129, is metabolized
within the first 24 h. Moreover, the elimination half-life of CR8 the second-generation
inhibitor of cyclin-dependent kinases derived from selicinib is longer and reaches about
3 h [39].

A new 1,2,4-triazine derivative at an antitumor effective dose of 10 µmol/kg was well
tolerated up to 14 days of daily intraperitoneal injections. None of the animals showed
signs of morbidity and there was no significant change in body weight gain. In the short-
term and long-term safety study, no mortality at 10 µmol/kg was observed. In turn,
higher doses of MM-129 (20 and 40 µmol/kg) caused an increase in animal mortality
to 40% and 60% respectively with toxic clinical signs within the first days of long-term
examination. Surviving animals treated with higher doses (but not 10 µmol/kg) showed a
transient period of sedation, ataxia, and inhibition of motor activity for 15–30 min, which
self-resolved. Importantly, these mice were then found to be normal in all respects, such as
behavior and body weight until the end of the observation period. The results of gross and
histopathology examination, blood cell counts, liver and renal functions were also all at
normal levels.

MM-129 associated liver dysfunction was seen in mice, after the first 24 h of the
experiment. After single administration, there was an increase in the biochemical (ALT,
AspAT) and histopathological indicators of liver necrosis. The preexisting abnormal liver
function led to the development of acute hepatotoxicity. These changes were likely the
cause death of animals exposed to higher doses of MM-129. Hepatotoxicity related with
chemotherapy regimens used in CRC is common, occurring in up to 47% of patients treated
with 5-FU and 78% of patients treated with oxaliplatin-based chemotherapy [40]. Due to
its anatomical location and unrepeatable function, the liver is exposed to a multitude of
toxins and xenobiotics, including drugs. Cancer chemotherapy has evolved, giving newer
medications that target cell biology a different pattern of liver toxicity. There are several
hepatic conditions, such as sinusoidal obstructive syndrome, steatosis, and pseudocirrhosis
which are more commonly associated with chemotherapy. These conditions can display
clinical signs of acute hepatitis, liver cirrhosis, and even liver failure. Signs of liver disease
are readily apparent by the detection of released hepatocellular transaminases ALT and
AspAT into the serum, or by histologic examination of the biopsied liver tissue, which
demonstrates a range of histologic changes, including steatosis, inflammation, ballooned
hepatocytes, and fibrosis or cirrhosis [41]. Herein, disturbances in biochemical hepatic pa-
rameters were confirmed in histological examination of liver tissue, where dose-dependent
necrotic hepatocytes death was detected. A high total bilirubin level in the group of animals
treated with the highest dose of MM-129 was also noted. This observation is in line with
Onishi et al., who reported that in addition to a typical hepatocellular injury, other presen-
tations, including severe hyperbilirubinemia also commonly occur after chemotherapy [42].
It should be noted that no changes in biochemical parameters of liver function and any
MM-129-related toxic liver lesions at the end of long-term exposition were found. These
data suggest that MM-129 induced liver injury, especially at a dose of 10 µmol/kg was
transient and fully reversible. A possible scenario for liver regeneration may result from
functional compensation for the lost mass. Itoch et al. reported that upon acute or mild
hepatocyte injury that affects only a limited population of hepatocytes, the remaining
healthy hepatocytes proliferate and compensate the loss [43]. An interesting thing is that
a recent clinical study with seliciclib also reported a reversible abnormal liver function
in patients treated with doses of 800 mg twice daily [44]. This is also consistent with
observations of others who reported that liver injury may be reversible, depending on the
genetic variability, age, sex, and hepatic adaptation of the patient [45]. Furthermore, it was
reported that patients with liver manifestations can be managed with supportive therapies,
and liver toxicity may resolve after discontinuation of chemotherapy [46].
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Contrary to 5-FU and seliciclib, MM-129-induced nephrotoxicity was not obser-
ved [8,47–49]. Renal panel assessed by BUN and CREA did not reveal impaired kid-
ney function and hypokalemia. A histopathological examination of vital organs, including
kidneys were conducted at the end of the treatment periods. The study showed normal
architecture suggesting no morphological alterations of the spleen, heart and also kidney
in relation to control groups. All these observations indicate a healthy status of kidneys
in the MM-129 treated animals. Nephrotoxicity is common with the use of 5-fluorourcil
and renal injury is its major drawback [47,50,51]. The available data indicate that oxidative
stress plays a central role in mediating 5-FU-induced renal injury [52,53]. Seliciclib has also
shown signs of toxicity, including hyponatremia, and hypokalemia, with other observed
reactions, such as increased creatinine [49].

Hematological profiles of MM-129 treated rodents were similar to those of control
animals. We did not observe any important changes in the biochemistry profile (excluding
hepatic biochemical parameters) and in the blood cells count during the whole experiment
in mice. We demonstrate that MM-129 at a therapeutic concentration and a maximum dose
does not impair collagen-induced platelet aggregation, nor does it cause coagulation de-
fects in rats. This is a favorable observation due to 5-FU-induced thrombotic complications
and leukopenia, which remained a hallmark of treatment [54,55]. Leukopenia, leading to
an immunocompromised state, can result in secondary pneumonia or sepsis [56]. More-
over, although treatment with seliciclib had no significant effect on peripheral blood cells
obtained from a mouse model of glomerulonephritis, though a tendency toward a decrease
in leukocyte counts was noticed [57]. Our preclinical toxicology studies within 14 days
of treatment did not either reported anemia, leukocytosis or bone marrow hyperplasia.
Myeloid cytopenias are the most common manifestations of chemotherapy-associated
myelotoxicity. It is also one of the main reasons for dose modifications, dose delays, or
discontinuation of therapy, potentially limiting the therapeutic benefit [58]. The absence of
myelosuppression, observed in this study is clinically beneficial, especially because of nega-
tive impact of 5-FU—the first-choice chemotherapy drug for colon cancer on hematopoietic
system has been reported [55,59,60]. Son et al. demonstrated that 5-fluorouracil caused
bone marrow suppression severe leukopaenia and myelotoxicity in 7-week-old BALB/c
mice after 5 days of exposure [61]. In turn, multiple administration of seliciclib at the
dose of 350 mg/kg/day transiently decreased the BFU-E growth to less than 50% of the
controls [62]. The toxicity of seliciclib to hematopoietic progenitors in vitro is within the
same exposure range as cytotoxicity to cancer cells.

5. Conclusions

We found that MM-129 at an anticancer dose of 10 µmol/kg is not only effective
but also very well tolerated. Lack of a negative effect of this dose on animal welfare was
observed for the time period of 14 days. MM-129 displayed a favorable safety profile in
both zebrafish and mouse toxicity screening models. It did not induce nephrotoxicity,
changes in blood morphology, haemostatical and biochemistry parameters. MM-129-
related disorders of hepatic function following acute exposure to a low dose were transient
and fully reversible. Our observations suggest that MM-129 has a better safety profile
than currently used drugs, including the reference drug 5-fluorouracil, and it seems to be a
promising effective and safe candidate for further clinical development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13081222/s1, Figure S1: Heart rate (A) and total body lenght (B) of zebrafish
larvaes 72 hpf at 96 h of incubation with MM-129. Data are shown as mean±SD; n = 60 for each
concentration; Table S1: Pharmacokinetics and tissue distribution of MM-129 in rats; Table S2: Hema-
tological analysis of whole blood samples from mice exposed to MM-129 concentrations or vehicle
(VEH) after short-term and long-term administration; Table S3: Biochemical parameters in mice
exposed to MM-129 concentrations or vehicle (VEH) after short-term and long-term administration;
Table S4: Selected parameters of bone marrow examination of mice exposed to MM-129 concentra-
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function and coagulation parameters in vitro and in vivo in rats.
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