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Ubiquitination is a posttranslational modification of proteins that significantly affects
protein stability and function. The specificity of substrate recognition is determined
by ubiquitin E3 ligase during ubiquitination. Human Deltex (DTX) protein family, which
functions as ubiquitin E3 ligases, comprises five members, namely, DTX1, DTX2,
DTX3, DTX3L, and DTX4. The characteristics and functional diversity of the DTX family
proteins have attracted significant attention over the last decade. DTX proteins have
several physiological and pathological roles and are closely associated with cell signal
transduction, growth, differentiation, and apoptosis, as well as the occurrence and
development of various tumors. Although they have been extensively studied in various
species, data on structural features, biological functions, and potential mechanisms of
action of the DTX family proteins remain limited. In this review, recent research progress
on each member of the DTX family is summarized, providing insights into future research
directions and potential strategies in disease diagnosis and therapy.

Keywords: Deltex family proteins, ubiquitination, ubiquitin E3 ligase, ubiquitin code, protein homeostasis, post-
translational modification

INTRODUCTION

Intracellular protein homeostasis, i.e., proteostasis, is influenced by the dynamic equilibrium
between protein synthesis, localization, maintenance, and degradation, all of which are regulated by
protein-protein interaction networks (Zhong et al., 2019). Dysregulated proteostasis is associated
with cellular dysfunction and can lead to disease onset, including neurodegeneration (Kaushik
and Cuervo, 2015) and cancer (Dai and Sampson, 2016). Ubiquitination is a prominent and
highly conserved post-translational modification (PTM) of proteins, during which ubiquitin (Ub)
molecules are attached to a target protein. A majority of intracellular proteins are modified by
ubiquitination (Amm et al., 2014). Several Ub signals are recognized by proteasomes, thereby
serving as a regulatory mechanism for protein degradation, affecting nearly all aspects of cellular
processes (Chowdhury and Enenkel, 2015; Hanna et al., 2019; Sakai et al., 2020; Fhu and Ali, 2021;
Goetzke et al., 2021; Qu et al., 2021; Zou and Lin, 2021). Ubiquitin signaling is strictly regulated
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by a multistep cascade reaction consisting of three enzyme
groups. Initially, energy from adenosine triphosphate (ATP)
hydrolysis is used by the ubiquitin-activating enzyme (E1) to
generate a high energy thioester bond between the C-terminus
of Ub and a catalytic cysteine residue of the active site in E1.
Next, Ub is transferred from E1 to a cysteine residue in the
active site of the ubiquitin-conjugating enzyme (E2), forming
a similar thioester bond to that of E1. Finally, ubiquitin ligase
(E3) catalyzes the covalent attachment of Ub to lysine residues
of the substrate protein (Thapa et al., 2020). E2 and/or E3
enzymes are also associated with the elongation of Ub chains
(Dikic et al., 2009). Ub contains 76-amino acids with seven lysine
residues (Lys6, 11, 27, 29, 33, 48, and 63) and a methionine
residue (Met1), all of which can be ubiquitinated and attached
to numerous linkage types of Ub chains via an isopeptide bond
(Ikeda and Dikic, 2008). Ub ends with a diglycine motif, which is
critical for attachment to substrate proteins (Hanna et al., 2019).
Monoubiquitination is the attachment of a single Ub molecule
to a single Lys of the target protein, which regulates several
aspects of protein function, including subcellular localization
and protein-protein interaction, in both normal and disease
states (Sewduth et al., 2020). Conversely, polyubiquitin (polyUb)
chains can be formed on a single Lys by attachment of multiple
Ub molecules through internal Ub–Ub linkages (Akutsu et al.,
2016); hence, the different types of polyUb chains depend on
the Lys for the Ub linkage (Komander and Rape, 2012). In
homotypic polyUb chains, a total of eight different chain types
can be formed; meanwhile, heterotypic polyUb chains comprise
mixed and branched types, containing two or more linkages
(Pickart and Fushman, 2004; Kliza and Husnjak, 2020). Among
these polyUb chains, Lys48-linked polyUb chains are primarily
involved in protein degradation by proteasomes, whereas Lys63-
linked polyUb chains are more associated with non-degradative
processes, such as vesicular trafficking (Trempe, 2011; Matyskiela
and Martin, 2013). Lys63-linked polyUb chain also influences
the induction of autophagy, a lysosome mediated protein
degradation process (Chen et al., 2019). The linear homotypic
polyUb chains are Met1-linked and assembled by a multi-
subunit complex referred to as linear Ub chain assembly complex
(LUBAC) (Kirisako et al., 2006). Several signaling cascades, such
as tumor necrosis factor (TNF) and nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB), which are involved
in immune and inflammatory diseases, are regulated by linear Ub
chains (Rittinger and Ikeda, 2017).

More than 600 E3 ligases have been identified in humans.
Based on their characteristic catalytic domains and the
mechanisms underlying Ub transfer to target proteins, E3s are
divided into three major types, namely, the homologous to the
E6-AP carboxyl terminus (HECT) family, Really Interesting New
Gene (RING) family, and RING-in-between-RING (RBR) family
(Morreale and Walden, 2016). Among these types, there are
approximately 300 predicted RING E3s, making it the most
abundant type of E3s (Li et al., 2008). The typical RING E3s
contain a zinc-binding RING domain and function as monomers,
homodimers, or heterodimers (Morreale and Walden, 2016).
RING E3s typically function as a scaffold to recruit E2 in close
proximity to substrate, thereby promoting direct transfer of Ub

(Zheng and Shabek, 2017). Both monomeric and homodimeric
U-box E3s belong to the RING type, despite the lack of zinc
ions in its modified RING motif (Hatakeyama and Nakayama,
2003). The ubiquitination of HECT and RBR E3s involves a two-
step reaction: (1) the transfer of Ub to the catalytic cysteine
residue on E3s, and (2) the transfer of Ub from E3 to the
target protein (Cotton and Lechtenberg, 2020; Wang et al.,
2020b). Numerous E2s can function with a single E3 resulting
in various outcomes, confirming that E2 significantly influences
the outcomes of ubiquitination (Wenzel et al., 2011; Stewart
et al., 2016). Over the last decade, research interest in DTX
family E3s has increased, and considerable efforts have been
made to study this family of RING type E3 ligases. The current
available data suggest that the DTX family members are closely
involved in cell growth, differentiation, apoptosis, intracellular
signal transduction, as well as several diseases, including cancer.
However, our knowledge of their substrates, biological and
pathological functions, and exact molecular mechanisms is
limited. In this review, we aim to provide a comprehensive view
on characteristic structural features, functions and associated
molecular mechanisms of DTX family proteins. Moreover,
we highlight some perspectives for future investigations. The
improved understanding of the impacts of DTX family proteins
on development and disease may pave the way for their potential
clinical applications as diagnostic and prognostic targets.

STRUCTURAL FEATURES OF DTX
FAMILY IN DIFFERENT SPECIES

Drosophila Melanogaster is one of the most popular experimental
animal models due to its relatively short life cycle, easy
maintenance, and high homology to the human genome (Singh
and Irvine, 2012). The Drosophila genome contains four sets
of chromosomes, thus making it easy to use for genetic
manipulation in research (Taormina et al., 2019). Drosophila’s
sole Deltex gene is located on chromosome X and has four exons
and three introns. The murine homologs (MDTX genes) contain
four additional exons and introns, compared to Drosophila Deltex
(Pampeno et al., 2001). In mammals, the encoded DTX family
proteins comprise five members, namely DTX1, DTX2, DTX3,
DTX3L, and DTX4 (Kishi et al., 2001; Takeyama et al., 2003;
Chatrin et al., 2020). Compared with the amino acid sequences
of Drosophila Deltex (Dx) protein, seven additional amino acids
(amino acids 145–151) are found in MDTXs, and 82 additional
amino acids occur in the N-terminal sequences of human DTXs
(Pampeno et al., 2001). Furthermore, the vertebrate DTX proteins
lack the polyglutamine sequences (amino acids 250-302 and 488-
513) (Pampeno et al., 2001). The diverse amino acid sequences in
different species may indicate some evolutionary characteristics
of DTX family proteins. However, the biological relevance of
these amino acid sequence variations of DTX family proteins are
yet to be fully understood.

Deltex has three distinct domains (I, II, and III) from the
N- to C-terminus. The N-terminal domain I of Dx comprises
two WWE motifs, both of which bind to the ankyrin repeat
sequences of Notch (Zweifel et al., 2005). The N-termini of
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human DTX1, DTX2, and DTX4 share homology with that of
Dx. However, DTX3 cannot interact with Notch due to the
truncated sequences in the N-terminus (Takeyama et al., 2003).
Moreover, the N-terminus of DTX3L differs from the remaining
DTX family members and contains both nuclear localization
and export signals (Takeyama et al., 2003). Poly-adenosine
diphosphate (ADP)-ribosylation (PARylation) is a PTM process
by which ADP-ribose (ADPr) units, from nicotinamide adenine
dinucleotide (NAD+), are added to targeted residues (Glu, Asp,
Lys, Arg, or Ser) of a protein (Zhang et al., 2013; Martello et al.,
2016). The WWE motifs of the DTX family proteins attach to
complexes via recognizing iso-ADPr, the minimal subunit of PAR
polymer, with a characteristic glycosidic bond (Aravind, 2001;
He et al., 2012; Wang et al., 2012). Domain II of Dx contains a
proline-rich motif, which is the binding site of the SH3 domain,
that primarily regulates the interaction with other proteins, such
as growth factor receptor-binding protein 2 (Grb2) (Matsuno
et al., 1998). Lacking the proline-rich motif negatively reverses
the Dx regulation of Notch signaling pathway (Matsuno et al.,
2002). The C-terminal structures of Drosophila Dx, MDTXs, and
human DTXs are highly evolutionarily conserved according to
their amino acid sequence and crystal structure alignment (Kishi
et al., 2001; Takeyama et al., 2003; Chatrin et al., 2020). The high
sequence conservation across species suggests that DTX family
proteins are likely to function in a similar manner, including
binding to NAD+ (Chatrin et al., 2020). The C-terminus of Dx
contains a RING-H2 domain with E3 ligase activity (Takeyama
et al., 2003). In the integral steps of Dx regulated signaling
pathway, the formation of homo-multimeric Dx is mediated by
the RING-H2 domain (Matsuno et al., 2002). The RING-H2
domain of the DTX family adopts a novel circular fold with
eight conserved cysteine and histidine residues, which is different
from other RINGs (Miyamoto et al., 2019), whereas DTX3 and
DTX3L contain a RING-HC structure with a single histidine
(Takeyama et al., 2003). The Deltex C-terminal (DTC) domain,
a relatively conserved novel fold and a close neighbor to the
RING domain, has been reported in DTX family (Obiero et al.,
2012). The functions of the DTC domain are poorly understood.
The domain structures and sequence alignments of Dx and DTX
family proteins are illustrated in Figure 1.

FUNCTIONS AND ASSOCIATED
MOLECULAR MECHANISMS OF THE
DTX FAMILY

Dx
The domain features of Dx influence its association with the
Notch signaling pathway, one of the pivotal regulators of cell
fate (Liang et al., 2019). The direct interactions between the
cytoplasmic protein Dx and transmembrane receptor Notch
have been previously demonstrated (Diederich et al., 1994).
Upon Notch receptor activation, the intracellular domain of
Notch receptors (NICD) is released, which translocates into
the nucleus where it triggers the expression of the downstream
genes (Kovall et al., 2017; Bray and Gomez-Lamarca, 2018).

Dx interacts with the Notch receptor via the non-canonical
signaling pathway in Drosophila (Hori et al., 2012). The
established molecular mechanisms of Dx protein are illustrated
in Figure 2. Dx overexpression induces morphological and
phenotypic changes in Drosophila’s eyes, wings, and bristles,
consistent with phenotypic changes induced by activation of
NICD. Moreover, phenotypic changes caused by Dx inhibition
could be partially rescued by an extra copy of Notch (Gorman
and Girton, 1992). The classical Notch signaling pathway is
activated prior to the Notch receptor entry into the multivesicular
body, whereas Dx-mediated Notch signaling transduction is
activated in a different manner (Yamada et al., 2011). It is
established that endogenous Dx is necessary to: (1) assist Notch
transport more efficiently from the plasma membrane into the
endocytic vesicles, and (2) retain Notch on the surface of the
late endosome, which prevents Notch trafficking to lysosomes for
degradation (Yamada et al., 2011). Dx promotes the endocytosis
and intracellular transport of Notch based on the activities
of homotypic fusion and vacuole protein sorting (HOPS) and
adaptor protein-3 (AP-3) complexes, which are regulated by
Rab5 and Rab7 GTPases (Wilkin et al., 2008). Moreover, some
evolutionarily conserved key transmembrane proteins, such as
Crumbs, rely on Dx to modify the localization and trafficking
of the Notch receptor (Nemetschke and Knust, 2016). In stellate
cells, an expressional decrease or functional inhibition of Rab11
can lead to the accumulation of Notch receptors in early and late
endosomes, thus activating Dx mediated non-canonical Notch
signaling pathway (Choubey et al., 2020). During regulation
of the endocytic trafficking of Notch, domains I and III of
Dx are essential for stabilizing Notch in the late endosome
(Hori et al., 2005).

Deltex has been shown to positively regulate the Notch
signaling pathway (Xu and Artavanis-Tsakonas, 1990; Gorman
and Girton, 1992). The interaction between Dx and Notch
ankyrin repeats also interferes with the retention of the
Suppressor of Hairless [Su(H)] in the cytoplasm and facilitates
its translocation into the nucleus (Matsuno et al., 1995). In
addition, Dx can solely promote monoubiquitination of the
Notch receptor and triggers intracellular activation of Notch
independent of canonical ligands (Hori et al., 2011). Neural
precursor cell expressed developmentally down-regulated 4
(Nedd4), which contains a calcium/lipid-binding domain (C2
domain), two conserved tryptophan residues (WW domains),
and a HECT domain, belongs to a family of HECT E3s
(Kumar et al., 1992; Bork and Sudol, 1994; Boase and Kumar,
2015). The C2 domain in Nedd4 family is involved in
protein-protein interactions and relocates target proteins to
phospholipid membranes (Morrione et al., 1999; Plant et al.,
2000; Dunn et al., 2004). The WW domains interact with
phospho-serine/threonine residues of substrates (Sudol et al.,
1995), while the HECT domain attaches activated Ub via an
intermediate thioester bond, and catalyzes the attachment of
Ub and a lysine on the substrate protein (Rotin and Kumar,
2009). Nedd4 suppresses the internalization and activation of
Notch receptor by directly antagonizing Dx, further suggesting
Dx as a positive modulator of the Notch signaling pathway
(Sakata et al., 2004).
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FIGURE 1 | Domain architectures and sequence alignment of human DTX family and Dx protein in Drosophila. (A) The domain architecture of human DTX family and
Dx. The functional motifs of human DTX family members are highly analogous to those of Dx in Drosophila. The N-terminal WWE1 and WWE2 domains of Dx, DTX1,
DTX2, and DTX4 can bind to the ankyrin repeats of the Notch receptor. DTX3 has a truncated unique N-terminal domain (T) that lacks the ability to bind to ankyrin
repeats. The long N-terminal region of DTX3L is associated with nuclear localization signals (L1 and L2) and nuclear export signal (E). The proline-rich regions are
similar, except for DTX3L. The Deltex C-terminal (DTC) domains are practically conserved in all DTX proteins. The RING domain of each C-terminal region is divided
into classical RING-H2 domain (Dx, DTX1, DTX2, and DTX4) or non-classical RING-H domain (DTX3 and DTX3L). (B) The sequence alignment of human DTX family
and Dx. The multiple sequence alignment was performed using hierarchical clustering (Corpet, 1988), and generated via the Multalin program (version 5.4.1) with a
high consensus value of 90% and a low consensus value of 50%. The identical residues are shown in red, and similar residues are in blue. Consensus symbol of!:
anyone of IV, $: anyone of LM, %: anyone of FY, and #: anyone of NDQEBZ.
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FIGURE 2 | Schematic diagram showing the molecular mechanisms of Dx in Drosophila. The regulation mechanisms of Dx on the Notch signaling pathway depend
on the ubiquitination pattern of the Notch receptor. Dx activates the endocytosis of Notch independent on the canonical ligands. The endosomal maturation is
initiated by the HOPS complex and converted from Rab5 to Rab7. Interaction with the AP-3 complex promotes Notch targeting to the late-endosomal and
lysosomal vesicle membranes. Dx functions as a positive modulator of the Notch signaling pathway when the Notch receptor is monoubiquitinated. The extracellular
domain of monoubiquitinated Notch is removed and degraded following cleavage. Then, the NICD of Notch is released to activate the downstream gene expression.
However, Dx acts as a negative regulator of the Notch signaling pathway when Notch is polyubiquitinated by Dx and regulatory factors, including Su(dx), TRAF6,
Shrub, and Kurtz. The polyubiquitinated Notch is transferred into multivesicular body via ESCRT-III and degraded via the endosome/lysosome pathway. Dx also
influences the JNK signaling pathway to induce apoptosis via interacting with Hrp48 or Eiger. NICD, intracellular domain; Dx, Deltex; TRAF6, tumor necrosis factor
receptor associated factor 6; AP-3, adaptor protein-3; HOPS, homotypic fusion and vacuole protein sorting; ESCRT-III, endosomal sorting complex required for
transport-III; Hrp48, heterogeneous nuclear ribonucleoprotein 48; JNK, Jun N-terminal Kinase; Su(dx), Suppressor of Deltex; Ub, ubiquitin.

Interestingly, when interacting with additional proteins, such
as Suppressor of deltex [Su(dx)] and Kurtz, Dx plays a negative
regulatory role in the Notch signaling pathway. Su(dx), which
belongs to the Nedd4 family E3, is a negative regulator of Notch
(Mazaleyrat et al., 2003). Under normal circumstances, the WW
domains and a linker region act synergistically to maintain Su(dx)
in an autoinhibitory inactive state. Upon activation, Su(dx)
induces the ubiquitination and degradation of Notch, while co-
expression of Su(dx) and Dx blocks the activation of Notch
signaling induced by Dx alone (Wilkin et al., 2008; Yao et al.,
2018). Kurtz is the only homolog of non-visual beta-arrestin in

Drosophila (Roman et al., 2000). Based on the results of yeast two-
hybrid analysis, a region between amino acids 10 and 251 in Kurtz
interacts with Dx, which leads to the polyubiquitination and
degradation of Notch, thereby negatively regulating the Notch
signaling pathway (Mukherjee et al., 2005). With the assistance
of the core element, Shrub, of the endosomal sorting complex
required for transport-III (ESCRT-III), the poly-ubiquitination
of Notch is increased. Shrub and Dx shift the delivery of
Notch receptor to multivesicular bodies, ultimately promoting
the endosomal/lysosomal degradation of Notch (Hori et al.,
2011). In addition, the proteins encoded by the maheshvara
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and TNF receptor-associated factor 6 (TRAF6) are co-expressed
with Dx to inhibit the Notch signaling pathway (Mishra et al.,
2014; Surabhi et al., 2015). Therefore, the ubiquitination status
(mono- or poly-ubiquitination) of Notch, mediated by Dx alone
or in combination with any other possible interacting proteins, is
correlated with the mechanisms underlying the effects of Dx on
the downstream regulation pattern of Notch signaling pathway
positively or negatively.

During homeostasis, cells integrate the activities of multiple
pathways and turn on the interaction crosstalk, such as that
between the Notch and c-Jun N-terminal kinase (JNK) signaling
pathways (Ammeux et al., 2016). The synergistic interaction of
heterogeneous nuclear ribonucleoprotein 48 (Hrp48) and Dx
negatively regulates the Notch signaling pathway by inhibiting
the transport of Notch from the cell membrane to the cytoplasm
(Dutta et al., 2017). Additionally, The combinatorial expression
of Hrp48 and Dx induces apoptotic cell death via the activation
of the JNK signaling pathway (Dutta et al., 2019); similarly, Eda-
like cell death trigger (Eiger) induces apoptosis by triggering
JNK signal pathway (Igaki and Miura, 2014). Dx triggers the
transport of Eiger from the cell membrane to cytoplasm and
modulates its activity to induce the JNK signal pathway (Dutta
et al., 2018). The cooperation of Dx and TRAF6 also mediates
the Eiger-independent JNK activation, which is also regulated
by the endocytic pathway component Rab7 (Sharma et al.,
2021). Taken together, Dx has been shown to play a significant
role in morphology and development of Drosophila, mainly by
regulating JNK and non-canonical Notch signaling pathways.
The understanding of the functions and molecular mechanisms
of Dx in Drosophila establishes a quantitative framework for
deeper research into mammalian DTX family proteins.

MDTX Family of Proteins
Since conducting medical research on humans is restricted
due to ethical issues and various other limiting factors, the
laboratory mouse, Mus musculus, is one of the most commonly
used mammals for studying human disease (Lloyd et al.,
2016; Gurumurthy and Lloyd, 2019). The high genetic and
physiological conservation are key advantages for mice as a
suitable research animal model (Justice and Dhillon, 2016). The
MDTX family of proteins have a high degree of similarity with
Dx and their human homologs. In adult mice, the expression of
MDTX1, MDTX3, and MDTX4 are prominently observed in the
brain and testis, while MDTX2 is strongly expressed in the testis
(Kishi et al., 2001; Storck et al., 2005). MDTX proteins inhibit
the activity of a mammalian transcription factor E47 alone,
rather than the E47-VP16 complex. In addition, overexpression
of MDTX2 suppresses the expression of myogenic transcriptional
factor myogenin and the frequency of muscle cell differentiation
(Kishi et al., 2001). MDTX proteins can negatively regulate the
Notch signaling pathway of T cells (Lehar and Bevan, 2006).

In the sections that follow, the functions and associated
molecular mechanisms of human DTX family proteins are
summarized and reviewed. The related signaling pathways and
interactions of DTX family proteins in cell development and in
carcinomas are shown in Figures 3, 4, respectively. An overview
of DTX family proteins during the developmental process of

different cell types is listed in Table 1, while Table 2 summarizes
the altered levels, functions, and mechanisms of DTX family
proteins in different cancer types.

DTX1
The human DTX1 is located on chromosome 12 (12q24.13) and
its 67.4 kDa coded protein contains 620 amino acids. DTX1
is 26% identical and 40% similar to Dx based on Needleman-
Wunsch alignment of two protein sequences (Altschul et al.,
1997). As for cellular location, it is located both in the cytoplasm
and in the nucleus (Ordentlich et al., 1998; Yamamoto et al.,
2001). The functions of DTX1 are determined by numerous
factors. For example, during early development of thymocytes,
a positive feedback loop has been reported between DTX1
upregulation and the activation of Notch signaling (Deftos et al.,
1998). Meanwhile, a negative feedback between DTX1 and Notch
is regulated by HES1, a downstream target gene of Notch,
which directly binds to the promoter of DTX1 and inhibits its
transcription (Zhang et al., 2010). Atrophin-1-interacting protein
4 (AIP4) is another inhibitor of DTX1, which interacts with
the proline-rich motif of DTX1 and mediates its degradation,
primarily via K29-linked polyubiquitination and the lysosomal
pathway (Chastagner et al., 2006). DTX1 was thought to directly
bind to Notch and regulate its ubiquitination status, however,
more recently, the regulation was found to be indirect (Zheng
and Conner, 2018). The lipid kinase phosphatidylinositol-5-
phosphate 4-kinase γ (PI5P4Kγ), as a substrate of DTX1,
promotes Notch receptor internalization and localization in the
tubulovesicular compartment via a Rab4a-dependent pathway,
thus, preventing Notch receptor’s endosomal recycling back to
the membrane and negatively regulating the Notch signaling
pathway (Zheng and Conner, 2018).

DTX1 plays an essential role in cell differentiation. During
avian development, DTX1 regulates the formation of the cranial
neural crest via the Notch1 pathway (Endo et al., 2003).
F3/contactin and its homolog NB-3 interact with Notch, thereby
releasing the NICD via the non-canonical Notch pathway,
and form a complex with DTX1 to mediate myelin-related
protein expression in the nucleus (Hu et al., 2003; Cui et al.,
2004). The neuron-specific transmembrane protein Delta/Notch-
like epidermal growth factor-related receptor (DNER) mediates
the interaction between neurons and glial cells via the
DTX1 dependent Notch signaling pathway and promotes the
morphological differentiation of Bergmann glial cells (Eiraku
et al., 2005). DTX1, expressed in the nucleus of neural progenitor
cells, directly interacts with the transcription activator p300,
forming a complex that inhibits the transcriptional activity
of mammalian achaete–scute homolog 1 (MASH1), thereby
restricting cell differentiation (Yamamoto et al., 2001). During
differentiation of smooth muscle cells, DTX1 inhibits the
proliferation of bone marrow mesenchymal stem cells and
promotes their differentiation into smooth muscle cells by
overexpressing smooth muscle myosin heavy chains (MyHCs)
(Wang et al., 2018). DTX1 also effectively inhibits the formation
of granulation tissue in the tunica albuginea, which is a
treatment strategy used against closed penile fracture (Guo et al.,
2018). During the development of lymphocytes, DTX1 induces
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FIGURE 3 | Schematic diagram showing DTX family related signaling pathways and interactions in cell development. DTX family proteins regulate cell differentiation
via several mechanisms and signaling pathways, such as poly-ubiquitination of HIF1-α and MEKK1, monoubiquitination of Jmjd1c, methylation of histones, and JNK
and Wnt signaling pathways. In the regulation of cell anergy, the T cell receptor is activated and monoubiquitination of PKCθ is induced by DTX1, following the
alteration of GADD45 β and Cbl-b expression. In the regulation of DNA damage repair, DTX3L promotes the polyubiquitination of the RAP80-BRCA1 complex,
monoubiquitination of histones, and STAT1phosphorylation. The combination of DTX2 and PARP1 is also involved with the regulation of DNA damage repair. Upon
viral infection, TBK1 is phosphorylated thereby activating the IFN-I pathway. The DTX4, NLRP4, USP38, and TRIP complex inhibits the IFN-I pathway via enhancing
polyubiquitination of TBK1, which is also associated with DYRK2 and TRAF3IP3. STAT1, signal transducer and activator of transcription 1; PARP1, Poly
(ADP-Ribose) Polymerase 1; HIF1-α, hypoxia inducible factor 1 subunit alpha; MEKK1, mitogen activated protein kinase/ERK kinase 1; Jmjd1c, Jumonji domain
containing 1c; JNK, Jun N-terminal Kinase; PKCθ, protein kinase Cθ; GADD45β, growth arrest and DNA damage inducible 45 beta; Cbl-b, Casitas B-lineage
lymphoma-b; RAP80, receptor associated protein 80; BRCA1, Breast Cancer 1; TBK1, TANK binding kinase 1; NLRP4, nod-like receptor (NLR) family pyrin domain
containing 4; USP38, Ub-specific protease 38; TRIP, TRAF-interacting protein; IFN-I, interferon type I; DYRK2, dual-specificity tyrosine-(Y)-phosphorylation-regulated
kinase 2; TRAF3IP3, TNF receptor associated factor 3 interacting protein 3.

lymphoid progenitor cells to differentiate into B cells, and is
consistently involved in the differentiation of germinal-center
B cells (Izon et al., 2002; Gupta-Rossi et al., 2003). During
differentiation of marginal-zone B cells, DTX1 is overexpressed
and restrains Notch2 expression (Saito et al., 2003). In addition,
DTX1 inhibits the differentiation of hematopoietic stem cells
into T cells (Yun and Bevan, 2003). T-lineage cells differentiate
from multipotent progenitors, which exhibit different CD4 and
CD8 phenotypes (Wu, 2006). During the early stages of T-cell
development, the transcriptional level of DTX1 is increased by
the transcription factor GATA-binding factor 3 (GATA3); DTX1
interferes with T-cell differentiation by regulating the Notch
signaling pathway (Wang et al., 2009). The HeLa E box-binding
(HEB) protein is often heterodimeric with E2A in thymocytes
(Sawada and Littman, 1993). During maturation of CD4 and
CD8 double-positive T cells, DTX1 competes with p300 for
binding to the E2A/HEB protein complex, thereby enhancing
the resistance of cells to glucocorticoid (GC)-induced apoptosis
(Jang et al., 2006). DTX1 specifically promotes the degradation
of the mitogen-activated protein kinase (MAPK)/ERK kinase
1 (MEKK1) via ubiquitination to inhibit T-cell activation

(Liu and Lai, 2005). In addition to regulating the maturation of
T cells, DTX1 also plays vital roles in the T-cell anergy process.
DTX1 promotes the degradation of hypoxia-inducible factor-
1α (HIF-1α) to maintain the expression of the transcription
factor Forkhead box protein P3 (Foxp3), which is essential for
sustaining the effector activities of regulatory T cells (Hsiao et al.,
2015). Retinoic acid-related orphan receptor γ t (RORγt) is a
transcription factor that is necessary for the differentiation of
Th17 cells, CD4+ T helper lymphocytes that secrete interleukin
(IL)-17A and IL-17F (Lee et al., 2020). When CD4+ T cells
are stimulated by IL-6 and transforming growth factor-β (TGF-
β), DTX1 promotes their differentiation into Th17 cells by
enhancing the DNA-binding ability of RORγt in the nucleus
and the production of the corresponding cytokines (Tang et al.,
2020). The Casitas B-lineage lymphoma (Cbl) family is a
RING type of E3 ligases, which acts as a negative regulator
of immune activation (Liu and Gu, 2002). The mammalian
Cbl family contains three homologs, namely c-Cbl, Cbl-b, and
Cbl-c (Jafari et al., 2021). During the T-cell anergy process,
DTX1 acts as a Notch-independent regulator, which induces
the degradation of protein kinase C-θ (PKC-θ) by promoting
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FIGURE 4 | Schematic diagram showing DTX family related signaling pathways and interactions in carcinomas. In the regulation of Notch endocytosis, ubiquitination
of PI5P4Kγ, as a substrate of DTX1, promotes the endocytosis and maintaining of Notch on the membrane of TVC, thereby restraining the recycling of Notch to the
cell membrane. DTX family proteins, such as DTX1, DTX3L, and DTX4, are primarily involved in the regulation of the Notch signaling pathway and expression of
downstream genes to affect tumor growth, and metastasis. In the regulation of tumor growth and metastasis, DTX1 and DTX3L also enhance the phosphorylation of
downstream proteins, such as STAT1, AKT, and ERK. In the regulation of apoptosis, ubiquitination of c-FLIP by DTX1 stimulates TRAIL-induced cell death. The
combination of P300 and DTX1 inhibits the expression of multiple genes, which is also associated with apoptosis. The expression of caspase-3 and PARP1 is
decreased by DTX3L to inhibit apoptosis. In the regulation of tumor immunity, the expression of DTX4 is negatively regulated by PD-L1. NICD, intracellular domain of
Notch receptor; PI5P4Kγ, phosphatidylinositol-5-phosphate 4-kinase γ; TVC, tubulovesicular compartment; STAT1, signal transducer and activator of transcription
1; c-FLIP, cellular FADD-like interleukin-1β converting enzyme inhibitory protein; TRAIL, TNF-related apoptosis-inducing ligand; PARP1, poly (ADP-Ribose)
polymerase 1; PD-L1, programmed death ligand 1; METTL3, methyltransferase-like 3; ADAM10, a disintegrin and metalloproteinase 10; IFIT-1, interferon
(IFN)-induced protein with tetratricopeptide repeats 1; IRF-1, IFN regulatory factor-1; CXCL10, Chemokine (C-X-C motif) ligand (CXCL)10.

its mono-ubiquitination and the endosome/lysosome pathway.
Thus, the protein stability of Cbl-b increases to attenuate T-cell
activation and promote anergy (Hsu et al., 2014). Upon induction
by nuclear factor of activated T cells (NFAT), DTX1 regulates the
expression of other anergy-associated molecules such as growth
arrest and DNA-damage-inducible 45 beta (GADD45β) during
the T-cell anergy process (Hsiao et al., 2009).

DTX1 also plays a pivotal role in tumorigenesis, invasion,
and metastasis of several cancers. Overexpression of DTX1
increases the clonal ability, growth potential, and invasiveness
of glioblastoma cells. Patients with low expression of DTX1
have a longer survival and a better prognosis of glioblastoma.
DTX1 triggers a specific transcription process, including
microRNA-21 and antiapoptotic Mcl-1, which are involved in
the activation of the AKT and ERK pathways (Huber et al.,
2013). In addition, induction of DNER by the histone deacetylase
inhibitor trichostatin A (TSA) has been shown to reduce the
tumorigenicity and cell differentiation of glioblastoma-derived

neurosphere lines via the DTX1-mediated non-canonical Notch
signaling pathway (Sun et al., 2009). Furthermore, DTX1
plays a tumor-suppressive role and is negatively associated
with gastric cancer progression. In gastric cancer cells, DTX1
primarily promotes the degradation of cellular FADD-like
IL-1β-converting enzyme-inhibitory protein (c-FLIP) in the
lysosomal pathway and enhances TNF-related apoptosis-
inducing ligand (TRAIL)-induced cell death (Hsu et al., 2018).
Missense or nonsilent DTX1 mutations have been reported in
splenic marginal zone lymphomas and in Chinese patients with
primary and recurrent diffuse large B-cell lymphomas (DLBCLs)
(Rossi et al., 2012; de Miranda et al., 2014; Green et al., 2015).
Almost all these mutations occur in the WWE domains of DTX1
and impair its function as a negative Notch regulator, thereby
promoting the development of DLBCLs (Meriranta et al., 2017).
Mutations in the promoter region of DTX1 were detected during
early non-small-cell lung cancer (NSCLC); both overall survival
(OS) and disease-free survival (DFS) rates were higher in patients
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TABLE 1 | Overview of studies with described functions and mechanisms of DTX family members during the development of different cell types.

Year DTXs Cell type Results and findings

2002 DTX1 B cells DTX1 antagonizes Notch1 signal pathway to induce the differentiation of lymphoid progenitor cells to B cells (Izon
et al., 2002)

2003 DTX1 B cells DTX1 is likely involved in the germinal center B cell differentiation (Gupta-Rossi et al., 2003)

2003 DTX1 B cells DTX1 restrains Notch2 expression in the differentiation of marginal zone B cells (Saito et al., 2003)

1998 DTX1 T cells Relative higher DTX1 expression and activated Notch signal pathway are detected in double negative and CD4+

and CD8+ single positive thymocytes, while both lower DTX1 expression and inactivated Notch signal pathway are
detected in double positive thymocytes (Deftos et al., 1998)

2003 DTX1 T cells DTX1 blocks hematopoietic stem cells to T lineage commitment, but not involved in early thymocyte development
(Yun and Bevan, 2003)

2005 DTX1 T cells DTX1 ubiquitinated MEKK1 and promotes its degradation to suppress the activation of T cells (Liu and Lai, 2005)

2006 DTX1 T cells DTX1 competed with the binding of p300 to E2A/HEB protein, increasing survival of double positive thymocytes
from the glucocorticoid-induced apoptosis (Jang et al., 2006)

2009 DTX1 T cells DTX1 regulates the expression of anergy associated molecules, suppresses T cell activation, and participates in
calcium-NFAT signal pathway to enhance T cell anergy (Hsiao et al., 2009)

2009 DTX1 DTX4 T cells The combination of DTX1 and DTX4, regulated by GATA3 in transcriptional level, interferes with Notch signal
pathway during the early stage of T cell development (Wang et al., 2009)

2014 DTX1 T cells DTX1 attenuates T cell activation and promotes the generation of T cell anergy by mono-ubiquitinating protein
kinase C-θ, redirecting the localization of protein kinase C-θ and stabilizing Cbl-b (Hsu et al., 2014)

2015 DTX1 T cells DTX1 degrades HIF-1α and enhances Foxp3 expression to maintain the stability of regulatory T cells (Hsiao et al.,
2015)

2018 DTX4 T cells The gene expression of DTX4 is regulated by hsa_circ_0045272 to regulate apoptosis and interleukin-2 secretion of
T cells in patients with systemic lupus erythematosus (Li et al., 2018)

2020 DTX1 T cells DTX1 promoted the differentiation of CD4 + T cells into T helper 17 cells by enhancing the DNA binding ability of
RORγt (Tang et al., 2020)

2020 DTX3L Mononuclear cells DTX3L advances phosphorylation of STAT1 and increases expression of CXCL10 to promote the infiltration of
mononuclear cells (Tian et al., 2020)

2020 DTX4 Myeloid cells DTX4 is regulated by TRAF3IP3 to decrease virus-triggered IFN-I production in myeloid cells (Deng et al., 2020)

2001 DTX1 Neural progenitor
cells

DTX1 binds with transcription activator p300 and inhibits the activity of MASH1 to restrain the differentiation of
neural progenitor cells (Yamamoto et al., 2001)

2003 DTX1 Oligodendrocyte F3/contactin initiates DTX1 dependent Notch signaling pathway to promote oligodendrocyte maturation and
myelination (Hu et al., 2003)

2004 DTX1 Oligodendrocyte NB-3, a member of the F3/contactin family, triggers Notch signal pathway via DTX1 to promote oligodendrocyte
generation (Cui et al., 2004)

2005 DTX1 Bergmann glia DNER mediated DTX1 dependent Notch signal to stimulate the morphological differentiation of Bergmann glial cells
(Eiraku et al., 2005)

2018 DTX1 Muscle cells DTX1 promotes the differentiation of smooth muscle cells by overexpressing the smooth muscle myosin heavy
chain (MyHC) (Wang et al., 2018)

2018 DTX1 Muscle cells DTX1 positively regulates the differentiation into smooth muscle cells to inhibit granulation tissue formation
effectively for the treatment of closed penile fracture (Guo et al., 2018)

2017 DTX2 Muscle cells DTX2 inhibits myogenic differentiation by suppressing the methylation of histone 3 of myogenic regulatory factor
MyoD (Luo et al., 2017)

2020 DTX3L Fibroblast like
synoviocytes

DTX3L induces fibroblast like synoviocytes to produce inflammatory cytokines through STAT1 signal pathway (Hong
et al., 2020)

2020 DTX1 DTX3L Endothelial cells The heterodimerization of DTX3L and DTX1 inhibits Notch signal pathway and ultimately restrains the angiogenesis
of endothelial cells (Wang et al., 2020a)

2017 DTX4 Renal cells The mRNA expression change of DTX4 is regulated by microRNA let-7a and involved in the fibrotic processes of
instructive nephropathy (Papadopoulos et al., 2017)

2017 DTX4 Preadipocytes DTX4 upregulates the number of lipid granules, the expression of fat forming transcription factors, and adipogenic
marker genes to increase differentiation of preadipocytes (Wang et al., 2017)

2017 DTX4 Hepatic cells The DNA promoter methylation decrease of DTX4 activates the differentiation of hepatic stellate cells (Schumacher
et al., 2017)

2018 DTX4 Hepatic cells DTX4 mediates IFN-I signal to influence HBV sustenance and maintenance of HBsAg in chronic hepatitis B (Kim
et al., 2018)

with mutations than in those without mutations, suggesting that
DTX1 mutations were beneficial for the survival and prognosis of
patients with early NSCLC (Lee et al., 2019). In contrast, patients

with small cell lung cancer (SCLC) carrying DTX1 mutations
showed a worse response to chemotherapy and a lower OS rate,
suggesting that mutations in the same gene may play opposite
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TABLE 2 | Overview of studies with described altered levels, functions, and mechanisms of DTX family members in different cancer types.

Year DTXs Cancer type Expression Results and findings

2012 DTX1 Splenic marginal zone
lymphoma

Gene mutation The mutation in WWE1 and proline-rich domains of DTX1 occurs in splenic marginal
zone lymphoma (Rossi et al., 2012)

2006 DTX3L Diffuse large B-cell lymphoma Up regulated DTX3L is overexpressed in diffuse large B-cell lymphoma cells and shares the same
bidirectional interferon-responsive promoter with BAL1 (Juszczynski et al., 2006)

2013 DTX3L Diffuse large B-cell lymphoma Up regulated DTX3L regulates the early Ub chain formation, RAP80 and BRCA1 recruitment to
DNA damage sites in diffuse large B-cell lymphoma cells (Yan et al., 2013)

2014 DTX1 Diffuse large B-cell lymphoma Gene mutation DTX1 mutations impair the inhibitory effects of Notch signal pathway in diffuse large
B-cell lymphomas (de Miranda et al., 2014)

2017 DTX1 Diffuse large B-cell lymphoma Gene mutation DTX1 with gene mutations plays tumor promoting roles in diffuse large B-cell
lymphomas (Meriranta et al., 2017)

2017 DTX3L Myeloma Up regulated DTX3L increases proliferation, adhesion, and chemo-resistance of myeloma cells,
by blocking caspase-3 and PARP1 expression and inhibiting apoptosis (Shen et al.,
2017)

2009 DTX1 Glioma Up regulated TSA increases the expression of DNER and DTX1 to abrogate growth and
differentiation of glioblastoma derived neurospheres (Sun et al., 2009)

2013 DTX1 Glioma Up regulated DTX1 promotes the proliferation and invasiveness of glioblastoma cells and
correlates with prognosis by activating the AKT and ERK pathways (Huber et al.,
2013)

2017 DTX3L Glioma Up regulated DTX3L is highly expressed in gliomas, relating to the malignant degree and the
prognosis of patients (Xu et al., 2017)

2010 DTX1 Osteosarcoma Down regulated DTX1 inhibits invasiveness of osteosarcoma cells and negatively regulates Notch1
signaling (Zhang et al., 2010)

2018 DTX1 Gastric cancer Down regulated DTX1 decreases c-FLIP expression in lysosome dependent pathway and increases
TRAIL-induced apoptosis in gastric cancer (Hsu et al., 2018)

2020 DTX3 esophageal carcinoma Down regulated DTX3 ubiquitinates Notch2 to suppress the proliferation and migration of
esophageal carcinoma cells (Ding et al., 2020)

2011 DTX3 DTX4 Hepatocellular carcinoma Up regulated The E2F family transcription factors E2F1 and E2F3 binds directly to the proximal
promoter regions of DTX3 and DTX4 to increase the levels of transcription in
hepatocellular carcinoma cells (Viatour et al., 2011)

2010 DTX4 Colorectal cancer Down regulated DTX4 is altered by a 1.6-fold change following treatment with Pomalidomide in
colorectal cancer cells (Liu et al., 2010).

2019 DTX1 Non-small cell lung cancer Gene mutation The overall survival rate and disease-free survival rate of non-small cell lung cancer
patients with DTX1 gene mutation are both higher than those without DTX1
mutation (Lee et al., 2019)

2020 DTX1 Small cell lung cancer Gene mutation The lower overall survival rate and worse response to chemotherapy are appeared
in small cell lung cancer patients with DTX1 gene mutation (Yoo et al., 2020)

2014 DTX3 Luminal subtype breast cancer Up regulated DTX3 is essential for cell proliferation and uniquely amplified in highly proliferative
luminal breast tumors (Gatza et al., 2014)

2020 DTX3 Triple-negative breast cancer Down regulated DTX3 mRNA is degraded and its inhibitory effects on Notch4 is weaken, which
promotes the metastasis of triple-negative breast cancer cells (Liu et al., 2020)

2020 DTX3L Breast cancer Up regulated DTX3L is higher in breast cancers, especially in triple-negative breast cancer.
DTX3L functions as a negative regulator of ATRA induced growth inhibition of breast
cancer cells (Bolis et al., 2020)

2014 DTX3L Prostate cancer Up regulated The overexpression of DTX3L enhances proliferation, metastasis, and
chemo-resistance of prostate cancer cells by repressing the transcription of IRF-1
and influencing phosphorylation of STAT1 (Bachmann et al., 2014)

2015 DTX3L Melanoma Up regulated DTX3L regulates FAK/PI3K/AKT signal pathway to strengthen the invasion and
metastasis of melanoma (Thang et al., 2015)

2016 DTX4 Melanoma Up regulated DTX4 is highly expressed as a Notch4 signaling pathway molecule in melanoma
cancer stem like cells (Lin et al., 2016)

2016 DTX4 Nasopharyngeal carcinoma Up regulated The expression of DTX4 is higher in nasopharyngeal carcinoma cells (Liu et al.,
2016)

2020 DTX4 Soft tissue sarcoma Down regulated The expression of DTX4 in soft tissue sarcoma is regulated by IDO1 inhibitor
combined with PD-L1 blockers (Nafia et al., 2020)

roles in different subtypes of malignant tumors in the same organ.
The specific mechanisms underlying these mutations remain to
be determined (Yoo et al., 2020).

DTX2
Human DTX2, located on chromosome 7 (7q11.23), encodes a
67.2 kDa intranuclear protein with 622 amino acids. DTX2 is
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26% identical and 38% similar to Dx following the comparison
of the two protein sequences. PAR polymerase 1 (PARP1),
activated by DNA damage, promotes PAR chain formation on
many target proteins, including DTX2 (Jungmichel et al., 2013;
Gupte et al., 2017; Ray Chaudhuri and Nussenzweig, 2017). The
catalytic DTX2 is then recruited to promote ubiquitination of
its targets at DNA damage sites. It was recently reported that
the DTC domain of DTX2, not the WWE domains, played
an essential role in binding PARylated substrate proteins and
facilitated ubiquitination of substrate proteins by the RING
domain (Ahmed et al., 2020). As the sequences of DTC domains
are very similar in DTX family of proteins, almost all members,
theoretically, can attach to PARylated proteins. Data from
proteomics show that each DTX family protein has a specific
protein interaction network (Ahmed et al., 2020). The results
also suggest that 2,087 peptides, corresponding to 1,035 proteins,
could be ubiquitinated by DTX2. In addition, only DTX2 showed
a strong correlation with 71 DNA damage repair proteins. This
diversity is partly attributed to the different cellular localization
of DTX family proteins (Ahmed et al., 2020). The effects of DTX2
on cell differentiation have been demonstrated. Upon DTX2
knock-out, skeletal muscle stem cells undergo early myogenic
differentiation and accelerated regeneration in response to injury.
In this process, DTX2 changes the methylation status of H3K9 in
the distal regulatory region of the MyoD promoter and directly
inhibits demethylase activity of Jumonji domain-containing 1C
(JMJD1C) by monoubiquitination to reduce MyoD expression
(Luo et al., 2017).

DTX3
Human DTX3 is located on chromosome 12 (12q13.3). The
38.0 kDa DTX3 protein has 347 amino acids and is primarily
expressed in the nucleus. DTX3 is only 16% identical and
24% similar to Dx. The roles of DTX3 in tumor development
have been extensively investigated. For example, a knockout of
three retinoblastoma family genes in the liver of adult mice
induced the development of liver tumors, similar to human
hepatocellular carcinoma. In this model, the overexpression of
DTX3 was activated by the E2F family transcription factors E2F1
and E2F3 (Viatour et al., 2011). In ductal breast cancer, the
amplification of DTX3 is correlated with high proliferation of
tumor cells and a poor prognosis (Gatza et al., 2014). Meanwhile,
the expression of DTX3 in esophageal cancer tissue and cell lines
is abnormally downregulated. DTX3 inhibits the proliferation
and tumorigenicity of esophageal cancer cells and promotes the
ubiquitination and degradation of Notch2 (Ding et al., 2020).
Furthermore, DTX3 acts as a tumor suppressor gene in triple-
negative breast cancer and is expressed at a low level, which
hinders its ubiquitination and degradation ability toward Notch4
and its ability to effectively inhibit triple-negative breast cancer
metastasis (Liu et al., 2020).

DTX3L
Human DTX3L, also known as B-lymphoma and B-aggressive
lymphoma (BAL)-associated protein (BBAP), is located on
chromosome 3 (3q21.1). The 83.6 kDa DTX3L protein has 740
amino acids. Protein sequence comparison results showed that

DTX3L is 21% identical and 36% similar to Dx. MDTX3L is
highly expressed in multiple organs and tissues, such as the
thymus, hypothalamus, anterior pituitary gland, olfactory bulb,
nose, mouth, urogenital sinus, and rectum (Hakme et al., 2008).
DTX3L was originally identified as a binding partner of BAL1
(PARP9/ARTD9), which is an oncogenic factor in DLBCL with
a prominent immune/inflammatory infiltrate (Juszczynski et al.,
2006). Both DTX3L and BAL1 are located on chromosome 3q21
in a head-to-head orientation and share the same bidirectional
interferon (IFN)-responsive promoter (Juszczynski et al., 2006).
The PARylation of protein is abundant at DNA lesion sites
and critical for participating in the DNA damage repair
pathways (Wei and Yu, 2016; Liu et al., 2017). PARP9 alone,
without enzymatic activity, is unable to enzymatically active the
PARylation of target proteins (Vyas et al., 2014). The presence of
the DTX3L/PARP9 heterodimer, shuttling between the nucleus
and cytoplasm and targeting proteins within the nucleosome,
brings about the possibility that their functions are coupled
in some way (Juszczynski et al., 2006). The heterodimer of
DTX3L/PARP9 displays the PARylation activity, which requires
E1, E2, and ATP, by cleaving NAD+ and generating ADPr. Ub
is observed to be mono-ADP-ribosylated with the ADPr, which
produced from DTX3L/PARP9 reaction. The ADP-ribosylated
modification of Ub occurs on C-terminal Gly76, which is an
important residue for the formation of polyUb chain. As a
result, ADP-ribosylation of Ub strongly reduce polyUb formation
while has no obvious effect on monoubiquitination of target
proteins (Yang et al., 2017). Recently, it is unexpectedly found
that the ADP-ribosylation of Ub happens independent of PARP9.
DTX3L alone can transfer ADPr directly to Ub. The DTC and
RING domains, when together, are the minimum fragments
required of the DTX family proteins for catalyzing ADP-
ribosylation of Ub. In ADP-ribosylation of Ub, the DTC domain
accommodates NAD+ while the RING domain is responsible
for recruiting E2∼Ub; conformational arrangement of these two
domains is essential (Chatrin et al., 2020). DTX3L catalyzes
the monoubiquitination of histone H4K91 and promotes the
binding of methylated histone H4K20 to 53BP1 during DNA
damage response (Yan et al., 2009). Breast Cancer 1 (BRCA1)
protein is a RING type of E3 ligase, consisting of C-terminal
BRCT motifs and a N-terminal RING domain, and plays a key
role during checkpoint modulation and DNA damage repair
(Scully and Livingston, 2000; Xu et al., 2001; Yarden et al., 2002;
Zhang et al., 2004; Zhuang et al., 2006). BRCA1 interacts with
different adaptor proteins, including receptor-associated protein
80 (RAP80), and forms complexes with distinct functions for
DNA repair (Kim et al., 2007; Sobhian et al., 2007; Yan et al.,
2007). The early Ub chain formation and the recruitment of
RAP80 and BRCA1 to DNA damage sites are dependent on the
colocalization of PARP1, BAL1, and DTX3L (Yan et al., 2013).
In addition, DTX3L directly interacts with AIP4 and limits the
ubiquitination of ESCRT-0 subunits, hepatocyte growth factor
receptor tyrosine kinase substrate (HRS), and signal transducing
adaptor molecule (STAM), which regulate the maintenance of
ESCRT-0 on early endosomes to sort ubiquitinated chemokine
(C–X–C motif) receptor 4 (CXCR4) for lysosomal degradation
(Holleman and Marchese, 2014).
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Several studies have shown that the expression of DTX3L
is associated with inflammatory diseases. For instance, during
viral infection, the PARP9/DTX3L complex targets histone
H2BJ by interacting with signal transducer and activator of
transcription 1 (STAT1) (Zhang et al., 2015). Meanwhile, in
rheumatoid arthritis, DTX3L induces fibroblast-like synoviocytes
(FLS) to produce inflammatory cytokines via the STAT1 signal
transduction pathway (Hong et al., 2020). A low level of
RNA N6-methyladenosine methyltransferase methyltransferase-
like 3 (METTL3) has been reported in tissues of cerebral
arteriovenous malformations. METTL3 modulates the mRNA
stability of DTX3L and inhibits the heterodimerization of
DTX3L and DTX1. It consequently promotes the downstream
gene expression of the Notch signaling pathway and ultimately
accelerates the angiogenesis of endothelial cells (Wang et al.,
2020a). In primary Sjogren’s syndrome, the DTX3L/BAL1
complex enhances the phosphorylation of STAT1 to upregulate
IFN-induced protein with tetratricopeptide repeats 1 (IFIT-1)
and increases the expression of chemokine (C–X–C motif) ligand
10 (CXCL10), thereby promoting the infiltration of mononuclear
cells (Tian et al., 2020).

The overexpression of DTX3L in multiple carcinomas has
been previously investigated. In lymphoma, the high expression
level of DTX3L contributes to the resistance to DNA-damaging
chemotherapeutic agents (Yan et al., 2013). The overexpression of
DTX3L and BAL1 promotes the phosphorylation of STAT1 and
represses the transcription of IFN regulatory factor-1 (IRF-1), thus
enhancing the proliferation, metastasis, and chemoresistance of
prostate cancer cells (Bachmann et al., 2014). DTX3L is also
highly expressed in gliomas, and its expression level correlates
with the degree of malignancy and the overall prognosis (Xu
et al., 2017). The regulatory mechanism underlying the invasion
and metastasis of melanoma by DTX3L involves the focal
adhesion kinase (FAK)/PI3K/AKT signal transduction, but not
the MEK/ERK pathway (Thang et al., 2015). The expression
of DTX3L is regulated by FAK and gradually increases during
proliferation of myeloma cells, which results in cell cycle arrest
at the G1 phase and promotes the adhesion of myeloma cells
to fibronectin or bone marrow stromal cells (Shen et al., 2017).
Meanwhile, inhibition of DTX3L expression has been shown
to enhance the sensitivity to chemotherapy and increase the
expression of caspase-3 and PARP1 in multiple myeloma cell
lines, thus promoting apoptosis (Shen et al., 2017). Furthermore,
DTX3L expression is higher in triple-negative breast cancer cells
than in estrogen receptor (ER) positive and human epidermal
growth factor receptor 2 (HER2) positive breast cancers, and is
a part of the negative feedback loop controlling all-trans retinoic
acid (ATRA)-dependent inhibition of breast cancer cell growth
(Bolis et al., 2020).

DTX4
DTX4, as the last discovered member of the DTX family, is
located on chromosome 11 (11q12.1). The 67.4 kDa DTX4
protein with 619 amino acids is primarily expressed in the
cytoplasm, and is 27% identical and 39% similar to Dx. DTX4
is closely involved in the Notch signaling pathway. After Notch1
is ubiquitinated by DTX4 on the cell surface, ligand-expressing

cells internalize the extracellular domain of Notch1. At the
same time, Notch1 receptor-expressing cells internalize the
complex of Notch1 and DTX4 in a process referred to as
bilateral endocytosis (Chastagner et al., 2017). A disintegrin and
metalloproteinase 10 (ADAM10) generates a cleavage product of
Notch, necessary for the NICD formation. Blocking endocytosis
of Notch1 and DTX4 reduces the colocalization of Notch1 and
ADAM10 and the formation of the NICD, which suggests that
DTX4 ubiquitinates Notch1 prior to the cleavage by ADAM10
(Chastagner et al., 2017).

In addition to Notch signaling, DTX4 is also involved in IFN-
I signaling pathway in innate immunity. In virus-infected cells,
IRF-3 is phosphorylated by TANK-binding kinase 1 (TBK1),
thereby activating the IFN-I signaling pathway. The Ub-specific
protease 38 (USP38), TRAF-interacting protein (TRIP), Nod-like
receptor (NLR) family pyrin domain containing 4 (NLRP4), and
DTX4 complex polyubiquitinates TBK1, thereby degrading it to
limit the virus-induced IFN-I signaling pathway (Cui et al., 2012).
Some interacting proteins, such as TNF receptor-associated
factor 3-interacting protein 3 (TRAF3IP3) and dual-specificity
tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2), are
also essential for the NLRP4/DTX4 complex to promote TBK1
degradation via Lys48-linked ubiquitination (An et al., 2015;
Deng et al., 2020). In chronic hepatitis B, the reduction of
DTX4 expression partially mediates the IFN-I signaling pathway
to increase the sustenance of hepatitis B virus (HBV) and
maintenance of hepatitis B surface antigen (HBsAg) in the serum
(Kim et al., 2018).

DNA promoter methylation negatively correlates with gene
expression. With the decrease in its DNA promoter methylation,
DTX4 expression is promoted during the activation of hepatic
stellate cells (Schumacher et al., 2017). In systemic lupus
erythematosus, the mRNA expression of DTX4 is partially
modulated by circular RNA hsa_circ_0045272 and is associated
with early apoptosis of Jurkat cells (Li et al., 2018). DTX4 is
also involved in fibrotic processes in obstructive nephropathy,
and its mRNA levels are regulated by microRNA let-7a
(Papadopoulos et al., 2017).

DTX4 plays vital roles in cell differentiation. The elevated
expression of DTX4, together with DTX1, has been shown to
contribute to their inhibitory effects on Notch signaling pathway.
As a result, T-cell commitment and developmental progression
are impeded (Wang et al., 2009). During preadipocyte
differentiation, the expression of DTX4 protein gradually
increases. Then, the artificially reduced expression of DTX4
is found to decrease the number of lipid granules, along with
the decreased expression of CCAAT enhancer-binding protein
alpha (C/EBPα) and peroxisome proliferator-activated receptor
gamma (PPARγ). Moreover, downregulation of DTX4 reduces
the expression of adipogenic marker genes fatty acid-binding
protein 4 (FABP4) and adipsin, which arrest mitosis and inhibit
expression of Wnt signaling genes, such as Wnt6 and Wnt10b
(Wang et al., 2017).

DTX4 is associated with the development and metastasis of
several carcinomas, such as hepatocellular carcinoma (Viatour
et al., 2011), colorectal cancer (Liu et al., 2010), and melanoma
(Lin et al., 2016). Comparison of the interaction networks
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between microRNAs and target genes in nasopharyngeal
carcinoma samples showed that DTX4, regulated by several
microRNAs, was substantially upregulated, which illustrates the
promotional roles of DTX4 in the occurrence and development
of nasopharyngeal carcinoma (Liu et al., 2016). Indoleamine 2,3
dioxygenase (IDO1), the rate-limiting enzyme of the kynurenine
pathway, and programmed cell death 1 ligand 1 (PD-L1) are
potential immunotherapeutic targets against soft tissue sarcoma.
The expression of DTX4 increases upon the inhibition of both
IDO1 and PD-L1, which suggests the potential controlling
function of DTX4 in immunotherapy of heterogeneous
malignant mesenchymal neoplasms (Nafia et al., 2020).

CONCLUSION

DTX family E3 ligases are highly evolutionarily conserved and
essential during protein ubiquitination, yet differ from each
other with various functions in the expressed tissues. DTX1,
expressed in both cytoplasm and nucleus, has the highest
homology with Dx of Drosophila. The structure, function, and
mechanism of DTX1 remains a hot topic in research. DTX1
activates multiple signaling cascades to regulate cell development,
while dysregulated DTX1 expression induces numerous human
diseases, including malignant conditions. Several substrate
proteins of DTX1 have already been identified, for example,
PI5P4Kγ, c-FLIP, and PKC-θ. The cellular localizations of DTX2,
DTX3, and DTX3L are primarily in the nucleus, indicating that
the functions and mechanisms of these three DTX proteins
are associated with transcriptional regulation and DNA damage
repair. The mechanism of DTX2 involves PARylation. The
N-termini of DTX3 and DTX3L are disparate from those of
other DTX proteins, while the current available data on DTX3
are limited. DTX3L and PARP9 heterodimer targets proteins
within the nucleosome. DTX4 is the last discovered member and
primarily expressed in the cytoplasm and is involved in human
innate immune by regulating IFN-I signaling pathway. Owing to
the complexity of multiple E2 and substrate proteins, the function
and mechanism of DTX family proteins remain nebulous.
Further research can provide deeper insights into ubiquitination.
Currant data suggest DTX proteins as potential diagnostic and
therapeutic targets for carcinomas and other diseases.

FUTURE PERSPECTIVES

It is well accepted that the protein structure determines function.
In the future, with the help of AlphaFold, an artificial intelligent
system to predict the 3-D structure of a protein accurately, the
structural features, molecular mechanisms, and potential drug
targets of DTX family proteins will be no longer mysterious

(Jumper et al., 2021). The DTX family proteins have a great
significance in both physiology and pathology, hence further
research is warranted to elucidate the mechanisms underlaying
their function and influence, such as: (1) What other substrate
proteins are directly ubiquitinated by DTX family proteins?
The fundamental function of DTX family proteins is the
ubiquitination of substrate proteins. Although some have been
identified, many substrate proteins of DTX family have yet to
be fully characterized. Binding specificity of substrate proteins,
to a certain extent, determines the exact molecular mechanism
and downstream signaling pathway. Further investigation will
provide a better understanding of functional roles of individual
DTX proteins. (2) What results in the aberrant expression of
DTX family proteins in carcinoma and other diseases? Genetic
mutation and transcriptional dysregulation are associated with
the over- or down- expression of DTX family proteins under
pathological conditions. However, the exact mechanisms remain
to be determined. (3) What is the relationship between other
E3s and DTX family proteins? Several other E3s, for instance,
AIP4, Nedd4, and BRCA1, play different roles in enhancement
or inhibition of the ubiquitination by DTX family proteins.
Both extracellular stimuli and intracellular conditions influence
the combination of other E3s with DTX proteins, which are
extremely complicated and require in depth investigation. It is
of great importance to identify the association between other E3s
and DTX proteins, which will provide insights into translational
medicine of DTX proteins.
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