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Abstract: Traceable characterization methods allow for the accurate correlation of the functionality or
toxicity of nanomaterials with their underlaying chemical, structural or physical material properties.
These correlations are required for the directed development of nanomaterials to reach target func-
tionalities such as conversion efficiencies or selective sensitivities. The reliable characterization of
nanomaterials requires techniques that often need to be adapted to the nano-scaled dimensions of the
samples with respect to both the spatial dimensions of the probe and the instrumental or experimental
discrimination capability. The traceability of analytical methods revealing information on chemical
material properties relies on reference materials or qualified calibration samples, the spatial elemental
distributions of which must be very similar to the nanomaterial of interest. At the nanoscale, however,
only few well-known reference materials exist. An alternate route to establish the required traceability
lays in the physical calibration of the analytical instrument’s response behavior and efficiency in con-
junction with a good knowledge of the various interaction probabilities. For the elemental analysis,
speciation, and coordination of nanomaterials, such a physical traceability can be achieved with X-ray
spectrometry. This requires the radiometric calibration of energy- and wavelength-dispersive X-ray
spectrometers, as well as the reliable determination of atomic X-ray fundamental parameters using
such instrumentation. In different operational configurations, the information depths, discrimination
capability, and sensitivity of X-ray spectrometry can be considerably modified while preserving its
traceability, allowing for the characterization of surface contamination as well as interfacial thin layer
and nanoparticle chemical compositions. Furthermore, time-resolved and hybrid approaches provide
access to analytical information under operando conditions or reveal dimensional information, such
as elemental or species depth profiles of nanomaterials. The aim of this review is to demonstrate
the absolute quantification capabilities of SI-traceable X-ray spectrometry based upon calibrated
instrumentation and knowledge about X-ray interaction probabilities.

Keywords: traceability; characterization; elemental analysis; speciation; nanostructures; nanoparticles;
XRF; GIXRF; XAFS; XES

1. Introduction

The functionality or toxicity of a nanomaterial depends on the spatial distribution
of its elemental and species concentrations or mass depositions. While analytical chem-
istry establishes traceability chains based on pure substances or certified matrix reference
materials, physical metrology links each measurement’s result, including its associated
uncertainty, back to the International System of Units (SI) [1]. At the nanoscale, analytical
characterization techniques must provide reliable information on elemental, species, or
coordination mass deposition, i.e., the number of atoms in a particular chemical binding or
coordination state per unit area, in order to allow accurate correlations with the nanomate-
rial’s functionality or toxicity. The directed development of nanomaterial functionalities as
well as the assessment of nanoobject toxicities require this kind of information.

Steadily increasing needs for the provision of more complex functionalities of nanoma-
terials and the adaptable usage of various technological processes in one device or in a set
of closely adjacent devices call for a transition of empirically based knowledge to a more
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complete understanding of the processes generating specific device functionalities, such
as conversion efficiencies or tunable interfacial properties [2]. To probe these underlying
chemical and physical properties reliably, traceable characterization methods that provide
sufficient sensitivity for the chemical and physical quantities of interest in nanomaterials
are required. In general, this requires adaptions of characterization techniques to the nano-
scaled dimensions of the samples regarding the spatial dimensions of the probe and the
instrumental discrimination capability. In view of the drastic lack of reference materials
at the nanoscale [3], the quantification reliability of analytical methods based on reference
materials, e.g., for the compensation of missing knowledge on instrumental or experimental
parameters of the techniques, is considerably affected.

The challenge of missing reference materials at the nanoscale can be addressed by an al-
ternate route for traceability. The German National Metrology Institute (NMI), Physikalisch-
Technische Bundesanstalt (PTB), established X-ray spectrometry (XRS) as an X-ray ana-
lytical method traceable to the SI. For this purpose, all instrumental and experimental
parameters need to be well determined, allowing their respective contributions to the uncer-
tainty of the analytical result in the form of an elemental mass deposition to be known [4].
In addition, good knowledge on the values and related uncertainties of the X-ray interaction
probabilities, i.e., the atomic X-ray fundamental parameters (FPs) [5], has to be ensured ei-
ther by means of appropriate data in the literature or dedicated experimental or theoretical
determinations. In the same way as traceable XRS, such experimental FP determinations
require instrumentation that has been calibrated with respect to all relevant parameters,
such as the incident radiant power, spectral purity and angle of incidence of the excitation
radiation, the angle of observation and the solid angle of detection, as well as the spectral
response behavior and efficiency of the wavelength or energy-dispersive detection system
employed to record the element-specific X-ray fluorescence radiation. Most instrumental
parameters can be determined based upon principles of X-ray radiometry [6]. On the other
hand, the careful assessment of existing FP literature data as well as well-coordinated
activities to reveal FP data with reduced uncertainties using modern methodologies have
been organized since 2008 by an international consortium of academic and industrial key
players, and have been disseminated by a series of annual workshops as well as X-ray
fundamental parameter roadmap documents [7]. Coordinated FP-determination activities
involve improved experimental and theoretical methods based upon novel kinds of instru-
mentation, ultra-thin one- or two-elemental specimens, and advanced algorithms [5,8,9].
Improved FP values allow us to reduce the uncertainties of analytical XRS measurement
results for both the chemical and physical traceability chains to the SI.

The nano-scaled dimensions of nanomaterials make it more difficult to ascertain
many key analytical parameters of characterization techniques. One main problem is
that the amount of substance to be probed can be several orders of magnitude lower
than is the case for pure substances or conventional reference matrix materials. This
requires a high dynamic of both analytical detection sensitivity and quantification reliability.
Additionally, significant signal crosstalk can be induced by the substrate response to the
probe, thus posing challenges to both the analytical discrimination capabilities and to
the spatial dimensions of the probe in terms of beam profile or beam penetration depths.
The variation of XRS operational parameters enables one to meet those requirements
associated with the characterization of nanomaterials. The usage of tunable monochromatic
and linearly polarized excitation radiation drastically reduces spectral background in the
regions of interest, thus enhancing the XRS detection sensitivity. Beam-focusing optics or
grazing incidence conditions with very low penetration depths can reduce spectral substrate
contributions, thus improving the discrimination capability of XRS. The same holds when
employing higher-resolution crystal or grating spectrometers instead of energy-dispersive
X-ray detectors.

The use of well-known and tunable synchrotron radiation (SR) [4,6] as monochromatic
and polarized excitation radiation ensures highly sensitive SI-traceable XRS applications.
For incident angles below the angle of external total reflection, the penetration depth of
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the incident beam is limited to a few nanometers, rendering this operational configuration
ideal for the determination of elemental or species surface contamination [10] on very flat
substrates with roughness values in the sub-nanometer range. When tuning the incident an-
gle above the angle of external total reflection, the penetration depth considerably increases
and quantitative analytical access to near-surface interfaces [11,12], diffusion or dopant
depth profiles [13], and nanolayered systems [12,14] is enabled. By tuning the photon
energy of the excitation radiation across the absorption edge of an element of interest,
i.e., by performing X-ray absorption fine structure (XAFS) spectrometry, complementary
information on the chemical binding state [12] can be revealed. To reveal depth-resolved
chemical information on interfaces or nanolayered systems [11,12], XRS experiments at
suitable sets of incident angles must be performed to enable a differential quantification
approach. For very flat substrates and nanolayers, one takes advantage of the nano-scaled
structure of X-ray standing wave (XSW) field distribution, which strongly depends on the
angle of incidence as well as on the spatial elemental distribution of the nanomaterial of
interest. The XSW field modifies the effective excitation intensity in all XRS experiments
at very flat surfaces or interfaces. Such grazing-incidence XRS approaches allow for the
quantitative characterization of different surface functionalization [15,16] and of biomedical
materials [17,18]. Based upon specific sample environments, XRS could be applied to the
chemical analysis of liquid samples [19,20]. Recent round robin activities in XRS under
total reflection conditions have confirmed its quantification reliability for both chemical
as well as physical traceability chains [21]. XRS under grazing incidence or shallow-angle
observation can reveal both analytical and dimensional information from layered systems,
nanostructures [22], and particles deposited on flat substrate surfaces. In the following sec-
tions, the basic principles, different measurement configurations, and selected applications
of SI-traceable XRS will be described.

2. Reference-Free X-ray Fluorescence Analysis

The elemental analysis of physically traceable XRS is known as reference-free X-ray
fluorescence (XRF). The term reference-free has been defined as a quantification approach
not relying on any reference material or calibration samples. At PTB, reference-free XRF
has been enabled by using tunable monochromatized synchrotron radiation with both well-
known spectral purity and radiant power for specimen excitation. To ensure well-known
experimental XRF configurations, several UHV instrumentations have been built and
characterized by PTB. These instruments allow for the accurate definition of the angles of
incidence and observation, as well as the accurate determination of the effective solid angle
of detection. Photodiodes and energy-dispersive silicon drift detectors (SDD) are calibrated
by different radiometric techniques [6] in the PTB laboratory at the SR facility BESSY II.
When measuring the radiant power of tunable SR by means of a calibrated photodiode, the
absolute efficiency and response functions of an SDD can be determined at different photon
energies of interest. For reference-free XRF and SI-traceable XRS, two well-characterized
beamlines for monochromatized SR are employed: a plane grating monochromator (PGM)
beamline for undulator radiation and a four-crystal monochromator (FCM) for bending
magnet radiation.

Figure 1 illustrates basic geometrical arrangements in reference-free or SI-traceable
XRF at different angles of incidence: total reflection X-ray fluorescence (TXRF) at shallow
angles below the critical angle of total reflection θcrit, grazing incidence X-ray fluorescence
(GIXRF) at angles up to about four times the value of θcrit, and conventional XRF in
the 30◦ to 90◦ angular range. In PTB’s XRS instrumentation, different photodiodes are
used to record the radiant power of the incident, transmitted, or reflected radiation. The
transmittance through a thin sample can contribute to selected FP determinations, while
the radiation being reflected at a very flat sample into a slit diode allows for alignment
purposes and for revealing dimensional information on roughness values or thin layer
thicknesses and densities.
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Figure 1. Different experimental configurations of reference-free XRF using monochromatized SR
as the incident excitation radiation. In the first UHV instrumentation for reference-free XRF, the
solid angle of detection is defined by a well-known diaphragm placed in front of the calibrated SDD
detector at a given distance with respect to the center of the sample. In order to take advantage of the
linear polarization of SR for reducing spectral background, the angle between the incident radiation
and the fluorescence detection channel is 90◦. When simultaneously detecting fluorescence radiation
with two SDDs, normal incidence (θ = 90◦) and observation angles ψ of the detectors of 30◦, 45◦ or
60◦, with respect to the sample surface, are chosen. θcrit designates the critical angle of external total
reflection at a flat sample surface. Calibrated photodiodes are employed to determine the incident
radiant power or intensity of the excitation radiation.

The XRF measurand is the detected fluorescence intensity of discriminable elemental
fluorescence lines that can be converted into the related quantity of the mass m of the
element i per unit area A by means of the Sherman equation. Other expressions of this
quantity are the aerial mass, the mass thickness, or the mass of atomic surface density.
The quantification of elemental mass depositions mi/A by reference-free XRF requires the
knowledge of all relevant instrumental, experimental, and atomic fundamental parameters.
The concentration Ci of the element i corresponds to the elemental mass deposition mi/A
divided by the sum of all elemental mass depositions in the sample. In a homogeneous
multi-elemental sample of thickness d, the value of Ci can be calculated according to the
following Sherman-type equation:

Ci =
Pi

P0τi,E0 Q Ωdet
4π

1
sinΘ

1−exp(−µtot,id)
µtot,i

where:

E0 is the incident radiation photon energy;
P0 = S0/sdiode,E0/E0 is the incident photon flux;
S0 is the signal of the photodiode recording the incident radiant power;
sdiode,E0 is the spectral responsitivity of the photodiode;
θ is the incident angle;
Ei is the photon energy of the fluorescence line l of the element i;
Ri is the detected count rate of the fluorescence line l of the element i;
εdet,Ei

is absolute SDD efficiency at the photon energy Ei;
Pi = Ri/εdet,Ei is the intensity of the fluorescence line l of the element i;
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τi,E0 is the photo electric cross section of the element i at the photon energy E0;
µS,E is the absorption cross section of the sample s at the photon energy E.

µtot,i = µS,E0 /sinθ + µS,Ei /sinψ

where:

ψ is the angle of observation with respect to the sample surface;
Ωdet is the effective solid angle of detection defined by both a calibrated SDD aperture
placed at a well-known distance from the sample and the incident beam foot print on the
sample surface;
ωXi is the fluorescence yield with respect to the (sub)shell or orbital Xi (of the element i);
gl,Xi is the transition probability of the fluorescence line l associated with Xi;
jXi is the ratio of the photo electric cross section of Xi to the sum of the photo electric cross
sections of all other shells that can be ionized at E0;
Q = ωXi gl,Xi (jXi − 1)/jXi.

In the case of very flat samples excited under grazing incidence conditions, the mod-
ulation of the incident radiant power by the XSW intensity [11] has to be included as an
additional factor. Secondary and tertiary excitation channels within a homogeneous layer
or bulk sample, as well as intra-layer excitation and absorption effects can be likewise
included as indicated in detail in the literature [23,24]. Contributions of secondary exci-
tation fluorescence [24] can exceed 20%, depending on the elements involved along with
the spatial composition and dimensions of the layered system, the excitation energy, and
the angle of incidence. For inhomogeneous matrices, analytical expressions of elemental
concentrations can only be given when descriptions of the spatial distributions of the
main matrix constituents, e.g., in the form of a parametrized elemental depth profile, are
available. Otherwise, Monte-Carlo-based XRF modelling may contribute to overcoming
a lack of sufficient a priori knowledge concerning the spatial distribution of main matrix
elements or, when including multiple scattering effects for which analytical expressions are
more difficult to deduce, in spectral decomposition.

Figure 2 describes the different configurations and fields of applications of reference-
free XRS for well-known experimental parameters with sufficient a priori knowledge of the
spatial distribution of the main matrix constituents, as is the case for homogeneous and
layered samples. Many new materials, e.g., in the semiconductor industry, are essentially
thin layered samples at the nanoscale. The tunability of SR across the absorption edge of a
main matrix element allows for chemical speciation by XAFS. For nanolayer or interfacial
speciation purposes, both the incident photon energy and incident angle need to be varied
in a pre-selected manner [11,12] in order to take advantage of the related tunable intensity
of the nano-scaled XSW field. Thereby, one can either perform species depth profiling or
interfacial speciation in nanolayered systems.

With respect to characterizations of nanoparticles and environmental aerosols, both
TXRF [25] and GIXRF [26] have shown their analytical capabilities to quantify elemental
mass depositions of size-fractionated nano- and microparticles collected by means of cas-
cade impactors on flat substrates. A reference-free GIXRF quantification mode [26] allows
one to determine the angular ranges of validity for the correct quantification of specific
elemental mass depositions. Figure 3 shows the angular GIXRF responses for different
nitrogen mass depositions in conjunction with the corresponding reference-free GIXRF
quantification, clearly allowing for the identification of the angular regimes providing
constant mass depositions. Engineered nanoparticles, often having small size distributions,
are ideal nanoobjects to be characterized by GIXRF [27] with respect to surface coverage
and particle composition.
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Figure 3. Experimentally revealed fluorescence intensities and deduced elemental mass depositions
of different nitrogen-containing environmental samples.

3. High-Resolution X-ray Spectrometry

Besides revealing information about elemental mass depositions and related chemical
binding states of nanomaterials by means of XRF and XAFS, complementary chemical
information can be revealed using high-resolution X-ray emission spectrometry (XES),
which often provides a different discrimination capability depending on the specific va-
lence states of compounds. XES can substantially contribute to the further development of
complex nanomaterials with distinct chemical properties. In the field of catalysis, for exam-
ple, the identification and quantification of active sites is important for a more thorough
understanding of catalytic systems. Using a physically traceable XRS approach based on
calibrated instrumentation and the knowledge of atomic fundamental parameters, absolute
elemental and species mass depositions can be derived. For this purpose, PTB built a
compact and calibratable wavelength-dispersive spectrometer [28,29] for XES in the photon
energy range of 2.4 keV to 18.0 keV. This von Hamos spectrometer has a total length of
1450 mm when being mounted at a UHV XRF instrumentation, and allows for either an indi-
vidual or combined usage of one or two full cylindrical highly annealed pyrolytic graphite
(HAPG) crystals having a radius of only 50 mm and a deposited HAPG thickness of
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40 µm. Employing these HAPG cylinders as dispersive elements in a von Hamos geometry,
large solid angles of acceptance resulting in high detection efficiency are realized while
preserving a moderate-to-high resolving power.

Over the last decade, spectrometers in von Hamos geometries have become quite
popular in both synchrotron radiation facilities as well as in laboratories outside large-scale
facilities [30–36]. Some of these spectrometers use HAPG, which is a synthetic carbon-based
mosaic crystal with very low values of angular distributions of these mosaic blocks (mosaic
spreads below 0.1◦). Thus, the Bragg reflection of X-rays at HAPG lays in between dynamic
and kinematic diffraction regimes, which still ensures a high integrated reflectivity. HAPG
can be deposited to substrates with small radii of curvature down to 50 mm [37,38].

The characterization of the PTB von Hamos spectrometer included the determination
of its energy scale by means of known fluorescence line energies, or by transferring the FCM
energy scale in elastic scattering experiments. With respect to the von Hamos spectrometer
response behavior, different influence parameters such as the effective X-ray source size
(i.e., the excited sample volume) and its different operational modes, including Bragg reflec-
tions at only one HAPG cylinder, subsequent Bragg reflections at two HAPG cylinders, and
second-order Bragg reflection at one HAPG cylinder, have been evaluated. Furthermore,
its absolute detection efficiency could be derived in a reference-free XRF experiment by
means of a comparison to a calibrated SDD having a well-known solid angle of detection.
The chemical speciation and discrimination capabilities of the von Hamos spectrometer
have been investigated using various transition metal compounds.

The calibration of the instrumental response of the wavelength-dispersive spectrom-
eter enables an accurate determination of binding state-related structures in transition
metal compound spectra [39], as shown exemplarily in Figure 4, thus enabling reliable
identification and quantification capabilities. The HAPG cylinder length of 20 cm offers the
advantage of recording spectra of several hundreds of eV width, allowing one to determine
the energy positions and transition probabilities associated with one absorption edge in
only one measurement [40], thus reducing the risk of combining separate energy scales.
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Figure 4. XES spectra of the iron sulfide compounds FeS and FeS2 recorded by the full-cylinder von
Hamos spectrometer. The measured and fitted data of the Kβ and valence-to-core X-ray emission
lines are shown to the left and right, respectively. A spectral comparison between experimentally
determined Kβ” and Kβ2,5 emission lines and related calculations using the OCEAN BSE code for
core-level spectroscopy are depicted to the right.

There are currently only a few dedicated scanning X-ray microscopes at SR facili-
ties that offer XRF analysis in combination with scanning transmission X-ray microscopy
(STXM) and lateral resolutions in the nanometer regime [41–52]. In general, XRF quantifica-
tion is based on either certified reference materials or calibration samples, i.e., on chemical
traceability principles. In order to achieve high spatial resolutions for physically traceable
XRF in the nanometer regime, PTB built an add-on arrangement for the sample scanning
and alignment stage of one of its UHV XRS instruments. This piezo-stage-based add-on
set-up [53] allows one to place an Au zone plate with an integrated beam stop, an order
sorting aperture, and nano-scaled samples on a single plate, which is mounted as one piece
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on the UHV XRS instrument manipulator in order to reduce vibrational pick-up. Initial
transmission and XRF experiments were performed at the PGM beamline at a photon
energy of 1500 eV, revealing spatial resolutions of 90 nm and 140 nm, respectively. Follow-
up nm XRF experiments aimed to establish a reliable quantification scheme based upon
both the physically traceable approach using calibrated instrumentation, as well as the
joint evaluation of sets of nm XRF experiments on adjacent lateral positions of structured
nanomaterials.

4. Determination of Atomic Fundamental Parameter

The quantitative analysis of XRF and particle-induced X-ray emission spectroscopies
requires good knowledge of the atomic FP values and optical constants of the elements
of interest. The uncertainties of FP data tabulated in the literature are partially rather
large, in particular for low-Z elements or L- and M-shell transitions, calling for new experi-
mental determinations of accurate FP data. For this purpose, recent FP experiments have
taken advantage of several instrumental improvements such as SR beamlines providing
monochromatic radiation of high spectral resolution, SDDs with better energy resolution
than the energy resolution of previous Si(Li) detectors, and the availability of free-standing
one- or two-elemental foils with thicknesses down to 70 nm [4]. Those FP experiments
aimed to determine low-Z fluorescence yields, subshell photoionization cross sections
(PCS) [5] and Coster–Kronig factors [54]. The values of recently determined PCS con-
firmed that previously used jump ratio approaches, as recommended by the International
Union of Pure and Applied Chemistry (IUPAC), are often not accurate. With respect to
XRF quantification, these FP values have a direct impact on the revealed elemental mass
depositions of nanomaterials. Figure 5 shows the energy dependence of experimentally
determined Pd-L subshell PCS in comparison to the theoretical data. Figure 6 shows the
spectral deconvolution of two related XRF spectra by means of detector response function.
In order to reduce the uncertainties of the PCS, transmission measurements of the thin Pd
samples were performed to experimentally determine the self-absorption correction factors
also used for spectral deconvolution.

Nanomaterials 2022, 12, x FOR PEER REVIEW 9 of 18 

 

 
Figure 5. Experimentally determined PCS for the three Pd-L subshells as compared to theoretical 
Ebel/Cullen data. For the sake of comparison, the Ebel data have been scaled by 0.95 for the L3, 1.08 
for the L2, and by 1.03 for the L1 PCS data, respectively. 

  
Figure 6. Response-function-based deconvolution of a 250 nm thick Pd layer XRF spectrum for each 
L-shell used for the experimental determination of Pd-L PCS. To the left, the excitation photon en-
ergy of 3.28 keV is chosen to be between the L3 and L2 sub-shell absorption edges and, to the right, 
the excitation photon energy of 3.4 keV lays between the L2 and L1 absorption edges. MP designates 
the L3 fluorescence line multiplet used as an ensemble in the L2-related spectral deconvolution. 

For reference-free XRF in the soft X-ray range, the uncertainties of FP associated with 
L-edges are crucial for the total uncertainty of the quantification. Using very thin samples, 
the fluorescence yields and Coster–Kronig transition probabilities for the L-edges of Ga 
were determined with considerably reduced uncertainties [55]. Due to the high absorption 
of radiation in the soft X-ray range, it is necessary to reduce the thickness of the samples 
for transmission measurements with sufficient dynamics. Transmission measurements 
are crucial for performing absorption correction without having to rely on literature data-
base values of the mass attenuation coefficients. 

The French NMI at the Laboratoire National Henri Becquerel (LNHB) uses tunable 
SR at SOLEIL for the determination of various mass attenuation coefficients. Along with 
various collaboration partners in different institutional and industrial metrology research 
projects, several elements of soft and hard X-ray ranges have been studied. Emphasis has 
been placed on ensuring reliable uncertainties of FP values. Thereby, complementary the-
oretical and experimental approaches have been considered [9,56–58]. Some of the results 
of these studies do not agree with FP data previously published by other groups within 

Figure 5. Experimentally determined PCS for the three Pd-L subshells as compared to theoretical
Ebel/Cullen data. For the sake of comparison, the Ebel data have been scaled by 0.95 for the L3, 1.08
for the L2, and by 1.03 for the L1 PCS data, respectively.



Nanomaterials 2022, 12, 2255 9 of 17

Nanomaterials 2022, 12, x FOR PEER REVIEW 9 of 18 

 

 
Figure 5. Experimentally determined PCS for the three Pd-L subshells as compared to theoretical 
Ebel/Cullen data. For the sake of comparison, the Ebel data have been scaled by 0.95 for the L3, 1.08 
for the L2, and by 1.03 for the L1 PCS data, respectively. 

  
Figure 6. Response-function-based deconvolution of a 250 nm thick Pd layer XRF spectrum for each 
L-shell used for the experimental determination of Pd-L PCS. To the left, the excitation photon en-
ergy of 3.28 keV is chosen to be between the L3 and L2 sub-shell absorption edges and, to the right, 
the excitation photon energy of 3.4 keV lays between the L2 and L1 absorption edges. MP designates 
the L3 fluorescence line multiplet used as an ensemble in the L2-related spectral deconvolution. 

For reference-free XRF in the soft X-ray range, the uncertainties of FP associated with 
L-edges are crucial for the total uncertainty of the quantification. Using very thin samples, 
the fluorescence yields and Coster–Kronig transition probabilities for the L-edges of Ga 
were determined with considerably reduced uncertainties [55]. Due to the high absorption 
of radiation in the soft X-ray range, it is necessary to reduce the thickness of the samples 
for transmission measurements with sufficient dynamics. Transmission measurements 
are crucial for performing absorption correction without having to rely on literature data-
base values of the mass attenuation coefficients. 

The French NMI at the Laboratoire National Henri Becquerel (LNHB) uses tunable 
SR at SOLEIL for the determination of various mass attenuation coefficients. Along with 
various collaboration partners in different institutional and industrial metrology research 
projects, several elements of soft and hard X-ray ranges have been studied. Emphasis has 
been placed on ensuring reliable uncertainties of FP values. Thereby, complementary the-
oretical and experimental approaches have been considered [9,56–58]. Some of the results 
of these studies do not agree with FP data previously published by other groups within 

Figure 6. Response-function-based deconvolution of a 250 nm thick Pd layer XRF spectrum for each
L-shell used for the experimental determination of Pd-L PCS. To the left, the excitation photon energy
of 3.28 keV is chosen to be between the L3 and L2 sub-shell absorption edges and, to the right, the
excitation photon energy of 3.4 keV lays between the L2 and L1 absorption edges. MP designates the
L3 fluorescence line multiplet used as an ensemble in the L2-related spectral deconvolution.

For reference-free XRF in the soft X-ray range, the uncertainties of FP associated with
L-edges are crucial for the total uncertainty of the quantification. Using very thin samples,
the fluorescence yields and Coster–Kronig transition probabilities for the L-edges of Ga
were determined with considerably reduced uncertainties [55]. Due to the high absorption
of radiation in the soft X-ray range, it is necessary to reduce the thickness of the samples
for transmission measurements with sufficient dynamics. Transmission measurements are
crucial for performing absorption correction without having to rely on literature database
values of the mass attenuation coefficients.

The French NMI at the Laboratoire National Henri Becquerel (LNHB) uses tunable
SR at SOLEIL for the determination of various mass attenuation coefficients. Along with
various collaboration partners in different institutional and industrial metrology research
projects, several elements of soft and hard X-ray ranges have been studied. Emphasis has
been placed on ensuring reliable uncertainties of FP values. Thereby, complementary theo-
retical and experimental approaches have been considered [9,56–58]. Some of the results
of these studies do not agree with FP data previously published by other groups within
their respective uncertainties. These deviations have been evaluated by the international
Fundamental Parameter Initiative www.EXSA.hu/fpi.php (accessed on 31 January 2022).

At PTB, a calibrated wavelength-dispersive grating spectrometer has been used to
derive FP values such as transition probabilities [59] in the soft X-ray range and to con-
tribute to a better understanding of the electronic structures of light elemental compounds.
In a collaboration between the U.S. NMI NIST and PTB, joint high-resolution soft X-ray
experiments such as XES, resonant inelastic X-ray scattering (RIXS), and XAFS of different
nitrogen-containing compounds were performed at BESSY II, the results of which were
compared to calculations using the OCEAN BSE code for core-level spectroscopy [60–62].
Different first-principle-calculation approaches for the simulation of X-ray spectral informa-
tion provided by XES, RIXS and XAFS have been considered and can provide a theoretical
model-based understanding of observed experimental phenomena. Currently, PTB has
started the commissioning of a new wavelength-dispersive VLS grating spectrometer based
on a slit-less Hettrick–Underwood geometry that considerably enhances both the detection
efficiency and the energy resolution.

5. Hybrid Metrology—Determination of Dimensional and Analytical Information of
Nanomaterials

About one decade ago, so-called hybrid metrology surfaced to ensure the more re-
liable characterization of nanomaterials. The term hybrid metrology means that two or
more different characterization techniques are employed on an object of interest, such as

www.EXSA.hu/fpi.php
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a nanomaterial, and, if necessary, on its duplicates, to gain more information, to reduce
uncertainties, or to reduce measurement times. In general, different measurement tech-
niques are associated with different measurands, even when aiming for the same physical
or chemical quantity, e.g., in the dimensional, electrical, or analytical fields. One of the
first industrially relevant applications of hybrid metrology was in the nanotechnology
sector where the critical dimension (CD) metrology of printed 3D nanostructures employed
different techniques such as optical CD scatterometry, CD scanning electron microscopy,
and CD atomic force microscopy to reveal improved dimensional information [63].

For different deviations of various measurement techniques for a particular physical
or chemical quantity to be revealed by the measurements as an attribute of a phenomenon,
body, or substance [64], a modelling-assisted conceptional and theoretical understanding
of those deviations [65,66] can be expected to allow for the best use of hybrid metrology. To
this respect, the NIST reference material No. 8011—‘gold nanoparticles (nominal 10 nm
diameter)’ [67,68]—illustrates that the measurement results of different characterization
techniques may not always overlap within their respective uncertainties.

With respect to the modelling-assisted understanding of the measurements of nano-
materials, some aspects of the characterization techniques become crucial when combining
them in a hybrid approach: both the penetration and information depths as well as the
probing volumes of different techniques may differ, and, in addition, may not match
well with some of the sample dimensions or the spatial sample heterogeneity. With the
advent of machine learning algorithms that can handle large measurement data sets as
quickly as the actual measurement times last, part of the missing knowledge needed for
a complete modelling-assisted understanding of the measurement processes in hybrid
metrology may be compensated for [69]. However, substantial knowledge on the physical
relationship between the techniques’ measurands and the particular physical or chemical
quantities of interest can further reduce uncertainties and allow for mutual validations of
quantification schemes.

In many fields of modern nanotechnology, the reliable determination of spatial elemen-
tal and species distribution is crucial for R&D, as well as quality assurance processes during
the manufacturing of layered or 3D nanostructures. With decreasing device dimensions
and increasing structure complexity, the challenges to key parameters of characterization
methods increase as well. In addition, it is crucial to reveal all dimensional and analytical
information on such advanced nanomaterials in order to achieve a complete understanding
of the dependence of their functionality on chemical and physical quantities.

When characterizing one-elemental nanolayers with both the dimensional technique of
X-ray reflectometry (XRR) and the analytical technique of XRF, complementary information
about the layer thickness d and density ρ, as well as the elemental mass deposition mi/A,
can be deduced [70]. Here, the physical relationship between the particular quantities can
be directly stated as dρ = mi/A. The corresponding XRR and XRF results of 11 different
single- and double-layer systems of Ni and Cu agree within their respective uncertain-
ties [70]. When performing hybrid experiments using XRR and XRF simultaneously under
grazing incidence conditions, one can take substantial advantage of knowledge concerning
the physical relationship dρ = mi/A as a free-parameter-reducing constraint for the data
evaluation of several independent complementary measurements. Furthermore, additional
information on combined dimensional and analytical quantities, such as the elemental
depth profile within a nano-scaled layered system [71], can be revealed when varying the
angle of incidence.

When combining XRR with reference-free GIXRF, direct access to the mass depositions
(ρd) of the materials of interest is provided. This allows for a significant reduction in
the degrees of freedom within the combined GIXRF-XRR modelling, and thus improves
the characterization reliability. The combined reference-free GIXRF-XRR approach has
been applied for the depth-resolving analysis of thin nano-laminate stacks of Al2O3 and
HfO2 layers with total thicknesses in the sub-10-nanometer regime [71]. For the GIXRF
modelling of these nanostructures, novel approaches for the calculation of the spatial



Nanomaterials 2022, 12, 2255 11 of 17

distributions of XSW field intensities [22,72] based on 3D Maxwell equation solvers are
necessary. Figure 7 shows the spatial XSW intensity distribution at a regular nanostructure
that can be effectively tuned by varying both the grazing and azimuthal angles of the
incident radiation with respect to the nanostructure. This local tunability of the XSW
field with respect to the spatial elemental distribution of the nanostructure to be probed
ensures the high discrimination capability of this hybrid method. A recent work [73]
demonstrates the corresponding reconstruction capabilities of GIXRF analysis used at
periodic nanostructures to reveal both detailed dimensional and analytical information.
For the calibration of laboratory GIXRF instruments, i.e., for a combined determination
of unknown experimental and instrumental parameters, specific nanolayered structures
could be qualified by means of SR-based reference-free GIXRF analysis [74].
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With respect to nanomaterial development and quality management applications in
the semiconductor industry, it is also valuable to take advantage of the optical equivalence
of grazing incidence and grazing emission XRF (GI- and GEXRF) principles. The GEXRF ap-
proaches have been successfully explored for more than two decades at various large-scale
facilities and in academic laboratories [75–81], in particular regarding the characterization
of nanolayered systems. To complement angular GIXRF studies [22,72] and related recon-
struction works on nanostructures [73], GEXRF also allows for the scanning-free detection
of the angular distribution of fluorescence radiation emitted by a nanostructure using
position-sensitive detectors such as CCDs or CMOS devices [82].

6. Operando Metrology—Time-Resolved Determination of the Analytical Information
of Batteries

The increasing demand for more efficient secondary electrochemical storage devices
requires well-characterized battery systems. Every battery suffers from degradation effects
which lead to capacity fading and life cycle reduction. With electrochemical methods, the
fading can easily be monitored, but to understand the underlying chemical and physical
properties, which are responsible for the capacity reduction, further spatial and time
resolving analytic techniques are needed [83]. Using well-known tunable synchrotron
radiation and calibrated XRS instrumentation, traceable XRF and XAFS investigations of the
degradation mechanisms of lithium sulfur (Li/S) batteries are enabled. These degradation
processes are associated with the formation of soluble polysulfides causing capacity fading,
and limit the cycle life. The operando XRF method allows for the absolute quantification of
the mass deposition of sulfur in dissolved polysulfides without the need for any calibration
samples. Suitable cell designs, including sufficiently X-ray transparent entrance windows,
enable the probing of polysulfides at both battery electrode sides for three full charge–
discharge cycles, which leads to the simultaneous investigation of conversion reactions as
well as transport mechanisms and, therefore, the possibility to evaluate polysulfide shuttle
phenomena (see Figure 8). In carefully evaluating all XFAS spectra, taken about every
8 min under operando conditions, the time-resolved changes in average polysulfide chain
length enable a deeper understanding of the capacity-fading processes [84].

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 18 

 

of grazing incidence and grazing emission XRF (GI- and GEXRF) principles. The GEXRF 
approaches have been successfully explored for more than two decades at various large-
scale facilities and in academic laboratories [75–81], in particular regarding the character-
ization of nanolayered systems. To complement angular GIXRF studies [22,72] and related 
reconstruction works on nanostructures [73], GEXRF also allows for the scanning-free de-
tection of the angular distribution of fluorescence radiation emitted by a nanostructure 
using position-sensitive detectors such as CCDs or CMOS devices [82]. 

6. Operando Metrology—Time-Resolved Determination of the Analytical Information 
of Batteries 

The increasing demand for more efficient secondary electrochemical storage devices 
requires well-characterized battery systems. Every battery suffers from degradation ef-
fects which lead to capacity fading and life cycle reduction. With electrochemical methods, 
the fading can easily be monitored, but to understand the underlying chemical and phys-
ical properties, which are responsible for the capacity reduction, further spatial and time 
resolving analytic techniques are needed [83]. Using well-known tunable synchrotron ra-
diation and calibrated XRS instrumentation, traceable XRF and XAFS investigations of the 
degradation mechanisms of lithium sulfur (Li/S) batteries are enabled. These degradation 
processes are associated with the formation of soluble polysulfides causing capacity fad-
ing, and limit the cycle life. The operando XRF method allows for the absolute quantifica-
tion of the mass deposition of sulfur in dissolved polysulfides without the need for any 
calibration samples. Suitable cell designs, including sufficiently X-ray transparent en-
trance windows, enable the probing of polysulfides at both battery electrode sides for 
three full charge–discharge cycles, which leads to the simultaneous investigation of con-
version reactions as well as transport mechanisms and, therefore, the possibility to evalu-
ate polysulfide shuttle phenomena (see Figure 8). In carefully evaluating all XFAS spectra, 
taken about every 8 min under operando conditions, the time-resolved changes in average 
polysulfide chain length enable a deeper understanding of the capacity-fading processes 
[84]. 

 

Figure 8. Set-up of a 715 µm thick coin cell battery probing S-K-related XRF and XAFS signals 
through a 4 µm thick HOPG entrance window under operation conditions (left). The elemental 
mass deposition m/A of sulfur (S) in dissolved PS is depicted in blue for the cathode side for the first 
three full cycles (right), while the electrochemical performance is depicted in black, corresponding 
to a percentage of lost cathodic sulfur ranging from about 15% to 25%. 

With respect to energy density, the lithium-ion battery (LIB) currently defines the 
state of the art, but substantial lifetime enhancements call for novel material developments 
allowing the optimization of nano-scaled interfacial properties. LIBs comprise a graphite 
negative electrode and a layered transition metal oxide positive electrode. Nickel manga-
nese cobalt (NMC) materials are among the promising candidates for positive electrodes, 
but challenges remain in terms of improving lifetime. Degradation mechanisms include 
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Figure 8. Set-up of a 715 µm thick coin cell battery probing S-K-related XRF and XAFS signals
through a 4 µm thick HOPG entrance window under operation conditions (left). The elemental mass
deposition m/A of sulfur (S) in dissolved PS is depicted in blue for the cathode side for the first three
full cycles (right), while the electrochemical performance is depicted in black, corresponding to a
percentage of lost cathodic sulfur ranging from about 15% to 25%.

With respect to energy density, the lithium-ion battery (LIB) currently defines the
state of the art, but substantial lifetime enhancements call for novel material developments
allowing the optimization of nano-scaled interfacial properties. LIBs comprise a graphite
negative electrode and a layered transition metal oxide positive electrode. Nickel man-
ganese cobalt (NMC) materials are among the promising candidates for positive electrodes,
but challenges remain in terms of improving lifetime. Degradation mechanisms include
irreversible phase changes, nickel–lithium site exchange, and the oxidation of lattice oxide
leading to metal dissolution, but a full understanding of their interplay is lacking. Re-
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garding aging processes, quantitative elemental and species analyses are important for
identifying critical processes and for assessing the relevance of a specific process for the
total capacity decrease. A main challenge in the investigation of aged battery materials is
the lack of appropriate reference materials on which many analytical techniques rely with
respect to their traceability. With the use of reference-free XRF, the total mass deposition
of manganese deposited at the anode for an aged cell has been quantitatively determined
under ex situ conditions. For 50 full cycles with elevated cut-off voltage, the capacity
decreased by 12.5%, while up to 0.16% of cathodic manganese was found to be deposited
in the anode [85].

7. Conclusions

The correlation of nanomaterials’ functionalities with their underlying physical and
chemical properties is crucial for the further advancement and assessment of materials in
development, manufacturing, and quality control processes. Physically traceable X-ray
spectrometry methods can contribute to these nanoanalytical challenges by their high ele-
mental and species sensitivity, combined with substantial discrimination capability tunable
by a broad set of operational parameters. X-ray spectrometry allows—in combination
with other analytical, dimensional, or electrical techniques—both hybrid and operando
configurations. Such multimodal and time-resolved approaches can provide simultaneous
access to various physical and chemical quantities, which is crucial for a more complete
understanding of nanomaterials. Here, the spatial elemental or species distribution of a
specific nanomaterial determine the fruitful application range of the various characteriza-
tion techniques to be combined. Upcoming research challenges, such as the time-resolved
understanding of degradation processes in batteries at interfacial locations, will certainly
call for the combination of hybrid and operando metrology, including SI-traceable X-ray
spectrometric techniques.
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