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Abstract
Background  Capecitabine (CAP) is widely used in cancer treatment for its oral convenience and tumor targeting. How-
ever, its effectiveness in hepatocellular carcinoma (HCC) is suboptimal, possibly due to metabolic enzyme expression 
differences. This study aims to analyze these enzymes’ expression differences and explore their correlation with clinical 
pathological factors, to inform personalized CAP treatment.
Methods  This retrospective study used Immunohistochemistry (IHC) to analyze tumor and non-tumorous samples from 
HCC patients for CAP metabolic enzyme expression. PRM protein quantification was performed on 10% of samples to 
validate IHC results. Clinical and pathological data were collected, and multivariable linear regression was used to identify 
independent risk factors.
Results  This study analyzed 60 HCC patients with hepatitis B and cirrhosis, revealing significant differences in CAP meta-
bolic enzymes expression between tumor and non-tumorous tissues, with greater individual differences in tumors. 
Cytidine deaminase (CDA) levels in tumors decreased as liver function deteriorated (P = 0.023), while thymidine phos-
phorylase (TP) levels increased (P < 0.001). Tumor tissue had lower levels of carboxylesterase 1–2 (CES1-2), CDA, and dihy-
dropyrimidine dehydrogenase (DPYD) but higher TP levels than non-tumorous and normal liver tissues. In tumor tissue, 
CDA (CV: 118.70%, SD: 3.897) and CES2 (CV: 94.90%, SD: 2.910) showed the greatest individual variability. Multivariable 
linear regression identified independent risk factors affecting CAP metabolic enzyme expression.
Conclusion  This study has found significant variability in the expression of CAP metabolic enzymes across individuals 
and tissues. Developing a treatment flowchart based on metabolic enzymes provides a foundation for personalized HCC 
treatment and enhances the effectiveness of CAP therapy.
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1  Introduction

Capecitabine (CAP) is an oral prodrug of 5-fluorouracil (5-FU) and serves as a first-line therapeutic for various cancers, 
including colorectal, breast, and gastric cancers. This is due to its oral convenience, tumor targeting, and minimal toxicity 
to healthy tissues [1]. The metabolic conversion of CAP within the body is pivotal for its pharmacological characteristics, 
involving the synergistic action of several metabolic enzymes. As shown in Fig. 1, most of CAP’s metabolic activation 
occurs in the liver, following a strict cascade reaction. In this reaction, carboxylesterase (CES), cytidine deaminase (CDA), 
and thymidine phosphorylase (TP) sequentially function to ultimately transform CAP into the active drug component 
5-FU, with the final degradation of 5-FU being achieved by dihydropyrimidine dehydrogenase (DPYD) [2]. Recent stud-
ies have shown that the liver expresses CES1 and its isoenzyme CES2, contributing to CAP metabolism [3]. Moreover, TP 
levels in tumor cells are 3–10 times higher than in normal cells and are also present in normal hepatocytes. This underpins 
CAP’s tumor-targeting and potential for liver damage [4]. DPYD, the rate-limiting enzyme in fluorouracil catabolism, is 
widely expressed in various tumors and normal tissues, with particularly high levels in the liver [5].

Current research indicates that although CAP metabolic enzymes are present in liver tissue, CAP’s efficacy in treating 
hepatocellular carcinoma (HCC) is less pronounced than in other cancers [6, 7]. Only some studies have shown significant 
efficacy of CAP in advanced HCC, it is not a first-line treatment for HCC in clinical practice [8]. This suggests that other 
factors may influence the effectiveness of CAP in HCC treatment. Unlike patients with other cancers, most HCC patients 
have underlying liver conditions. This may alter the expression of CAP metabolic enzymes, impacting drug efficacy and 
contributing to its suboptimal performance in HCC treatment. CAP metabolic enzyme expression may also show indi-
vidual and tissue variations, leading to differences in CAP efficacy among HCC patients. Although some studies have 
shown that the ratio of TP to DPYD expression is positively correlated with CAP efficacy [9], research viewing the CAP 
metabolic process as an overall cascade reaction is lacking, especially regarding individual and tissue differences in the 
expression of upstream metabolic enzymes like CES and CDA, and their correlation with clinical pathology. Thus, studies 
focusing on personalized application strategies for CAP and the development of novel molecular targeted agents for 
HCC are urgently needed and of great importance [10].

This study aims to assess the individual and tissue differences of CAP metabolic enzymes in HCC patients with under-
lying liver disease by analyzing the expression levels of these enzymes in HCC tissue, non-tumorous tissue, and normal 
liver tissue. The study also seeks to identify risk factors affecting CAP metabolic enzyme expression in HCC tissue. These 
findings will provide theoretical support for the personalized application of CAP in HCC patients, potentially improving 
CAP efficacy and optimizing HCC treatment.

2 � Materials and methods

This retrospective cohort study was conducted by the Declaration of Helsinki and STROCSS 2021 guidelines [11], with 
ethical approval granted by the Clinical Research Ethics Committee of Tianjin Medical University First Central Hospital 
(Approval ID: STEC-TFCH-2023-HM-2). Written informed consent was obtained from all participants or legal guardians 
before enrollment, authorizing the use of clinical data and pathological specimens for research. Donor livers were exclu-
sively procured from brain-deceased individuals under stringent eligibility criteria, excluding high-risk donors (infection/
tumor transmission risk > 10%) as per Disease Transmission Advisory Board protocols. All organs were procured in-house 
following family consent and legal documentation, with allocation managed through the Chinese Organ Transplant 
Response System. No organs originated from prisoners.

2.1 � Study design and data collection

This retrospective cohort study analyzed fresh-frozen specimens from HCC patients with hepatitis B and cirrhosis under-
going liver transplantation at Tianjin Medical University First Central Hospital Biobank (January 2019–May 2024). Samples 
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comprised paired tumor/non-tumor tissues and a 10% subset of normal donor liver tissues as controls. Inclusion criteria 
included: (i) age ≥ 18 years; (ii) pathologically confirmed HCC; (iii) complete clinicopathological records (liver function, 
tumor markers, staging, grading); (iv) informed consent for sample/data usage. Exclusion criteria were: (i) prior anti-
tumor therapies(e.g., chemotherapy); (ii) > 30% necrosis in tumor/non-tumor tissues. Participants were stratified into 
Child–Pugh classes A, B, and C. CAP metabolizing enzyme(CES1, CES2, CDA, TP, DPYD) expression was quantitatively 
assessed by immunohistochemistry (IHC) staining indices. A randomly selected 10% samples were analyzed by liquid 
chromatography-mass spectrometry (LC–MS) based parallel reaction monitoring (PRM) to quantify CAP metabolizing 
enzyme and validate IHC staining results. Relative protein abundance was used as the quantitative measure. IHC staining 
index accuracy was confirmed by IHC-PRM concordance analysis.

Data collection encompassed three domains: (1) Demographics (age, gender); (2) Pathological characteristics (histo-
logical grade, tumor number/maximum diameter, portal vein thrombosis, IHC markers: heat shock protein 70 [HSP70], 
thymidylate synthase [TS], Ki-67, tumor protein p53 [P53], alpha-fetoprotein [AFP]); and (3) Clinical parameters (per-
formance status score [PS Score], China liver cancer staging, [CNLC], Child–Pugh score and grade, Child–Pugh staging, 
tumor T staging, albumin, alanine aminotransferase [ALT], aspartate transaminase [AST], direct bilirubin [DBIL], total 
bilirubin [TBIL], indirect bilirubin [IBIL], plasma AFP, hydroperitoneum, prothrombin time). The primary outcome was the 
CAP-metabolizing enzyme IHC staining index, with secondary outcomes identifying risk factors for enzyme expression 
variability in HCC tissues.

2.2 � Immunohistochemistry (IHC) analysis

To determine the expression levels of CAP metabolic enzymes in HCC tissue, non-tumorous tissue, and normal liver tissue, 
this study conducted an immunohistochemistry (IHC) detection analysis. First, paraffin-embedded pathological tissue 
sections were deparaffinized in xylene three times, each lasting 10 min. Following dewaxing through a graded ethanol 
series (absolute, 95%, 85%, 75%), tissues underwent triple-distilled H2O rinses. HIER (Heat-Induced Epitope Retrieval) 
was performed using Tris–EDTA buffer (pH 8.0) at 98 °C (40 min), followed by 3% H2O2-mediated peroxidase blockade 
(10 min). Post-fixation with paraformaldehyde (4 μm sections), slides were immunostained with the following: CES1/
CES2 (1:500, 16912/15378, Proteintech), CDA (1:2000, ab222515; Abcam), TP (1:100, 12383-1-AP, Proteintech), and DPYD 
(1:500, 27662-1-AP, Proteintech) [7]. The antibodies used were validated by the manufacturer to specifically recognize 
the corresponding CAP metabolic enzymes without cross-reactivity. Antibody concentrations were optimized by pre-
liminary experiments and referenced to the manufacturer’s recommendations to ensure specific staining and minimal 
background interference. Subsequently, sections were treated with HRP-conjugated secondary antibodies and developed 
using a chromogenic substrate (DAB), followed by hematoxylin counterstaining. Tissues were then dehydrated through 
an ethanol gradient and permanently mounted with a resinous medium.

The IHC staining index was computed by multiplying two parameters: (1) staining intensity (0: none; 1: weak; 2: moder-
ate; 3: strong brown signal) and (2) positively stained area (1: 0–25%; 2: 26–50%; 3: 51–75%; 4: 76–100% of tissue section) 

Fig. 1   Capecitabine Metabolic 
Pathway Diagram (CES, car-
boxylesterase; CDA, cytidine 
deaminase; TP, thymidine 
phosphorylase; 5′-DFCR, 
5′-Deoxy-5-fluorocytidine; 
5′-DFUR, 5′-Deoxy-5-fluorouri-
dine; 5′-FU, 5′-Fluorouracil)
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[12]. Two pathologists independently scored five random × 40 fields of each tissue sample and calculated the staining 
index separately to ensure the objectivity and consistency of the scoring. The entire quantitative experimental process 
was conducted under blinded conditions to ensure the accuracy and reproducibility of the results.

2.3 � Quantification of CAP metabolic enzymes by PRM‑LC–MS

In this study, PRM-LC-MS was utilized to validate the expression levels of CAP metabolic enzymes. Exploit the correlation 
between the relative protein abundance quantified by PRM and the IHC staining index to evaluate the precision of the 
IHC staining index.

2.3.1 � Protein extraction

Frozen specimens (− 80 °C) were cryogenically pulverized in liquid nitrogen-chilled mortars. The resultant powder was 
homogenized in 4 × volume lysis buffer (1% Triton X-100, 1% protease inhibitor cocktail) with ultrasonic disruption. 
Subsequent phenol–chloroform extraction (1:1 v/v Tris-equilibrated phenol) was performed, followed by centrifugation 
(5,500×g, 10 min, 4 °C). The aqueous phase was precipitated overnight at − 20 °C with 5 volumes of 0.1 M ammonium 
acetate/methanol (5:1). Pellets were sequentially washed with methanol-acetone (1:1) and air-dried, followed by solu-
bilization in 8 M urea. Protein quantification was conducted using a commercial BCA assay kit (Vazyme Biotech, China).

2.3.2 � Enzymatic digestion

Identical protein aliquots were subjected to trypsinization. After volume normalization with lysis buffer, proteins were 
acid-precipitated by dropwise addition of 20% TCA (v/v) under vortex-mixing, followed by 2-h incubation at 4 °C. Follow-
ing centrifugation (4,500×g, 5 min, 4 °C), pellets were washed thrice with ice-cold acetone and air-dried. Protein pellets 
were solubilized in 200 mm triethylammonium bicarbonate (TEAB) and ultrasonicated (30 s pulses, 50% amplitude). 
Trypsin (1:50 w/w enzyme: substrate ratio) was introduced for 16-h digestion at 37 °C. Subsequent reduction (5 mM DTT, 
56 °C, 30 min) and alkylation (11 mm IAA, dark, RT, 15 min) steps completed cysteine modification.

2.3.3 � LC–MS/MS analysis

Peptides were dissolved in mobile phase A, consisting of 0.1% formic acid and 2% acetonitrile in aqueous solution, 
and separated via an EASY-nLC1200 ultra-high performance liquid chromatography (UHPLC) system. The mobile phase 
composition included solvent A (0.1% formic acid, 2% acetonitrile) and solvent B (0.1% formic acid, 90% acetonitrile). 
Chromatographic separation employed a 30-min linear gradient programmed as follows: from 0 to 16 min, solvent B 
increased from 7 to 23%; between 16 and 22 min, it further rose to 35%; from 22 to 26 min, it escalated to 80%, followed 
by an isocratic phase at 80% B until 30 min. The flow rate remained constant at 500 nL/min throughout the process.

Following chromatographic separation via the UHPLC system, peptides were ionized through an NSI source and 
analyzed on an Orbitrap Exploris 480 mass spectrometer. Instrument parameters included an ion spray voltage of 2,100 
V, with precursor and product ions analyzed in the high-resolution Orbitrap detector. Full MS scans (500–800 m/z) were 
acquired at 60,000 resolution, while MS/MS scans utilized 15,000 resolution. Data-independent acquisition (DIA) was 
implemented with 27% higher-energy collisional dissociation (HCD) collision energy. Operational settings were config-
ured as follows: primary MS AGC target 300% with 50 ms maximum injection time; secondary MS AGC 100% with 220 
ms injection time and 1.6 m/z isolation window.

2.3.4 � Data analysis

Mass spectrometry data were analyzed in Skyline 21.1 with the following configurations: Proteolytic digestion param-
eters included trypsin (cleavage at KR/P termini) with zero missed cleavages allowed, peptide length restricted to 7–25 
residues, and cysteine carbamidomethylation as a fixed modification. Transition settings specified precursor ions with 
+2/+3 charges and product ions with +1 charge, monitoring b/y-type fragments. Fragment ion selection spanned the 
third to terminal ions, with a mass accuracy threshold of 0.02 Da for spectral matching.
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2.4 � Statistical analysis

This study aims to compare the expression of CAP metabolic enzymes between HCC tissue and non-tumorous tissue. 
Anticipating a normal distribution, with an effect size of 0.5, a significance level of 0.05, and a desired statistical power of 
0.80, Gpower software (version 3.1.9.2) was utilized to determine that a minimum of 51 samples per group is necessary. 
Considering a 10% dropout rate, the study enrolled a total of 60 HCC patients, yielding 120 samples in total. This study 
employs R software (4.2.2) and GraphPad Prism (9.0) for statistical analysis. After testing for normality and homogeneity 
of variance, parametric or non-parametric tests were applied, with all tests being two-tailed.

Normally distributed continuous variables were expressed as mean ± SD and analyzed via Student’s t-test. Nonpara-
metric continuous data were reported as median (IQR) with Mann–Whitney U test comparisons. Categorical variables 
were presented as frequency percentages and assessed via χ2 test or Fisher’s exact test, where applicable. Pearson’s 
correlation coefficient is used to assess the correlation between PRM quantification and the IHC staining index. To iden-
tify risk factors influencing the expression of CAP metabolic enzymes in HCC tissue, the study employs univariate and 
multivariate linear regression analyses. To control for collinearity and follow the Events per Variable (EPV) principle, vari-
ables are preliminarily screened via LASSO regression. Should LASSO analysis fail to identify any variables, all variables 
are included in the multivariate analysis [13]. A P-value of less than 0.050 is considered to indicate statistical significance.

3 � Result

3.1 � Patient clinicopathological characteristics

This study analyzed 60 HCC cases and 6 donor livers (January 2019–May 2024), stratified into Child–Pugh classes A (n 
= 17), B (n = 21), and C (n = 22). Demographics are summarized in Table 1, with a mean age of 54 ± 7 years and a balanced 
gender distribution (male: 60.0%; female: 40.0%). No significant intergroup differences in age or gender were observed 
(age: P = 0.112; gender: P = 0.715). Clinical parameters (excluding IBIL) and pathological features (histological grade, 
tumor size, Ki-67, AFP IHC) significantly differed across Child–Pugh classes (P < 0.05), reflecting tumor biological varia-
tions under distinct hepatic functional states.

3.2 � Correlation of CAP metabolic enzyme expression with hepatic function status

Figure 2 and Table 1 depict CAP-metabolizing enzyme expression stratified by liver function. In tumor tissues, CES1 and 
DPYD expression showed no association with liver functional status (P > 0.05). CDA levels were significantly higher in 
Child–Pugh A versus C tumors (P = 0.023), suggesting progressive CDA downregulation with worsening liver function. 
TP expression inversely correlated with liver function, being markedly lower in Child–Pugh A than B (P = 0.033) and C 
(P < 0.001). In non-tumorous tissues, only CES1 differed significantly between Child–Pugh B and C (P = 0.048), while other 
enzymes remained unaffected by functional decline.

3.3 � Expression variability of CAP metabolic enzymes across tissue types and individual variability

Figure 3 and Table 2 show tissue-specific expression of CAP-metabolizing enzymes. Tumor tissues had lower CES1 than 
non-tumorous tissues (P = 0.033) but were similar to normal liver tissues (P = 0.336). CES2 decreased progressively from 
normal to non-tumorous to tumor tissues (tumor vs. non-tumorous, P < 0.001; tumor vs. normal, P < 0.001; non-tumorous 
vs normal, P < 0.001). CDA expression was significantly lower in tumor tissue compared with non-tumorous tissue (P < 
0.001) and normal tissue (P = 0.005), while no significant difference was observed between non-tumorous and normal 
tissues (P = 0.296). Conversely, TP was upregulated in tumors compared to both non-tumorous (P < 0.001) and normal 
tissues (P = 0.011), with no difference between non-tumorous and normal tissues (P = 0.915). DPYD expression was 
reduced in tumor tissue compared with non-tumorous tissue (P < 0.001) and normal tissue (P = 0.018), while no significant 
difference was observed between non-tumorous and normal tissues (P = 0.471).

Table 2 delineates the interindividual variability of CAP-metabolizing enzymes across tissues. Normal liver tissues 
exhibited zero coefficient of variation (CV) and standard deviation (SD) for all enzymes, indicating the absence of inter-
individual variability. In tumor tissues, all enzymes demonstrated marked variability, with CDA (CV: 118.70%; SD: 3.897) 
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Table 1   Patient demographics and baseline characteristics

Characteristic Total (n = 60a) Child–Pugh classification P valueb

Child–Pugh A (n = 17a) Child–Pugh B (n = 21a) Child–Pugh C (n = 22a)

Age (years) 54 ± 7 54 ± 7 56 ± 7 51 ± 7 0.112
Gender 0.715
 Female 24 (40.0%) 7 (41.2%) 7 (33.3%) 10 (45.5%)
 Male 36 (60.0%) 10 (58.8%) 14 (66.7%) 12 (54.5%)

CES1(Tc) 12.00 (12.00, 12.00) 12.00 (12.00, 12.00) 12.00 (12.00, 12.00) 12.00 (12.00, 12.00) 0.826
CES1(NTd) 12.00 (12.00, 12.00) 12.00 (12.00, 12.00) 12.00 (12.00, 12.00) 12.00 (12.00, 12.00) 0.026
CES2(Tc) 2.00 (0.00, 4.50) 2.00 (0.00, 4.00) 2.00 (1.00, 4.00) 3.50 (1.25, 6.00) 0.235
CES2(NTd) 6.0 (4.0, 8.0) 6.0 (4.0, 8.0) 6.0 (4.0, 8.0) 7.0 (4.0, 8.0) 0.955
CDA(Tc) 2.0 (0.0, 6.0) 3.0 (2.0, 8.0) 0.0 (0.0, 8.0) 1.0 (0.0, 2.0) 0.177
CDA(NTd) 9.00 (8.00, 12.00) 9.00 (8.00, 12.00) 9.00 (8.00, 12.00) 8.50 (8.00, 11.25) 0.621
TP(Tc) 9.0 (6.0, 12.0) 6.0 (2.0, 8.0) 9.0 (6.0, 12.0) 11.0 (9.0, 12.0) < 0.001
TP(NTd) 3.00 (2.00, 6.00) 3.00 (2.00, 6.00) 3.00 (2.00, 4.00) 4.00 (3.00, 6.00) 0.113
DPYD(Tc) 9.00 (8.00, 12.00) 9.00 (8.00, 12.00) 9.00 (8.00, 12.00) 9.00 (8.25, 9.00) 0.842
DPYD(NTd) 12.00 (12.00, 12.00) 12.00 (12.00, 12.00) 12.00 (12.00, 12.00) 12.00 (12.00, 12.00) 0.126
Histological grading 0.047
 Grade III 35 (58.3%) 9 (52.9%) 9 (42.9%) 17 (77.3%)
 Grade II 18 (30.0%) 7 (41.2%) 8 (38.1%) 3 (13.6%)
 Grade IV 6 (10.0%) 0 (0.0%) 4 (19.0%) 2 (9.1%)
 Grade I 1 (1.7%) 1 (5.9%) 0 (0.0%) 0 (0.0%)

No. of tumors 2.00 (1.00, 3.00) 1.00 (1.00, 2.00) 2.00 (1.00, 3.00) 2.50 (1.00, 3.00) 0.114
Maximum tumor diameter (cm) 5.75 (3.00, 7.50) 3.00 (2.00, 5.00) 6.50 (4.50, 8.00) 6.20 (5.05, 7.50) 0.002
Portal vein tumor thrombosis 0.124
 No 47 (78.3%) 15 (88.2%) 18 (85.7%) 14 (63.6%)
 Yes 13 (21.7%) 2 (11.8%) 3 (14.3%) 8 (36.4%)

Ki-67 0.50 (0.22, 0.70) 0.20 (0.15, 0.30) 0.45 (0.35, 0.65) 0.70 (0.60, 0.75) < 0.001
HSP70 0.223
 Negatives 12 (20.0%) 6 (35.3%) 3 (14.3%) 3 (13.6%)
 Positive 48 (80.0%) 11 (64.7%) 18 (85.7%) 19 (86.4%)

TS 0.439
 Negatives 22 (36.7%) 8 (47.1%) 8 (38.1%) 6 (27.3%)
 Positive 38 (63.3%) 9 (52.9%) 13 (61.9%) 16 (72.7%)

P53 0.886
 Negatives 35 (58.3%) 10 (58.8%) 13 (61.9%) 12 (54.5%)
 Positive 25 (41.7%) 7 (41.2%) 8 (38.1%) 10 (45.5%)

AFP(IHC) < 0.001
 Negatives 30 (50.0%) 16 (94.1%) 13 (61.9%) 1 (4.5%)
 Positive 30 (50.0%) 1 (5.9%) 8 (38.1%) 21 (95.5%)

CNLC staging < 0.001
 Grade I 15 (25.0%) 11 (64.7%) 4 (19.0%) 0 (0.0%)
 Grade II 16 (26.7%) 4 (23.5%) 7 (33.3%) 5 (22.7%)
 Grade III 12 (20.0%) 2 (11.8%) 4 (19.0%) 6 (27.3%)
 Grade IV 17 (28.3%) 0 (0.0%) 6 (28.6%) 11 (50.0%)

T staging < 0.001
 T1 12 (20.0%) 8 (47.1%) 1 (4.8%) 3 (13.6%)
 T2 13 (21.7%) 5 (29.4%) 7 (33.3%) 1 (4.5%)
 T3 27 (45.0%) 4 (23.5%) 12 (57.1%) 11 (50.0%)
 T4 8 (13.3%) 0 (0.0%) 1 (4.8%) 7 (31.8%)

PS score 2.00 (2.00, 3.00) 2.00 (1.00, 2.00) 2.00 (2.00, 3.00) 2.50 (2.00, 3.00) < 0.001
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and CES2 (CV: 94.90%; SD: 2.910) displaying the highest variability. In non-tumorous tissues, TP exhibited moderate 
variability (CV: 68.23%; SD: 2.650), while other enzymes showed lower variability compared to tumor tissues. These find-
ings suggest that tumorigenesis may reduce TP expression heterogeneity while amplifying variability in other enzymes.

3.4 � Correlation analysis of CAP metabolic enzyme IHC staining index and PRM protein quantification

Figure 4 presents the correlation analysis outcomes between the IHC staining index of CAP metabolic enzymes and PRM 
protein quantification. In tumor tissue, the IHC staining index of each enzyme all exhibited a strong correlation with 
the PRM quantification results, with Pearson’s correlation coefficients (r) of 0.9443 (CES1), 0.8913 (CES2), 0.9934 (CDA), 
0.9975 (TP), and 0.8285 (DPYD), and P-values of 0.0046, 0.0171, < 0.0001, < 0.0001, and 0.0416, respectively. Notably, the 
correlation coefficient for DPYD detection by the two methods indicated a strong positive correlation (r > 0.7), but the 
P value of 0.0416, approaching the significance threshold (P < 0.05). In non-tumorous tissue, the IHC staining index also 
showed a strong correlation with the PRM quantification results. Specifically, the Pearson’s correlation coefficients (r) 
were 0.8826 (CES1), 0.9507 (CES2), 0.9453 (CDA), 0.9714 (TP), and 0.9947 (DPYD), with P-values of 0.0199, 0.0036, 0.0044, 
0.0012, and < 0.0001, respectively. The strong correlation between the IHC staining index and PRM quantification results 
in both tumor and non-tumorous tissues indicates that the IHC staining index can accurately reflect the expression levels 
of each metabolic enzyme.

3.5 � Risk factors affecting the expression of CAP metabolic enzymes in tumor tissue

This study employed Pearson correlation analysis to evaluate inter-tissue expression correlations of CAP-metabolizing 
enzymes, shown in a heatmap (Fig. 5). Only CES2 demonstrated a moderate positive correlation between tumor and non-
tumorous tissues. Subsequent multivariate linear regression analyzed factors influencing HCC tissue enzyme expression 
across three domains: inter-enzyme interactions, pathological features, and clinical parameters. To optimize analytical 
rigor, LASSO regression screened all variables before modeling. Results of univariate and multivariate analyses are pre-
sented as forest plots (Figs. 6, 7, 8), with complete regression data available in Supplementary Tables 1–15.

Table 3 summarizes risk factors influencing CAP-metabolizing enzyme expression in HCC tissues. CES1 expression 
lacked identifiable risk factors, suggesting independence from other enzymes and clinicopathological variables. CES2 
expression was associated with non-tumorous CES2 levels, histological grade, TS, P53, age, advanced CNLC (III-IV), T 
staging (T3-4), IBIL, and hydroperitoneum. For CDA, independent predictors included non-tumorous DPYD expression, 

a Mean ± SD; n (%); Median (IQR)
b One-way ANOVA; Pearson’s Chi-squared test; Kruskal–Wallis rank sum test; Fisher’s exact test
c T: IHC staining index in Tumor tissues
d NT: IHC staining index in Non-Tumor tissues

Table 1   (continued)

Characteristic Total (n = 60a) Child–Pugh classification P valueb

Child–Pugh A (n = 17a) Child–Pugh B (n = 21a) Child–Pugh C (n = 22a)

Child–Pugh score 8.50 (6.00, 11.00) 5.00 (5.00, 6.00) 8.00 (7.00, 9.00) 12.00 (11.00, 12.00) < 0.001
Albumin (g/L) 34 ± 7 40 ± 4 33 ± 7 29 ± 5 < 0.001
ALT(μ/L) 63 (35, 224) 25 (18, 39) 85 (40, 212) 221 (153, 278) < 0.001
AST(μ/L) 50 (35, 114) 38 (31, 46) 47 (34, 91) 95 (50, 146) < 0.001
DBIL(μ/L) 33 (10, 75) 10 (5, 12) 36 (13, 74) 63 (33, 111) < 0.001
TBIL(μ/L) 38 (23, 95) 21 (15, 24) 38 (25, 62) 92 (43, 124) < 0.001
IBIL(μ/L) 15 (10, 33) 12 (9, 14) 15 (10, 33) 30 (13, 34) 0.157
AFP (plasma) (ng/ml) 472 (33, 696) 23 (7, 64) 463 (73, 661) 704 (539, 2,236) < 0.001
Hydroperitoneum 0.006
 Negatives 44 (73.3%) 17 (100.0%) 13 (61.9%) 14 (63.6%)
 Positive 16 (26.7%) 0 (0.0%) 8 (38.1%) 8 (36.4%)

Prothrombin time 15.70 (12.40, 18.13) 12.30 (11.50, 13.20) 16.40 (13.30, 17.10) 18.15 (15.80, 19.10) < 0.001
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Fig. 2   Differential analysis of IHC staining index at different levels of liver function (A IHC staining index in HCC tumor tissues; B IHC staining 
index in non-tumor tissues; ns not significant, P > 0.05; * P < 0.05; **** P < 0.01)
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histological grade III, PS score, and IBIL. TP expression was linked to Ki-67 and ALT. Although univariate analysis iden-
tified no DPYD risk factors, multivariate analysis implicated non-tumorous CES2 as its sole independent risk factor.

Fig. 3   Differential analysis of IHC staining index in different tissues (A IHC staining index in different tissues; B Analysis of the different tis-
sues by IHC; ns not significant, P > 0.05; */** P < 0.05; **** P < 0.01)

Table 2   Discrete expression 
of capecitabine-related 
metabolizing enzymes in 
different tissues

Bold values indicate statistically significant P values (＜ 0.05)
a IHC staining index
b CV: Coefficient of variation
c SD: Standard deviation
d Differential comparison of HCC tissue and non-HCC tissue

CAP metabo-
lizing enzymea

Normal liver tissue (n 
= 6)

HCC tissue (n = 60) Non-HCC tissue (n = 60) P valued

CV (%)b Mean ± SDc CV (%) Mean ± SD CV (%) Mean ± SD

CES1 0.000 12.00 ± 0.000 21.17 11.07 ± 2.342 7.724 11.77 ± 0.9088 0.0330
CES2 0.000 12.00 ± 0.000 94.90 3.067 ± 2.910 48.04 6.217 ± 2.986 < 0.0001
CDA 0.000 8.00 ± 0.000 118.7 3.283 ± 3.897 29.01 9.150 ± 2.654 < 0.0001
TP 0.000 4.00 ± 0.000 46.70 8.017 ± 3.744 68.23 3.883 ± 2.650 < 0.0001
DPYD 0.000 12.00 ± 0.000 33.80 8.967 ± 3.031 11.58 11.60 ± 1.343 < 0.0001
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3.6 � Development of a treatment flowchart for CAP administration

Figure 9 outlines a treatment flowchart based on median IHC staining indices of CAP-metabolizing enzymes, designed 
to guide CAP therapy in HCC. The flowchart begins with assessing TP expression in tumors and CES1/CDA/DPYD in 
non-tumorous tissues. Negative results contraindicate CAP use. For positive cases, IHC indices are further stratified 

Fig. 4   Correlation analysis between IHC staining index and PRM (Parallel Reaction Monitoring) in different tissues (A Correlation analysis in 
tumor tissues; B Correlation analysis in non-tumor tissues)
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to assign treatment categories: ① CAP recommended (proven efficacy, minimal toxicity); ② CAP advised with liver 
function monitoring; ③ CAP with toxicity surveillance; ④ CAP cautiously administered (uncertain efficacy); ⑤ CAP 
contraindicated (poor efficacy/severe toxicity); ⑥ CAP excluded (no efficacy).

4 � Discussion

The efficacy of CAP in treating HCC is not satisfactory, with positive efficacy only observed in advanced HCC patients 
[8]. Mechanistic studies addressing this limitation are scarce. The pharmacological activity of CAP is highly dependent 
on its metabolic conversion, which is strictly regulated by metabolic enzymes [14]. Given that most HCC patients have 
underlying liver disease, this study hypothesizes that the suboptimal efficacy of CAP may be linked to differences in the 
expression of metabolic enzymes. Consequently, this study systematically analyzed the expression heterogeneity of CAP 
metabolic enzymes in HCC patients and found significant individual and tissue differences, which were associated with 
clinical pathological factors such as liver function status and tumor differentiation. Based on these findings, this study 
successfully constructed a treatment flowchart for CAP application in HCC patients, providing a framework for personal-
ized CAP treatment to optimize HCC treatment outcomes.

This study revealed a strong positive IHC-PRM correlation (P < 0.05), validating IHC as a reliable technology for quan-
tifying CAP-metabolizing enzyme expression. Although the correlation analysis of DPYD detection by the two methods 
showed a P value of 0.0416 (approaching the significance threshold, P < 0.05), the correlation coefficient (r = 0.8285) 
indicated a strong positive correlation. This borderline significance may result from limited sample size or interindividual 
variability, and larger cohorts are warranted to improve statistical power in future research. However, this offers a precise 
and cost-effective detection method suitable for clinical application and ideal for large-scale screening. Moreover, this 
study systematically analyzes the correlation between CAP metabolic enzyme expression and liver function. In tumor tis-
sue, CDA expression decreases with worsening liver function, whereas TP expression increases. Other metabolic enzymes 
are unaffected. No individual differences in metabolic enzyme expression were found in normal liver tissue, consistent 
with previous studies [7]. Existing studies suggest individual differences in CES1 and CES2 expression in normal liver 
tissue are influenced by genetic factors like single-nucleotide polymorphisms (SNPs) and non-genetic factors, including 
development, gender, and drug interactions [15, 16]. Although studies have suggested that the SNPs of CDA, TP, and 
DPYD may affect CAP metabolism and clinical effects [17, 18], direct evidence of individual differences in normal liver 
tissue is scarce. The study found significant individual differences in the expression of all metabolic enzymes in both 
tumor and non-tumorous tissues. In tumor tissue, individual differences in the expression of metabolic enzymes, except 
for TP, are more pronounced than in non-tumorous tissue, while TP exhibits an opposite trend. All samples in this study 
were from patients with HCC following hepatitis B and cirrhosis; thus, the non-tumorous tissue is cirrhotic. Therefore, HCC 
may amplify individual differences in metabolic enzymes other than TP. After HCC develops, however, TP’s differences 
tend to decrease, which is consistent with previous studies [19].

Fig. 5   Heatmap of correla-
tions between CAP metabolic 
enzymes (T: Tumor; NT: non-
tumor)
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Fig. 6   The forest map of influencing factors between CAP metabolic enzymes in HCC tissue (Linear regression) (A CES1; B CES2; C CDA; D TP; 
E DPYD; T: Tumor; NT: Non-tumor)
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Fig. 7   The forest map of 
influencing factors between 
CAP metabolic enzymes and 
pathologic indicators in HCC 
tissue (linear regression) (A 
CES1; B CES2; C CDA; D TP; E 
DPYD)
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This study evaluated tissue-specific expression variability of CAP-metabolizing enzymes. The findings revealed that 
CES1 expression was marginally reduced in tumor tissue, with no significant difference from other tissues. A study by Li 
G et al. also noted that CES1 expression in liver cancer was lower than in normal liver, particularly in bile duct carcinoma 
[20]. This study observed a progressive decline in CES2 expression from normal liver to tumor tissue, hinting at a link 
between CES2 expression and tumor progression. High CES2 expression in pancreatic ductal adenocarcinoma (PDAC) 
has been associated with better overall survival [21]. The study detected significantly lower CDA and DPYD expressions 
in tumor tissue compared to non-tumorous and normal liver tissue. Previous research has indicated that diminished 
CDA expression in tumor cells may disrupt DNA stability and repair, fostering tumorigenesis [22]. CES2, CDA, and DPYD 
expression universally decrease with significant individual differences as tumors evolve. CES2 shows a gradual decline, 
while CDA and DPYD exhibit more abrupt changes. This suggests that alterations in these enzymes’expression may be 
tied to hepatocyte malignant transformation. In normal liver tissue, these enzymes likely play roles in maintaining liver 
physiology, including metabolism, detoxification, and cell proliferation. Their expressions may alter in response to liver 
pathologies such as chronic inflammation or cirrhosis. The significant reduction in these enzymes’expressions during liver 
cancer progression could be attributed to rapid tumor cell proliferation, metabolic irregularities, and microenvironmental 
shifts [23, 24]. Conversely, this study found that while TP exhibited the most significant individual differences in cirrhotic 
tissue, its expression in tumor tissue was markedly higher than in other tissues. This implies that TP expression might 
diverge before tumor onset, aligning with previous research. Zhang Q et al. also reported a substantial increase in TP in 
liver cancer tissue, with this upregulation closely associated with angiogenesis and prognosis in liver cancer tissue [25]. 

Fig. 7   (continued)
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Fig. 8   The forest map of influ-
encing factors between CAP 
metabolic enzymes and clini-
cal indicators in HCC tissue 
(linear regression) (A CES1; B 
CES2; C CDA; D TP; E DPYD)
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Among pro-angiogenic factors, TP and vascular endothelial growth factor (VEGF) play a crucial role in the promotion 
of angiogenesis in HCC tumors [26].

This study rigorously selected variables using LASSO regression and then employed linear regression to identify the 
risk factors affecting the expression of each metabolic enzyme. It was found that the expression of metabolic enzymes 
in tumor tissue is mutually independent. However, the expression of CES2 and DPYD in non-tumorous tissue serves 
as an independent risk factor for the expression of CES2, DPYD, and CDA in tumor tissue. This suggests that the het-
erogeneity of HCC tumors may be influenced by non-tumorous tissue, potentially at multiple levels including gene 
expression, metabolic changes, tumor microenvironment alterations, and non-traditional enzyme functions. Moreover, 
the expression of CES1 and DPYD in HCC tissue is independent of pathological and clinical factors, indicating that they 
are highly conserved and can be expressed across various tumors. Their expression appears to be uninfluenced by the 
tumor microenvironment, suggesting their potential as therapeutic targets. Conversely, this study determined that the 
expression of CES2, CDA, and TP in tumor tissue is influenced by multiple pathological and clinical factors, with CES2 and 
CDA being particularly sensitive. Pathological tissue grading emerges as an independent risk factor for their expression, 
indicating a close relationship with tumor differentiation. Additionally, P53 is identified as an independent risk factor 
for CES2 expression in tumor tissue, aligning with previous findings [27]. Notably, Ki-67 in tumor tissue is found to be an 
independent risk factor for TP expression, suggesting a close link between TP expression and tumor cell proliferation.

This study has the following innovative features and strengths: First, this study systematically investigated the 
expression differences of CAP metabolic enzymes across different tissues in HCC patients, emphasizing the impor-
tance of the metabolic enzyme cascade reaction and providing a basis for personalized CAP treatment. Second, this 

Fig. 8   (continued)
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study verified the accuracy of the IHC staining index using high-precision PRM protein quantification, enhancing its 
clinical application reliability. Third, this study used LASSO regression analysis to select variables and analyzed risk 
factors affecting CAP metabolic enzyme expression from multiple perspectives. Most notably, based on the IHC stain-
ing index, we developed a treatment flowchart for CAP application in HCC patients. This innovation aids personalized 
medicine implementation and provides a scientific basis for HCC treatment decisions, significantly enhancing the 
clinical value of this study.

This study has several limitations. First, its retrospective design introduces selection and information biases and 
lacks prospective randomized controlled trial validation. Future studies should use prospective designs and validate 
findings in diverse populations to enhance methodological rigor and generalizability. Secondly, the limited sample 
size (60 HCC patients, 6 normal controls) restricts the generalizability of the findings. Paired tumor/non-tumor tissues 
allowed for within-individual comparisons, but the small number of normal liver samples, due to donor scarcity, is 
insufficient to fully characterize baseline CAP metabolic enzyme expression. Future studies should expand cohort 
diversity through multicenter collaboration or alternative models to validate baseline CAP metabolic enzyme expres-
sion in normal liver tissue. Third, IHC and PRM provided robust protein quantification but did not assess enzymatic 
activity, an important determinant of metabolic function. Complementary approaches, such as fluorometric activity 
assays and CRISPR-based models, are needed to elucidate enzyme kinetics. Integrating multi-omics data (genomics, 
proteomics) could further unravel the molecular drivers of expression heterogeneity.

In summary, this study comprehensively analyzed the expression heterogeneity of CAP metabolic enzymes in 
HCC, which manifested as tissue and individual differences associated with liver function and clinical pathological 
factors. These findings suggest that such heterogeneity may contribute to the suboptimal efficacy of CAP in HCC. By 
developing a treatment workflow for CAP in HCC patients, this study underscores the importance of personalized 
metabolic enzyme analysis to enhance capecitabine efficacy and advance precision oncology.
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