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Drug interaction is a leading cause of adverse drug events and a major obstacle for current clinical practice.
Pharmacovigilance data mining, pharmacokinetic modeling, and text mining are computation and informatic tools on
integrating drug interaction knowledge and generating drug interaction hypothesis. We provide a comprehensive overview of
these translational biomedical informatics methodologies with related databases. We hope this review illustrates the
complementary nature of these informatic approaches and facilitates the translational drug interaction research.
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Adverse drug events (ADEs), the unintended drug side

effects, have led to major public health burden. In the
United States alone, >500,000 serious ADEs were reported

annually to the US Food and Drug Administration (FDA)

during the past 5 years.1 ADEs are one of the leading

causes of morbidity and mortality. A meta-analysis of 39
prospective studies suggested that 6.7% of inpatients have

severe ADEs and 0.32% have fatal drug reactions.2 Sub-

stantial evidence shows that the drug-drug interaction (DDI)

is one of the leading causes of ADEs. With the increasing
rate of polypharmacy, the risk of ADEs increased from 13%

(2 drugs) to 58% (5 drugs).3 Hence, efficient and powerful

computational approaches are needed in detecting the

DDI-induced ADE signals, and investigating their molecular
mechanisms.

In order to evaluate clinical effects and molecular mecha-

nisms of DDIs, clinical pharmacokinetic (PK) studies,

pharmaco-epidemiologic studies, and in vitro PK experiments
have been routinely utilized. One salient example is that of

breast cancer hormonal therapy, tamoxifen. The formation of

its active metabolite, endoxifen, was inhibited by co-

administrated selective serotonin reuptake inhibitor paroxetine
in a clinical PK study.4 In vitro metabolism studies revealed

that this is due to paroxetine’s strong inhibition of the tamoxi-

fen biotransformation to endoxifen via the CYP2D6 pathway

(5). In a follow-up pharmacogenetics study, patients with
breast cancer with CYP2D6 loss function variants had a

higher risk of disease relapse and a lower incidence of hot

flush.6 The clinical consequence of treating breast cancer and

depression using tamoxifen and selective serotonin reuptake
inhibitors was reviewed,7 and called for further investigation.

This example clearly demonstrates that the translational sig-

nificance of drug interaction studies relies on both clinical and

molecular pharmacology evidences. As described by Hen-

nessy & Flockhart,8 an integrated informatics, epidemiology,

and pharmacology approach has the potential to accelerate
the translational drug interaction studies. Pioneered by Tato-

netti et al.,9 the FDA adverse event reporting system (FAERS)

and electronic medical records (EMRs) were utilized to gener-

ate and validate drug-induced ADE and drug-drug-induced

ADE associations. Duke et al.10 proposed a text mining strat-

egy for DDI molecular pharmacology evidence discovery from
the public literature, which discovered 13,197 potential DDIs.

In the follow-up in vitro study, Han et al.11 validated the

loratadine-simvastatin myotoxicity interaction, and its

increased myopathy risk in both EMR and FAERS databases.
Driven by the emerging big data and novel computational

models, there are three areas in which translational bio-

medical informatics and pharmacometrics are having a
major impact on the drug interaction research. First, during

the past 2 decades, federal regulatory agencies, hospitals,

and research organizations maintained various patient

databases, such as spontaneous reporting system (SRS),

EMRs, and electronic health records (EHRs) for postmar-

keting surveillance and epidemiological studies. When
these data are increasingly available to the research com-

munities, computational models have been developed to

identify and prioritize DDIs.12 Second, PKs of DDIs have

been well characterized and predicted with physiologically

based pharmacokinetic (PBPK) models. Third, knowledge

discovery through the literature has become a powerful
approach for the DDI detection, in which the natural lan-

guage processing (NLP) is the key computation technology.
A few reviews have highlighted some translational bio-

medical informatic approaches. For instance, the reviews

by Harpaz et al.12 and Koutkias & Jaulent13 focused on
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computational models for SRS and EMR databases. Text
and data mining techniques to detect ADE signals were
reviewed by Karimi et al.14 Jensen et al.15 summarized
available EMR/EHR databases and the obstacles for the
EMR/EHR mining. However, these reviews did not focus on
the translational nature in the ADE research, and none of
them specifically addressed the DDI research. In this
review, we focus on computational approaches for postmar-
keting surveillance data mining, PBPK modeling, and
literature-based knowledge discovery, because these three
approaches complement each other. The rest of this review
is organized as follows: data mining methods for the post-
marketing surveillance are shown; PBPK DDI models and
databases are presented; literature-based DDI discovery
approaches are presented; and the last section concludes
this review.

DDI DATA MINING METHODS USING THE

POSTMARKETING SURVEILLANCE DATA
A brief review of single drug ADE association analyses
Univariate disproportionality analyses. Disproportionality

analyses (DPAs) are the pioneer approaches to quantify

and prioritize single drug-ADE associations. For a drug-

induced ADE pair, DPAs summarize data into a two-by-two

contingency table, in which contains the frequencies classi-

fied by the usage of a drug (yes/no) and the occurrence of

an ADE (yes/no). The outcome is the frequency that this

drug-induced ADE pair is observed, and the expectation is

the expected frequency of this drug-induced ADE pair

under the assumption of no association. As its name

implies, DPAs compare the outcomes to their expectations.

DPAs can be classified as frequentist, Bayesian, or empiri-

cal Bayesian. DPAs can be either used to analyze specific

drug-induced ADE pairs of interest, or can conduct drug-

wide and ADE-wide signal screening.
Proportional reporting ratios (PRRs) and reporting odds

ratios (RORs) are frequentist DPAs.16,17 ROR calculates

the ratio of the ADE odds between the group of patients

taking the drug and the other patients not taking the drug.

PRR, on the other hand, calculates the ratio of two relative

ADE risks between two patient groups. Practically,

PRR_025 and ROR_025, the lower bound of 95% confi-

dence intervals for PRR and ROR, are also often used for

the signal detection. The likelihood ratio test (LRT) is

another frequentist DPA.18 It assumed that the drug-

induced ADE frequency follows a Poisson distribution.

Under the null hypothesis, this Poisson distribution had the

same ADE rate as the background rate (i.e., the ADE rate

for patients not taking the drug; and under the alternative

hypothesis, they are not the same). The log-likelihood ratio

statistics are then constructed to test this hypothesis. The

LRT tests a drug and all ADEs at the same time, and the

distribution of the maximum LRT can be calculated through

the permutations.
Information component (IC) is a Bayesian DPA.19 This

approach assumes that the drug-induced ADE frequency

follows a binomial distribution itself; its expected frequency

is calculated from the marginal drug frequency and ADE

frequency; and the prior distribution of drug marginal

frequency and ADE marginal frequency are assumed to be
uniform distributions. The IC calculates the expected ratio
between drug-induced ADE frequency and its expected fre-
quency under all these distribution assumptions. Later,
Nor�en et al.20 introduced a joint Dirichelet distribution prior
and extended Bate’s IC model. Like PRR and ROR, signal
detection using IC can be based on its lower bound of the
95% confidence interval (IC_025). The empirical Bayesian
geometric mean (EBGM) is an empirical Bayesian DPA. Sim-
ilar to the IC approach, EBGM calculates the expected ratio
between drug-induced ADE frequency and its expected fre-
quency.21 However, different from the IC approach, a two-
component mixture of gamma distributions was chosen to
model the ratio, and this mixture model was further estimated
from the data instead of prespecified prior distribution. The
Bayesian false-discovery rate (BFDR) is another empirical
Bayesian DPA.22 For the above-mentioned PRR, ROR, and
EBGM models, BFDR calculates the posterior probability for
a predefined null hypothesis. For instance, BFDR was origi-
nally applied to the EBGM model22; and later on, it was also
applied to the PRR.23 BFDR itself can be used for signal
detection.

Three-component mixture model (3CMM) is an empirical
Bayesian DPA developed by our group.24 Similar to the
EBGM, 3CMM utilizes gamma-Poisson assumption as well.
However, unlike EBGM, 3CMM has three distributions that
characterize the ratio between drug-induced ADE frequency
and its expected frequency; and the local false discover
rate is introduced for false-positive control. Under 3CMM,
the first distribution specifies the point mass distribution at
0 for the ratio; the second distribution has a mean ratio of
1; and the third one has a mean >1. Particularly, the sec-
ond distribution characterizes the null hypothesis, whereas
the third distribution characterizes the alternative hypothe-
sis. Hence, the local false discover rate estimates the prob-
ability of the null distribution conditional on the data and the
3CMM.

Multivariate analyses. Univariate DPAs suffer from the con-
founding bias, which can be addressed in multivariate anal-
ysis. Tatonetti et al.9 assumes that confounding variables,
such as comorbidities, can be characterized by the comedi-
cation variables. He applied the logistic regression model
first, and estimated the propensity score for each drug of
interest. Then, in analyzing a drug-induced ADE associa-
tion, this drug’s propensity score was used to adjust the
confounding variables.

Multiple logistic regression (MLR) and regulated logistic
regression are two other approaches in analyzing drug-ADE
associations. MLR is a traditional statistical approach to
detect drug-induced ADE association. It can be considered
to be a multivariate extension of ROR. Usually, the MLR
analyzes an ADE and all available drugs at the same time.
Examples of applying MLR to EHR data can be found in
Harpaz et al.25 In certain situations, drug-induced ADE sig-
nal detection by MLR may involve a large number of drugs
than sample sizes, in which regulated logistic regression
becomes a viable solution, such as ridge and Lasso regres-
sion models. An example of signal detections by lasso
regression models includes Ola Caster et al.26
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DPAs are less computationally expensive compared
within other multivariate approaches.12 Additionally, DPAs
can be used either to analyze specific drug-induced ADE
pairs of interest, or can conduct drug-wide and ADE-wide
signal screening. Although the disproportionality measure-
ments may suffer from confounding bias, evaluations by
gold standard have shown DPAs to have decent performan-
ces (area under the concentration-time curve (AUC)).27

Hence, DPAs are routinely used for large-scale hypothesis
generation. Multivariate analyses, on the other hand, are
typically observed in epidemiology studies to validate a few
candidate drug-induced ADE associations.

For logistic regression modeling, the number of predic-
tors is usually less than 2,000, which is similar to the num-
ber of FDA approved drugs. For pharmacovigilance
databases, the sample sizes are usually up to a few million.
As a consequence, enhanced computational resources or
smart techniques are required to handle the big data chal-
lenge. Our experiences indicate that a super computer with
50 GB memory can handle MLR with a few hundred drugs
and four million observations. With less powerful computa-
tional resources, bootstrap regression would be an ideal
solution.

Drug interaction signal detection
Some of the DPAs in this review can be extended to detect
drug interaction signals. By treating a drug combination as
a new drug, the disproportionality measurements can be
obtained, accordingly. For instance, Huang et al.28 intro-
duced an extended LRT method that can be used for
detecting signals for multiple drugs (or ADEs) in a drug
class (or in an ADE group). Likewise, an extended higher
order IC method is proposed by Nor�en et al.20 Higher order
IC is based on the same model assumption as the tradi-
tional IC, and its credibility interval can be derived similarly.
They cannot only be used for detecting the potential DDIs,
but also can be used for detecting the association between
a drug-induced ADE pair and another risk factor (e.g., age
or gender). The examples for the extended EBGM can be
found in Almenoff et al.29 and DuMouchel & Pregibon.30

Although these extended DPAs can be used for detecting
the potential DDI signals, these approaches cannot distin-
guish the signals that are associated with drug interactions
or just with independent drugs.

Nor�en et al.31 proposed a novel model for detecting two-
way DDIs. In their model, a ratio of the DDI-induced ADE
risk and its expected ADE risk is calculated, and the
expected ADE risk is calculated from the single drug-induced
ADE risk from both drugs and baseline ADE risk from neither
drugs. Like the IC approach, a Bayes approach is taken to
estimate the expected DDI risk ratio, and an uninformative
prior was speculated for the prior. This prior has the advan-
tage of shrinking the ratio toward 1 when the sample size is
small.

The regression-based method for detecting DDIs can
avoid the confounding variable problems. Examples for the
logistic regression model applied for detecting potential
DDIs from SRS can be found in Van Puijenbroek et al.32

Thakrar et al.33 proposed multiplicative and additive rela-
tionship to model the risks for single drugs and DDI pairs.

The multiplicative model assumes that the risk associated

with a drug multiplies with the background risk, and the

additive model assumes that the risk associated with a

drug is additive to the background risk. Their results show

that the additive model is a more sensitive method for

detecting signals and the multiplicative model may further

help on qualifying the strength of the signals detected by

the additive model. In addition to detecting the ADEs that

were caused by the DDIs, the regression model can also

be used for detecting the signals that one drug may reduce

the ADEs of the other drug (i.e., beneficial effects of DDIs).

High dimensional drug interaction detection
We recently developed a novel mixture drug-count response

model (MDRM) to characterize and detect high dimensional

drug interaction signals.34 MDRM is an empirical Bayesian

method. This model assumes that the drug-induced ADE fol-

lows two patterns: one pattern assumes a constant ADE risk

regardless of the dimension of the drug combinations,

whereas the other pattern assumes that ADE risk increases

like the dose (i.e., drug counts) response curve. This model

then estimates a probability for each drug combination that

follows the drug-count response model. MDRM, for the first

time, characterizes the pattern of high dimensional drug

interactions and ADEs. Its innovation lies in the fact that

MDRM allows different drug combinations to share the same

drug-count response relationship, as the sample size of

each drug combination goes very small when the dimension

of the drug combination increases.
Currently, the amount of FDA-approved drugs generate

over millions of two-way drug combinations; and as the

dimension of drug combination increases, the amount of

plausible drug combinations increases in a factorial speed.

As traditional statistical models are insufficient to deal with

the tremendous amount of drug combinations, informatic

approaches become a promising and practical solution.

Two major informatic techniques to detect drug interaction

signals include frequent closed itemset (FCI) mining and

association rule mining. FCI is powerful on eliminating

redundant drug combinations. For instance, if drug A, drug

B, ADE X, ADE Y is a FCI, then its subsets (such as drug

A, ADE X) are considered to be redundant. These redun-

dant subsets can be removed unless such a subset

appears in a record that does not contain all items of drug

A, drug B, ADE X, ADE Y. Xiang et al.35 proposed an FCI-

filter approach that integrated FCI mining and uninformative

association removal to mine multiple drug interactions from

the FAERS. Under their approach, potential itemsets are

generated by FCI mining first; and uninformative itemsets

are removed, if the itemsets and supporting transactions

can be obtained from the interaction of other itemsets and

their supporting transactions. An example of the application

of association rule mining can be found in Harpaz et al.,36

in which a priori algorithm is utilized to mine the FAERS

data. Their a priori configuration considers only itemsets

that have a set of drugs in the antecedent and a set of

ADEs in the consequent. Additionally, their prioritized item-

sets are further filtered by the relative risks.
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PHARMACOKINETICS MODELING AND DATA
SOURCES
In vitro in vivo drug interaction prediction using
pharmacokinetics modeling
There are two ways to characterize PKs of drug. The top-
down approach investigates clinical pharmacokinetic using
clinical trial data, and it builds up a population PK model.
The bottom-up approach, on the other hand, starts from PK
data measured from in vitro studies, and extrapolates and
predicts clinical drug exposure in humans. In this review,
we will focus on one of the bottom-up approaches, steady
state in vitro-in vivo extrapolation (IVIVE) of drug interaction
prediction. There are other great and comprehensive
reviews on the bottom-up approach.37,38 We select our
focused IVIVE model because it is the one that can be
scaled up (i.e., including potentially all drugs), and inter-
faced with informatic analyses.

The ratio of AUC (AUCR) in the present and absence of
inhibitors is widely used to determine the severity of a DDI.
Here, we focus on a static DDI model proposed by Ito
et al.39 and modified by Lu et al.,40 which calculates the
AUCR based on unbound inhibitor concentration ([I]), inhibi-
tion rate constant for a drug (Ki), fraction of metabolism
(fm) and fraction of renal clearance (fe) in Eq. 1.
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All of these parameters can be obtained from various avail-
able data sources, except for fm. For example, the Metabo-
lism and Transport Drug Interaction Database (DIDB) has
a collection of drug Ki, and the book by Goodman and Gil-
man41 has a collection of fe and drug maximum concentra-
tion (Cmax), which can be used as [I]. There are several
ways to estimate fm for a substrate. First, change in AUC
or clearance in the presence of a co-administered CYP
inhibitor through a clinical PK study is used to determinate
the contribution of the CYP for a drug. For example, Yeung
et al.42 utilized clinical drug interaction studies, in which
ketoconazole was used as the CYP3A4 probe inhibitor,
and calculated a drug’s fm in the CYP3A4 pathway using
Eq. 2:

fm3A4512
AUC uninhibitedð Þ
AUC inhibitedð Þ (2)

Second, pharmacogenetic studies can also be used to esti-
mate fm through the fold-change in exposure of a substrate
in extensive metabolizers compared to poor metabolizers.39

A large population of patients were studied with respect to
the metabolism of metoprolol, which was metabolized by
CYP2D6,43 and fm was calculated by Eq. 3:

fm2D6512
AUC CYP2D6;EM; AVGð Þ
AUC CYP2D6;PM; AVGð Þ512

CL CYP2D6;PM; AVGð Þ
CL CYP2D6;EM; AVGð Þ

(3)

Third, in vitro experiments also have been used to deter-

mine the contributions of several CYP pathways. Substrate

depletion in the human liver microsomes is one method

that the drug is incubated with or without specific CYP

selective inhibitors. The percent of inhibition can be calcu-

lated by comparing the metabolism rates with and without

an inhibitor. Substrate depletion can also be incubated with

individual recombinant enzymes isoforms.44 Each isozyme

contribution is estimated as the percent contribution of

each CYP enzyme toward the total human liver microsome

CLint via a scaling factor (RAF/ISEF) approach.45 Recently,

due to the success of the cryopreservation of human hepa-

tocytes,46 the hepatocyte suspension model47 becomes a

new method to estimate fm. Physiologically, cryopreserved

human hepatocyte is closer to the human hepatic metabo-

lism than the other in vitro system does. Desbans et al.48

used cryopreserved human hepatocytes from 12 donors to

estimate fm of CYP3A for 5 prototypical CYP3A substrates.

After hepatocytes were incubated with test compounds

and/or the inhibitor, the intrinsic clearance was estimated

from the parent compound depletion profile. Then

fmCYP3A was calculated from the ratio between CLint in

the absence and presence of ketoconazole as Eq. 4:

fm3A512
CLint inhibitedð Þ

CLint uninhibitedð Þ (4)

Although there are several different methods successful to

determine fm, there is no comprehensive database that

systematically stores fm for DDI research.

Adverse drug reactions databases and data sources
There are a number of drug-related databases that inte-

grate bioinformatics, cheminformatics, and/or DDI knowl-

edge, which have been widely used for the drug interaction

alerting in a large range of clinical decision support and

electronic prescribing systems. Meanwhile, clinical signal-

based databases can be helpful for understanding the

mechanism of action for drugs.11 In addition, part of pre-

market drug development relies on the drug information

and DDI knowledge to predict interactions between a new

drug candidate and drugs currently on the market.

DDI-related database. The DrugBank49 is a well-known

comprehensive database that contains bioinformatics and

chemo-informatic resource of 9,591 drugs, including mole-

cule and biotech drugs. It combines detailed chemical,

pharmacological, and pharmaceutical information with com-

prehensive drug targets, such as sequence, structure, or

pathway information. All of these can be useful for ADE

research. In addition, DDI knowledge is included in the

database. However, due to the simple description, additive

and synergic interactions are hardly differentiated. There-

fore, it is difficult to assure that an ADE is caused by a true

interaction or simple dose increase. There are other similar

comprehensive databases including Drugs.com50 and Kyoto

Encyclopedia of Genes and Genomes (KEGG).51 Some

DDI knowledge databases were derived from data mining

from health record data sources. For example, the OFF-

SIDE database contains drug-event signals that are not
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listed on the FDA’s official drug label.9 These signals were
mined from FAERS data by a data-driven approach that
removes many synthetic associations from indications,
coprescriptions, and hidden covariates. Using the same
method, DDI signals were further derived from FAERS
data, which is called TWOSIDES.9

Other databases in which clinical information and mecha-
nism knowledge are included, were derived from text min-
ing and literature curating methods. By manually curating
published literatures and FDA New Drug Application
reviews, the DIDB collects in vitro and in vivo data of PK
drug interactions. Unlike DrugBank, experimental conditions
and results of DDI studies, which are crucial DDI factors,
are all integrated in the DIDB database. Another important
database is PharmGKB.52 It is one of the largest databases
collecting associations among genes, drugs, and diseases
published in the literature. PharmGKB is well regarded as a
reliable resource for personalized medicine and pathway-
oriented DDI research.52 Table 1 provides summarized
main features of DDI-related databases.

ADE-phenotyping sources. Our focused ADE-phenotype
refers to an EHR-based patient cohort definition, which
experiences an ADE.53 Here, we provide ADE-phenotype
sources, level of evidence, terminologies, and data types,
and their integration with EHRs (Table 2,54–64). Four crite-
ria of ADE evidence are given as the following: ADE defini-
tion algorithm validation (criterion 1); comprehensiveness of
the ADE definition algorithm (criterion 2); literature and/or
ADE-related evidence (criterion 3); and terminological sup-
port for structured and unstructured data (criterion 4). Using
these four criteria, we define the three levels of ADE
evidence.

Level I evidence provides the highest reliable and precise
ADE phenotypes. They met criteria 1, 2, and (3 and/or 4).
For instance, the Phenotype Knowledgebase (PheKB) web-
site,54 “an online environment supporting the workflow of
building, sharing, and validating electronic phenotype algo-
rithms,” which offers algorithms using approaches, such as
International Classification of Disease, 9th revision-Clinical
Modification (ICD-9-CM) codes, medications, and NLP. The

Table 1 Summary of drug/DDI-based databases

Database name Data type in database Data sources Main feature(s)

DDI related

shortcoming(s)

DrugBank Bioinformatics/

cheminformatics/DDI

Manual search/

merged with many

other databases

� DrugBank collects 8,261

small molecule and biotech

drugs including approved, with-

drawn, and experimental drugs

� Chemical, pharmacological,

pharmaceutical information and

DDI knowledge are combined

in the database

� Simple details in

DDI

� No additive or syn-

ergic information for

DDI

OFFSIDES Drug-ADE relationship Signal detection in

AERS

� OFFSIDES database con-

tains 438,801 drug-event sig-

nals connecting 1,332 drugs

and 10,097 adverse events

� These effects are not listed

on the FDA’s official drug label

� Confidence is signed for

each relationship

–

TWOSIDES DDI-ADE relationship Signal detection in

AERS

� 868,221 significant associa-

tions are included

� Associations are limited to

new-found ones

� PD DDI and PK DDI are

included

� No additive or

synergic information

for DDI

� PK and PD DDI are

not classified

DIDB In vitro and in vivo data

of PK DDI

Manually curating

published

literatures

� DIDB collects in vitro and in

vivo data of PK DDI

� Experimental conditions and

results of DDI studies are all

integrated

� No additive or syn-

ergic information for

DDI

� Only PK DDI are

included

PharmGKB Pharmacogenetics and

pharmacogenomics

knowledge

Literature and drug

label reviews

� PharmGKB is one of the larg-

est databases in pharmacoge-

netics and pharmacogenomics

knowledge

� Gene-drug associations,

drug-centered pathway, and

gene-drug-disease relation-

ships are included via literature

and drug label reviews

–

ADE, adverse drug event; AERS, adverse event reporting system; DDI, drug-drug interaction; DIDB, Drug Interaction Database; FDA, US Food and Drug

Administration; PD, pharmacodynamic; PK, pharmacokinetic.
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PheKB’s main goals are to improve algorithm transportabil-

ity and validity across institutions,54 while achieving high

positive predictive values.
Level II evidence provides ADE phenotypes that met cri-

teria 3, and (2 and/or 4), but they have not been validated

across institutions. For instance, the Observational Medical
Outcomes Partnership (OMOP)55 has a library based on

systematic literature review of a number of health outcomes
of interest (HOIs) definitions to improve observational stud-
ies’ reproducibility. The OMOP also recognized that

Table 2 Sources for ADE-phenotyping

Source name Level of evidence Source description Terminologies and datatypes Integration into EHR

MedDRA58 Level III A unified standard terminology

for recording and reporting

adverse drug events

From higher to lower levels:

SOC, HLGT, HLT, PT, and

LLT

� Used in structured data or

unstructured clinical

narratives

CPT60 Level III A medical terminology to bill

outpatient and office

procedures

Category I, category II, and

category III codes

� Used in structured data or

unstructured clinical

narratives

ICD61 Level III An international diagnostic

classification standard codes

for clinical and research

purposes

Hierarchical comprehensive

classification of diseases,

signs, symptoms, and

procedures

� Used in structured data or

unstructured clinical

narratives

LOINC62 Level III A common language for identi-

fying health measurements,

observations, and

documents

Set of identifiers, names, and

codes. Mostly used for labo-

ratory tests concepts

� Used in structured data or

unstructured clinical

narratives

SNOMED CT63 Level III A multilingual clinical terminol-

ogy to address the require-

ment for effective HER

Hierarchical representation of

detailed clinical information

(e.g., top level concepts,

such as clinical finding,

procedure, and substance)

� Used in structured data or

unstructured clinical

narratives

RxNorm64 Level III A normalized naming system

for generic and branded

drugs that supports interop-

erability between clinical

systems

Normalized names and unique

identifiers for medicines and

drugs linked to their ingre-

dients, strength, and dose

forms

� Used in structured data or

unstructured clinical

narratives

CTCAE59 Level III A comprehensive, multimodality

grading system for reporting

ADEs of cancer treatment

AEs terms associated with 5-

point severity scale of ADE,

and mapped to MedDRA

LLTs to support standardiza-

tion of ADEs terms in HER

� Used in structured data or

unstructured clinical narratives

� Severity scale of ADEs pro-

vides additional evidence

The SIDER database

of drugs and side

effects57

Level II A computer-readable SE

resource/database mined

from FDA drug labels, con-

tains about 1,430 drugs,

5,868 SEs, and 139,756

drug-SE pairs.

Connects drugs to their

recorded ADEs terms, pro-

vides frequency information,

occurrence of ADEs, and

drug indications. ADEs are

mapped to MedDRA-

preferred terms

� Used in structured data or

unstructured clinical narratives

� Used for mapping drugs to

ADEs

UpToDate56 Level II An evidence-based, physician-

authored clinical decision

support tool

Synthesized medical informa-

tion, such as clinical guide-

lines, graded

recommendation, and drug

entries and interactions

� Used in structured data or

unstructured clinical narratives

� Evidence-based medical

information and drug interac-

tions assist in defining ADEs

� Up-to-date clinical guidelines

OMOP55 Level II Literature-based HOI defini-

tions library of conditions

that have relevant to drug

toxicities, medical signifi-

cance, and/or public health

ICD, CPT, SNOMED CT,

LOINC, diagnostic or thera-

peutic procedures, and labo-

ratory values

� Used in structured data or

unstructured clinical narratives

� Broad and narrow definitions

can be implemented directly

into EHR based on users’

needs

PheKB54 Level I A collaborative environment to

build and validate phenotyp-

ing algorithms

ICD, CPT, laboratories, medica-

tions, natural language proc-

essing, vital signs

� Used in structured data or

unstructured clinical narratives

� Comprehensive validated def-

initions and/or algorithms can

be implemented into EHR

based on users’ needs

AE, adverse event; ADEs, adverse drug effects; CPT, Current Procedural Terminology; CTCAE, Common Terminology Criteria for Adverse Events; EHR, elec-

tronic health record; HLGT, high-level group term; HLT, high-level term; HOI, health outcome of interest; ICD, International Classification of Diseases; LLT, low-

est level term; LOINC, Logical Observation Identifiers Names and Codes; MedDRA, Medical Dictionary for Regulatory Activities; OMOP, Observational Medical

Outcomes Partnership; PheKB, Phenotype Knowledgebase website; PT, preferred term; SEs, side effects; SIDER, database of drugs and side effects;

SNOMED CT, Systematized Nomenclature of Medicine; SOC, System Organ Class.
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literature has usually been inconsistent in defining and

reporting ADEs, and sometimes lacking details of the exact

codes and validations.65 For example, acute liver injury has

eight different definitions, such as laboratory-based versus

diagnostic procedures.
In addition to the OMOP HOI library, UpToDate is

another evidence-based physician-authored clinical guide-

line repository.56 It provides evidence-based and manually

curated clinical guidelines for ADEs. Although it does not

directly define the ADE using the EHR data, it certainly can

assist in defining ADEs. Furthermore, the Side Effect

Resource (SIDER)57 is also a reliable source for ADE

definitions.
Level III evidence refers to terminology and vocabularies

based data sources (criterion 4). For example, the medical

dictionary for regulatory activities (MedDRA) is a key data-

base for ADEs,58 and the other database include Common

Terminology Criteria for Adverse Events (CTCAE).59 Unlike

MedDRA, the CTCAE also contains the severity of ADEs.

Database integration. On the basis of these drug/DDI/ADE

databases, some integrated databases combine them

together, and form a complete dataset. The Drug Interac-

tion Knowledge Base (DIKB), an evidence-based observed

and predicted knowledge base, contains mechanisms and

PK DDI information for over 60 psychotropic and HMG-CoA

reductase inhibitors.66 A rule-based metabolic DDI predic-

tion was conducted with DIKB to determine the most opti-

mal set of predictions.67 Further, Ayvaz et al.68 constructed

an integrated potential DDI (PDDI) source by combining

clinical-oriented information sources, natural language

processing corpora, and bioinformatics/pharmacovigilance

information sources by analyzing the overlap between the

data sources and mapping drug entity to DrugBank ID. This

dataset can benefit NLP corpora and lead to a better syn-

thesis of PDDI knowledge. The merged data sources in the
integrated database are descripted in Table 3.

From the translational research perspective, there are

some limitations in these data sources. First, there are as

yet few means to integrate different databases conveniently

and economically. In PDDI database, DrugBank ID was used

for medication standardization. Additionally, OMOP Common
Data Model could be used to standardize the format and

content of the observational databases, including medica-

tions, ADEs, symptoms, and indications. However, a com-

plete solution for data integration is still unavailable. Second,

the DDI information in the databases is limited. Particularly,
information including the DDI type (e.g., additive/synergic,

pharmacokinetic/pharmacodynamic (PK/PD)), mechanism,

clinical impact and quantitative description should be included

and improved in the future data collection.

KNOWLEDGE DISCOVERY FOR DRUG INTERACTION

USING TEXT MINING TECHNOLOGIES

Literature-based knowledge discovery was pioneered by

Don R. Swanson in 198669 and had been widespread for

decades in the biomedical informatics domain. This tech-
nique bridges new relationships between existing knowl-

edge by exploring the co-occurrence of words or phrases

from different literature articles. Following this lead, many

Table 3 Summary of integrated database

Database name Data type in database Data sources

DIKB Mechanisms and PK DDIs information

with confidence

� Retrospective studies

� clinical trials

� metabolic inhibition identification and inhibition catalysis identification

� statements, reviews, and observational reports

� phenotyping definition, including MeSH, WordNet, and NCI Thesaurus

Merged PDDI Potential DDI a. 5 Clinically oriented information sources

• CredibleMeds

• VA NDF-RT

• ONC High Priority

• ONC Non-interruptive

• OSCAR

b. 4 Natural Language Processing Corpora

• DDI Corpus 2011

• DDI Corpus 2013

• PK DDI Corpus

• NLM CV DDI Corpus

c. 5 Bioinformatics/pharmacovigilance information sources

• KEGG DDI

• TWOSIDES

• DrugBank

• DIKB

• SemMedDB

DDI, drug-drug interaction; DIKB, Drug Interaction Knowledge Base; KEGG, Kyoto Encyclopedia of Genes and Genomes; MeSH, medical subject heading;

PDDI, potential drug-drug interaction; PK, pharmacokinetic.
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“open discovery” and “close discovery” methods were
developed to discover interesting associations among a
large set of data items. To distinguish open and close dis-
covery, we take the relationship between a disease and
treatments as an example, the open method can generate
a hypothesis to find the underlying pathological mecha-
nisms of a disease. It starts with a disease, discovers the
mechanisms of the disease from literatures, and finally
finds a drug that may interact with those mechanisms
(intermediates). Differently, a close discovery method can
verify and elaborate an initial hypothesis. Its searching pro-
cess starts simultaneously from a disease and a drug.
Their overlapping mechanisms (intermediates) can demon-
strate the relationship between a disease and a drug.70

Based on these two concepts, in the last decade, several
discovery systems were developed. Srinivasan presented
both open and close algorithms to automatically discover a
small set of interesting hypotheses from a suitable text col-
lection using medical subject heading (MeSH) terms in
Medline.71 Hristovski et al.72 combined the outputs of two
NLP systems to provide semantic prediction, which demon-
strated the improvement for literature-based knowledge dis-
covery. Tsuruoka & Tsujii73 developed a search engine for
Medline abstracts, called FACTA, which retrieves textual
evidence of associations between the query terms and the
concepts. Frijters et al.74 developed the CoPub discovery
tool to assess the significance of co-occurrence based on
the mutual information measure and mine the new relation-
ships between biomedical concepts. Finally, Yetisgen-Yildiz
& Pratt75 proposed an evaluation methodology allowing the
comparisons across different systems.

Although there have been many discovery methods devel-
oped, most of them often mined co-occurring entities from
free-text in documents or data fields. The co-occurrences
method has a critical drawback, because not all co-occurring
entities possess “meaningful” and “quality” relations. To
retrieve explicit facts from documents as efficiently as possi-
ble, text mining technologies facilitate quality discovery from
biomedical literature, EHR, or social media. Information
retrieval (IR) is the quality control process, which enables
the identification of relevant documents and provides the
quality of data resource for knowledge discovery. For exam-
ple, the DDI IR step identifies higher quality DDI articles
from PubMed.76 Information extraction (IE) is the task of
extracting information from unstructured text. The scope of
extractions can be as simple as the predefined entities, such
as the names of proteins, genes, as well as drugs, or can
be as complicated as the “true” associations between enti-
ties, such as drug-gene interactions or DDIs. Instead of co-
occurrence-based knowledge, those applications automati-
cally scrutinize the phase of generating quality information
and potentially empower extracted information into truly
novel hypotheses for open discovery or solid validations for
close discovery.

In this section, our review will focus on how text mining
technologies assist on the drug interaction discovery in three
aspects: (1) the manually curated corpus facilitates text anal-
ysis by providing syntactic and semantic pharmacological
knowledge for retrieving and extracting DDI; (2) the IR and
IE technologies help aggregate quality data extensively,

thereby providing the potential to perform hypothesis genera-
tions and validations; and (3) linking the disjointed sets of
facts from documents uncovers hidden links between drugs
and generates novel hypotheses.

Drug interaction corpora
Great text mining methods rely on well-developed corpora.
Corpora refers to manually annotated golden standard data.
In the DDI text mining domain, DDI corpora developed in
both DDI extraction challenge tasks in 2011 and 2013,77,78

have guided a great number of supervised DDI text mining
methodologies’ development. The annotation strategies in
corpus may differ subject to the purpose of text mining
tasks. There are three types of annotations in corpus: (1)
semantic annotation creates semantic labels for terminolo-
gies or relationships79,80; (2) syntactic annotation includes
structural makeup, part of speech tagging, and constituent
or dependency of parsing trees81; and (3) fragment annota-
tion characterizes the properties of scientific text in specific
measurements. Different from semantic and syntactic anno-
tations, it provides sufficient generality to transcend the sub-
ject area. Fragment annotation was first designed to
characterize text using five qualitative dimensions: focus,
polarity, certainty, evidence, and directionality.82

Although many corpora are available, only a few focus on
the topic of DDIs.77–80,83,84 The DDI Corpus 2011 and 2013
were built as reference standards for 2011 and 2013 DDI
Extraction Challenges, respectively.77–79 These two cor-
pora, consisting of 792 texts selected from the Drugbank
database and 233 Medline abstracts, were annotated with
pharmacological substances and DDI relationships, includ-
ing both PK and PD DDIs. The annotation schema includes
drug entities (e.g., drug, brand, chemical agents, and drug
groups) and DDI relationships (e.g., effect, mechanism,
advice, or interaction). Another two corpora, PK DDI Cor-
pus83 and NLM CV DDI Corpus,84 were built up using drug
product labels. The PK DDI corpus comprises 64 labels.
Two characteristics (type and role) are utilized to classify
drug entities, and two properties (observed effect and
experimental statement) are provided to model each PK
DDI relationship. The types of drugs are active ingredient,
drug product, or metabolite; and the roles of drugs are
object and precipitant. The relationship between two co-
administrated drugs is either positive or negative modality.
The stated qualitative experimental data can also be used
to identify drug interactions. NLM CV DDI Corpus of 180
cardiovascular drug product labels was developed, and
acted as a reference standard for PK PDDI text mining in
product labeling. The annotation schema contains drug
entities and DDI roles. Pharmacologic substances, includ-
ing drugs, drug classes, and other substances (e.g., food)
are annotated as entities. For the roles of drugs in the inter-
action, the schema from ref. 83 was reused (i.e., object
and precipitant for the role of interacting drugs or substan-
ces). In addition, the authors further categorized interac-
tions into “increase” and “decrease” classes. The final
corpus, called PK corpus,80 was developed in our group. It
was constructed to present four classes of PK abstracts:
(1) in vivo PK studies (n 5 56); (2) in vivo pharmacogenetic
studies (n 5 57); (3) in vivo DDI studies (n 5 218); and (4)
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in vitro DDI studies (n 5 210). A hierarchical three-level
annotation schema was proposed to annotate key terms,
drug interaction sentences, and drug interaction pairs.
Except for drug names, this PK corpus was different from
the other corpus, including enzyme, drug dosage, and PK
parameters with their values and units, mechanisms, and
action terms reflecting interactions are annotated. With
regard to the relationship, DDIs were not only annotated
based on their narrative descriptions, but also were judged
using their quantitative and qualitative evidences. The fold
change (FC) in PK parameters (e.g., FC >1.5 or FC <0.67
in AUC) or statistical measurement (e.g., P value< 0.05)
specifies the numeric rule to define DDI quantitatively. The
significance statement (e.g., significantly, moderately, or
probably) specifies the language expression pattern for the
DDI relationship qualitatively.

Other than the data recourses from biomedical literature
or drug labels, social media, such as blog, forum, or Twitter,
provide huge potential in the identification of ADEs and
DDIs.85 In the past few years, corpora obtained from social
media texts started emerging.86 A corpus of 10,822 tweets
by the Gonzalez laboratory was manually annotated for
mining Twitter for adverse drug reactions (ADRs).87 The
annotation mainly focuses on drug names and ADRs. Dif-
ferent from the annotations in biomedical literature or drug
labels, this corpus was sought to annotate not only the
presence or absence of drug names or ADRs, but also to
identify the span of expressions conveying individual ADRs.
In addition, another corpus, also created by the Gonzalez
laboratory, consists of 267,215 Twitter posts. In this corpus,
two sets of language models were created to encapsulate
“semantic properties” by presenting word tokens as dense
vectors and “n-gram sequences” by capturing sequential
patterns.88 Moreover, TwiMed is one of the most recent cor-
pus, which comprises 1,000 tweets and 1,000 PubMed
sentences.86 The annotations covered entities (drug, symp-
tom, and disease) and their relations (outcome-negative,
outcome-positive, and reason-to-use). Similar to fragment
annotation, their attributes for entities are further annotated
to provide their characteristics (polarity, person, modality,
exemplification, duration, severity, status, and sentiment).

In sum, all aforementioned corpora characterize different
aspects of DDI studies. DDI corpus focused on the distinc-
tion in drug type and DDI effect77,79; PK DDI corpus and
NLM CV DDI Corpus annotated package inserts as the
data sources and identified the roles of drugs in DDI rela-
tionships83,84; and the PK corpus further differentiated PK
DDI into in vivo and in vitro studies, and defines drug inter-
actions using experimental evidence.80 The corpora for
social media were annotated differently from those in litera-
ture. Two corpora, created by the Gonzalez laboratory,
were annotated in different scopes.87,88 One focused on
entity level and another focused on language models.
TwiMed not only annotated with both entity and relation lev-
els but also identifed the attributes for entities.86

Information retrieval and extraction for drug interaction
and drug-related knowledge
In order to promote DDI text mining, DDI-Extraction chal-
lenges organized in 2011 and 2013 aimed for developing the

text mining methodologies of the pharmacological substance
recognition and DDI detection.77,78 For the named entity rec-
ognition (NER) of pharmacological substances, the best
results were achieved by WBI_NER. This NER approach is
formulated as a sequence labeling task (IOB format). Using
domain-independent features from ChemSpot, Jochem, and
ChEBI ontology, linear-chain conditional random field model
was implemented to predict the sequences of name entities.
The second best method (NLM LHC) utilized dictionaries
from multiple biomedical resources, such as Drugbank, ATC
system, or MeSH headings. In this challenge, most
approaches can perform well on the recognition of generic
or brand names, but not drug-n category (substances not
approved for human use). The great variation and complexity
in naming convention lead to the difficulty in name recogni-
tion. Another focus in the DDI-Extraction 2011 challenge is
to identify true DDIs from all possible DDI pairs from the bio-
medical text in Medline abstracts and Drugbank. Among 10
participation computational algorithms, the best performance
(F-measure 5 0.657) was achieved by the system (WBI)
using an ensemble learning approach. Combined three dif-
ferent kernels (all-paths graph, shallow linguistic, and k-band
shortest path spectrum kernels) with a case-based reason-
ing called MOARA, a majority voting ensemble of construct-
ing machine learning methods was built for binary prediction.
The DDI Extraction 2011 concluded that approaches using
kernel-based methods achieved better performances than
the feature-based methods. In addition, most systems used
primarily syntactic information, but not much semantic infor-
mation. Different from the 2011 challenge, DDI Extraction
2013 not only aimed to detect DDI pairs, but also classified
them into one of the following four types: advice, effect,
mechanism, and interaction statement. In the 2013 chal-
lenge, FBK first achieved best performance and yielded an
F-score of 0.80 for DDI detection and an F-score of 0.65 for
DDI detection and classification. It applied a hybrid kernel-
based method and exploited the scope of negations and
semantic roles for filtering negative instances. The 2013
challenge concluded that the systems using nonlinear
kernel-based methods outperformed linear supporting vector
machine systems.

Other than DDI Corpus in previous two challenges, PK
corpus80 was also utilized for developing DDI extraction
tools. The extraction tasks were implemented in the in vivo
and in vitro DDI corpus separately using the approach with
all paths graph kernel. Interestingly, a huge discrepancy on
the performance was found between two sub-corpora in the
PK corpus. The reported F-measure of in vivo DDI corpus,
0.76, is much higher than that of in vitro DDI corpus (0.52).
The authors concluded that DDI representations in in vitro
PK studies were more diverse than those in in vivo PK
studies. It usually contains more drugs and PK parameters
to describe DDI evidences, and it compares their inhibition/
induction capability in a long sentence. Using the same
dataset (PK corpus), Zhang et al.89 presented a graphic
kernel-based approach to combine syntactic and semantic
information for extracting PK drug interactions. Compared
with the previous all paths graph kernel methods,80 this
new method further utilized semantic annotations from PK
corpus and the F-measures were improved from 75.91% to
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81.94% on the in vivo dataset and from 51.50% to 69.34%
on the in vitro dataset, respectively.

Learned from the previous works,80,89 clearly, the perfor-
mance of extracting PK DDI evidences would be varied if
their experiment methods were different. For achieving bet-
ter performances, it is important for a text mining system to
treat DDI evidences differently according to their study
types. In vitro studies investigate whether a drug is a sub-
strate, inhibitor, or inducer of metabolizing enzymes or
transporters; in vivo PK studies investigate the kinetics of
drug metabolism involved in absorption, distribution, metab-
olism, and excretion process, and clinical studies investi-
gate the clinical effects (i.e., efficacy or side effects of
DDIs). Recent work by Kolchinsky et al.76 classified the in
vitro and in vivo PK DDI evidences. More recently, Wu
et al.90 developed a suite of text mining tools to explore
and distinguish three different types of DDI evidences,
namely in vitro PK, in vivo PK, and clinical PD. A large-
scale mining from 25 million abstracts in PubMed (1975–
2015) was accomplished to retrieve DDI relevant abstracts
and identify DDI pairs for each study. The result shows that
986 DDI pairs with all three types of evidences have their
clinical usages. The 2,157 DIDs with known clinical PK/PD
DDI evidences and 13,012 DDIs with only clinical PD evi-
dence have enormous research potentials. This result
pointed out knowledge gaps and potentially gives an impe-
tus to translational drug interaction research.

Besides data mining using the postmarketing surveillance
data or text mining using the scientific literature, social
media provide different promising resources for identifying
DDIs and ADEs. Social media databases are based on
direct experiences from drug users. Thus, they provide up-
to-date and timely messages conveying drug-related infor-
mation.91 Due to the unique issues of social media content,
including credibility, uniqueness, frequency, and salience of
the data,92 the existing IR and IE techniques for scientific
literature may not be effective for social media data. To this
end, many works were developed in the past few years.
Sarker & Gonzalez93 focused on the classification of sen-
tences to detect ADR mentions utilizing features, including
n-gram, Unified Medical Language System semantic types,
Synset expansion, etc. By the same authors, the distribu-
tion word representations were generated to capture differ-
ent types of semantic information and an n-gram sequential
language model was used to capture sequential word
occurrence probability. Utilizing both information facilitates
for the text classification and text normalization for drug-
related knowledge.88 Except for the commonly used fea-
tures extracted from narratives, sentiment analysis features
is valuable for improving the performance of detection. For
information extraction, Carbonell et al.94 analyzed the fea-
tures using time series analysis, co-evaluated the mentions
of drugs in Twitter within intervals of 30 minutes, and
explored the potential drug effects and drug interactions.
Another tool called ADRMine utilized a variety of features,
including a new feature for modeling words’ semantic simi-
larities.95 Using conditional random fields classifier, the sim-
ilarities are modeled by clustering words based on word
representation vectors (embeddings) generated from unla-
beled user posts in social media. This work proved that

word cluster features can significantly improve extraction
performance for mining ADR mentions.

Information discovery for novel drug interactions and
ADEs
Information retrieval and extraction for drug interaction evi-
dence from biomedical literature lend an impetus to the
generation of “meaningful” and “quality” evidences, which
helps on aggregating DDIs and improving the coverage of
DDI databases. However, an overlapping analysis between
the Drugbank and Micromedex showed that there are
around 25% of disagreements.96 The lack of scientific evi-
dences complicates the process of verifying the discrepan-
cies. Therefore, to explore the mechanism behind drug
interaction, it is crucial to supply the necessary scientific
evidence to validate DDIs.

To discover novel drug interactions and explore their
mechanisms, knowledge discovery strategy had been widely
used. Both Tari et al.97 and Percha et al.98 are two typical
examples of the close discovery method. Tari et al.97 devel-
oped a method combining text mining and automated rea-
soning to infer DDIs with the support of enzyme and
biological domain knowledge. By representing the general
knowledge related to the metabolism (drug-gene) and biolog-
ical interaction (protein-protein) with the logic rules, DDIs
were predicted in the reasoning phase. In a different paper,
Percha et al.98 proposed a novel approach to predict novel
DDIs by aggregating gene-drug interactions, which are
extracted via the rule-based method. Using the established
DDIs as the training set, a supervised classifier was trained
to score potential DDIs based on the normalized drug-gene
assertions extracted from the literature that relate two drugs
to a gene product. More significantly, a semantic network
built based on the extracted drug-gene assertions were
implemented to explain the pharmacological mechanisms for
newly predicted DDIs. Different from the Tari et al.97 and
Percha et al.98 methods, Duke et al.10 proposed a literature
discovery approach combined with analysis of EMRs and
predicted 13,197 CYP-related DDIs. Based on literature data
on in vitro drug metabolism and inhibitory potency, this trans-
lational approach finally identified five novel drug interactions
that synergistically increased the risk of myopathy.

Other than DDI prediction, identifying ADEs caused by
DDIs using text mining approaches draws more and more
attention. Recent approaches utilized the features that drug
interaction with the same gene targets may lead to ADEs
and drugs with similar structures for ADE predictions. In
this fashion, Raja et al.99 proposed a literature-mining
framework to enhance the prediction of DDIs and ADE
types through integrating drug-gene interactions. Using the
DDI features from DDI corpus, a supervised learning cate-
gorized ADEs into four types: adverse effect, effect at
molecular level, effect related to PKs, and DDI without
known ADEs. This tool was applied to predict DDIs and
ADE types related to cutaneous diseases and successfully
identify promising new ADEs.

Interestingly, an example of Twitter applicability in knowl-
edge discovery for drug interactions is proposed by Hamed
et al.100 This tool, called HashPairMiner, majorly used
hashtags in computational analysis to discover novel DDI
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pairs. Based on the computation of associations for co-

occurred keywords in the same tweets and associations

between keywords and hashtags that also appeared in the

same tweet, a new network mining algorithm was created

to detect connections between pairs of drugs. This work

demonstrated how hashtags can connect information and

synthesize new knowledge.

CONCLUSION

In this article, we review three essential computation and

informatics approaches for the translational drug interaction

research. First, we provide an overview for computational

models for mining drug interaction signals from postmarket-

ing surveillance databases. Second, we present PK models

for IVIVE in DDI prediction. We particularly emphasize the

value of fm in the DDI prediction. We also review and sum-

marize available DDI related databases, ADE-phenotyping

sources, and integrated DDI databases. Third, we show

diverse text mining techniques to discover ADEs and drug

interactions from literatures and social media. Signals identi-

fied by each approach can serve as potential drug interaction

hypotheses. Although significant progresses and achieve-

ments have been made for each of these approaches sepa-

rately, researchers rarely utilize them jointly for drug

interaction hypothesis generation and knowledge discovery.

In the real world, these three approaches are naturally com-

plementary to each other. On one hand, drug interactions

shall or may initially manifest in clinical practices and

reported to the clinical databases, and consequently can be

detected by the postmarketing surveillance data mining. On

the other hand, in vitro experiments together with in vitro in

vivo models are well established to evaluate drug interaction

PK evidence and validate their mechanisms. Nevertheless,

findings of clinical drug interaction signals and in vitro drug

interaction mechanisms are published in the research com-

munity. Effective literature-based knowledge discovery

approaches will enhance drug interaction research by provid-

ing both clinical and in vitro drug interaction knowledge, or

identify DDI knowledge gaps. This review shall help scien-

tists to integrate all these translational biomedical informatics

analyses for an improved translational drug interaction

research. Most importantly, we hope this review will be used

to stimulate novel and creative translational biomedical infor-

matics methods for the drug interaction research.
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