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Abstract

The mosquitoes Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) and Culex quinquefas-

ciatus Say, 1823 (Diptera: Culicidae) are two major vectors of arthropod-borne pathogens in

Grenada, West Indies. As conventional vector control methods present many challenges,

alternatives are urgently needed. Manipulation of mosquito microbiota is emerging as a field

for the development of vector control strategies. Critical to this vector control approach is

knowledge of the microbiota of these mosquitoes and finding candidate microorganisms

that are common to the vectors with properties that could be used in microbiota modification

studies. Results showed that bacteria genera including Asaia, Escherichia, Pantoea, Pseu-

domonas, and Serratia are common to both major arboviral vectors in Grenada and have

previously been shown to be good candidates for transgenetic studies. Also, for the first

time, the presence of Grenada mosquito rhabdovirus 1 is reported in C. quinquefasciatus.

Introduction

The mosquito species Aedes aegypti. and Culex quinquefasciatus are a public health concern

due to their ability to be vectors of many arboviruses. Aedes aegypti, for example, transmits chi-

kungunya virus, Zika virus, yellow fever virus, and dengue virus, one of the most rapidly

spreading vector-borne pathogens in the world with 2.5 billion people at risk of infection and

approximately 500,000 people developing severe dengue disease annually [1]. Culex quinque-
fasciatus, on the other hand, is capable of transmitting arboviruses like West Nile virus

(WNV), the leading cause of mosquito-borne disease in the continental United States [2], as

well as nematodes affecting human and animal health (lymphatic filariasis, dirofilariasis etc.)

[3–5]. Currently, personal protective measures and control of mosquito populations are the

only available strategies to prevent arboviral diseases because there are no therapeutic treat-

ments for arboviruses and vaccines are limited. Organizations are constantly facing challenges
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with the use of conventional vector control methods because of sustainability, organizational

complexity [6], and the rise of insecticide resistance [7–9].

Manipulation of mosquito microbiota is emerging as a promising method for the develop-

ment of vector control strategies. Some of these strategies include: 1) The introduction of micro-

organisms that interfere with the pathogens within the vector. Examples of this strategy include

the use of entomopathogenic fungi such as Beauveria bassiana and Beauveria brongniartii [10],

and the alpha-proteobacteria Wolbachia [11–13]. Wolbachia is a natural intracellular bacterial

symbiont maternally transmitted to offspring that can induce cytoplasmic incompatibility,

where mating between Wolbachia-infected males and uninfected females yields eggs that fail to

develop. Also certain Wolbachia strains may cause a decrease in the vectorial capacity by inter-

fering with vector competence or by shortening vector lifespan [14]. 2) Another vector control

strategy is the use of symbiotic bacteria that are transformed to express effector molecules for

use in paratransgenic approaches. For example, Metarhizium anisopliae has been genetically

transformed to express the anti-Plasmodium effector molecules SM1 and scorpine, which are

both reported to interfere with Plasmodium falciparum in Anopheles mosquitoes [15].

Aedes aegypti and C. quinquefasciatus are the two predominant anthroponotic mosquitoes

in Grenada, West Indies, [16]. Aedes aegypti transmits dengue, Zika, and chikungunya locally.

No major human pathogens transmitted by C. quinquefasciatus have been reported in Gre-

nada, but the mosquito is capable of transmitting several arboviruses that occur in other Carib-

bean islands (e.g., WNV, St. Louis Encephalitis virus) or in neighboring mainland South

American countries (e.g., Wuchereria bancrofti) [17]. The microbial composition of A. aegypti
and C. quinquefasciatus mosquitoes has been previously studied [18,19,20–27,28–36]. How-

ever, several arthropod-borne diseases that are endemic to the mainland Americas are not

believed to be established in Caribbean islands (e.g. Mayaro virus, Oropouche virus, Wucher-
eria) [17,37–40]. While variation in climate and the makeup and behavior of local mosquito

species may explain this in part, regional differences in local mosquito microbiota may also

contribute to differences in their competence as vectors of pathogens of human and animal

interest [6,33,41]. Metagenomic analyses have recently been used to identify novel arboviruses

in Caribbean mosquitoes [19,42]; little else is known about these viruses. It is thus important

to characterize the microbiome of mosquitoes on a regional level to identify heretofore

unknown organisms, including agents that can be studied further for their effects on vector

competence and their use in vector control studies. Through the use of metagenomics, this

study will shed some light on: 1) the identification and determination of the relative estimated

abundance (REA) of microbiota for these two arboviral vectors; 2) the identification of micro-

biota similarities and unique microbiota elements of these two mosquitos to provide potential

targets for developing mosquito/arbovirus control strategies; and 3) the identification of

microorganisms not yet known to occur in mosquitoes in Grenada.

Material and methods

Mosquito collection

Three hundred A. aegypti mosquitoes and 300 C. quinquefasciatus were randomly selected out

of 1,152 A. aegypti and 3,000 C. quinquefasciatus collected between January 2018 and Decem-

ber 2018 from six semi-rural locations in St. George Parish (Fig 1), the most populated parish

in Grenada (12˚15’46’’ N 61˚36’15’’ W). The six collection sites were within an approximately

five square-mile area and were chosen for their proximity to the capital city (which contains

the main seaport), the airport, most major marinas, and for their high density of people. Traps

(Biogents Sentinel, Biogents, Regensburg, Germany) were baited with octenol and yeast-based

carbon dioxide attractants, as previously described [43]. In brief, at each of the six sites, one
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trap was deployed twice weekly within three meters of a house and was collected after 24

hours. Mosquitoes were dispatched at −80˚C and identified to species by morphological analy-

sis. Identification keys in Darsie and Ward (2013) [44] were used to discriminate between spe-

cies known to occur in Grenada based on the Walter Reed Biosystematics Unit (2019) [45].

Mosquitoes were placed in RNAlater1 (Sigma Aldrich, St. Louis, Missouri, USA) after identi-

fication for later processing. Mosquito heads were removed before RNA extraction to prevent

PCR inhibition [46]; wings and legs were also removed to reduce host (mosquito) RNA. No

specific permissions were required for this study since it was carried out in private lands. The

study did not involve endangered or protected species. No IACUC was required for the use of

mosquitoes in this study.

Total RNA extraction and RNA-Seq

RNA extraction was performed in batches of 30 mosquitoes at a time (ten pools) using TRIzol

(ThermoFisher, Carlsbad, California, USA). Invitrogen™ Phasemaker™ Tubes (ThermoFisher)

were used for the phase separation. RNA was DNase-treated using TURBO DNA-free™ (Ther-

moFisher) and RNA quality evaluated utilizing an Agilent 2100 Bioanalyzer (Agilent, Santa

Clara, California, USA) as previously described [48]. All sub-pools were pooled again for

library construction, which was performed using the NuGEN Tecan universal RNA sequenc-

ing reagents as recommended by the manufacturer.

The metagenomic analysis flow used in this study can be found in Fig 2. Briefly, shotgun

metagenomic sequencing was run using the Illumina HiSeq 1500 for deep sequencing. Raw

fastq files were assessed for quality using Illumina FastQC version 0.11.8. Trimming and qual-

ity filtering of reads was performed using Atropos (https://omictools.com/atropos-tool),

removing Illumina universal adaptors, reads with base calls below Q20, and reads with a length

less than 35 bp. Additional host read removal was performed in silico using Bowtie2 (v.

Fig 1. Map of collection sites in St. George parish-Grenada. Six sites were used during the year of collecting mosquitoes [47].

https://doi.org/10.1371/journal.pone.0231047.g001
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2.3.4.3). Reads were mapped to their respective hosts, either the A. aegypti reference genome,

assembly AaegL5, available at https://www.vectorbase.org/organisms/aedes-aegypti or the Cx.

quinquefasciatus reference genome, assembly GCA_000209185.1 available at https://www.ebi.

ac.uk/ena/data/view/GCA_000209185.1, using end-to-end read alignment. These non-mos-

quito reads were analyzed using CCmetagen (https://www.biorxiv.org/content/10.1101/

641332v1) which uses the June 2019 version of the NCBI nt database excluding all taxids for

environmental eukaryotes and prokaryotes, unclassified sequences, and artificial sequences in

order to avoid misclassification based on contaminants. CCMetagen uses a weighted mapping

approach based on the kma aligner in order to improve taxonomic classification of regions

that are highly similar across microbial genomes. Abundance of the microorganisms, after

metagenomic analysis, is expressed as the number of nucleotides mapped to the reference, nor-

malized by the length of the reference in order to correct for differences in genome size. The

relative estimated abundance (REA) reflects the percentage of the total abundance. Metage-

nomic data for Aedes aegypti and Culex quinquefasciatus is deposited in https://www.ncib.nlm.

nih.gov/sra/PRJNA564787.

RT-PCR verification

Approximately 200 ng of total RNA per pool (ten sub-pools) was reverse transcribed using a

High-Capacity cDNA Reverse Transcription Kit (ThermoFisher). RT-PCR conducted on the

cDNA was produced using previously published specific primers (S1 Table). PCR amplicons

of expected size were extracted from gels using the QIAquick Gel Extraction Kit (QIAgen, Hil-

den, Germany) following the manufacturer’s protocol. Amplicons were sent to the Molecular

Cloning Lab, San Francisco, California (https://www.mclab.com/) for direct Sanger sequenc-

ing. Raw sequence data were manually edited using Chromas 2.6.5 software and then com-

pared with the sequence database using the NIH’s Basic Local Alignment Search Tool

(BLAST). Sequences of microorganisms were aligned with Clustal Omega (https://www.ebi.ac.

uk/Tools/msa/clustalo/) to obtain a consensus sequence. Primers used in this project are

included in S1 Table [49–51].

Isolation of microorganisms and taxonomic assignment

Freshly collected A. aegypti and C. quinquefasciatus were surface cleaned and then dissected to

obtain the salivary glands and midguts. Mosquitoes were serially rinsed in sterile phosphate-

buffered saline (PBS), followed by ethanol (70%), and finally rinsed three times in PBS. Ali-

quots of 100 μl from the last PBS washes were plated on blood agar plates as control groups of

the surface cleaning process. Mosquitoes were dissected under a microscope, and salivary

glands and midguts were collected in sterile PBS and macerated with a pestle. An aliquot of

100 μl was transferred to blood agar plates and incubated at 28˚C for 24–48 h, followed by

Fig 2. Metagenomic data analysis flow chart.

https://doi.org/10.1371/journal.pone.0231047.g002
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DNA isolation of individual colonies using the Qiagen DNeasy Blood and Tissue kit. Universal

bacterial 16s rRNA primers (see S1 Table) were used to amplify a 465 bp product [49] by PCR.

Amplicons of the expected size were purified using the QIAquick Gel Extraction Kit (Qiagen)

and Sanger-sequenced. Editing and assignment of a bacterial taxonomic hierarchy was done as

described above. Isolates were stored as glycerol stocks at -80˚C.

Results

The metagenomic analysis of both A. aegypti and C. quinquefasciatus in Grenada showed a

microbiome composed primarily of bacteria (75.22% and 96.42% REA, respectively) (Table 1,

S1A/Aedes Fig, S1B/Culex Fig).

The phylum Proteobacteria dominated the bacteria in both mosquitoes (81.28% REA in A.

aegypti and 94.92% in C. quinquefasciatus) (Table 1, S2A1/Aedes Fig, S2B1/Culex Fig). Of the

Proteobacteria, Escherichia (64.52% REA), a Gammaproteobacteria belonging to the Entero-
bacteriaceae family was predominant in Aedes. In Culex, the genera Wolbachia (62.79% REA),

an Alphaproteobacteria belonging to the Anaplasmataceae family was the predominant bacte-

ria, followed by Escherichia (11.15% REA) (S2A2–S2A4/Aedes Fig, S2B2–S2B4/Culex Fig).

Common bacteria found in both mosquitoes included the genera Escherichia, Actinomyces,
Zymobacter, Spironema, Carnimonas, Acinetobacter, Halotalea, Pantoea, Leuconoctoc, Pseudo-
monas, Asaia, Stenotrophomonas, Xanthomonas, and Serratia. Actinomyces was the most abun-

dant bacteria in both mosquitoes after Escherichia (Table 1). Unique to Culex were the genera

Wolbachia, Arcobacter, Aeromonas, Burkholderia, Holospora, Salmonella, Erwinia, Anaplasma,

Table 1. Aedes aegypti and Culex quinquefasciatus common microbiota in Grenada (Relative estimated abundance).

Organism Aedes Culex
Bacteria 75.22 96.42

Phylum Class Family Genus

Proteo-bacteria 81.28 94.92

Gamma-proteobacteria Enterobacteriaceae Escherichia 64.52 11.15

Enterobacteriaceae Serratia 8.28 0.01

Halomonadaceae Zymobacter 1.66 1.50

Pseudomonadaceae Pseudomonas 1.03 0.02

Xanthomonadaceae Stenotrophomonas 0.66 0.01

Moraxellaceae Acinetobacter 0.52 0.14

Halomonadaceae Carnimonas 0.48 0.45

Halomonadaceae Halotalea 0.12 0.09

Erwiniaceae Pantoea 0.09 0.05

Xanthomonadaceae Xanthomonas 0.07 0.01

Alpha-proteobacteria Acetobacteriaceae Asaia 0.22 0.02

Actino-bacteria 16.7 2.81

Actinobacteria Actinomycetaceae Actinomyces 16.7 2.81

Spirochaetes 1.54 1.94

Spirochaetia Spirochaetaceae Spironema 0.94 1.18

Firmicutes 0.28 0.26

Bacilli Leuconostocaceae Leuconostoc 0.1 0.02

Fungi 0.19 0.10
Parasite 0.08 1.89
Virus 24.13 1.58

https://doi.org/10.1371/journal.pone.0231047.t001
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and Fructobacillus. The bacteria genera Pseudoxanthomonas and Halomonas were unique to

Aedes mosquitoes (S2A4/Aedes Fig,S2B4/Culex Fig).

The genus Asaia which was present in the metagenomic analysis of both Aedes and Culex,

has unique features such as presence in organs of female and male mosquitoes and vertical and

horizontal transmission. These characteristics lead to the possibility of introducing it as a

robust candidate for vector control via paratransgenesis. Because it is vital to be able to culture

bacteria for paratransgenic approaches, this bacterium was further tested for culturability and

location in the vector [52]. Asaia was isolated by simple routine culture methods from both

Aedes and Culex. Culture of the salivary glands and midguts of individual mosquitoes resulted

in the isolation of Asaia from both the salivary glands and midguts of Aedes, and only from the

guts of Culex.

A large number of reads were unclassified at the genera level for the fungi and the parasites.

The fungi kingdom was only 0.19% and 0.1% REA for Aedes and Culex respectively. The fam-

ily Sclerotiniaceae was common to both mosquitoes (7.75% REA in Aedes and 12.8% in Culex)

and dominated in Culex, while the family Aspergillaceae (44.6%) was dominant in Aedes
(S3A1–S3A2/Aedes Fig,S3B1 and S3B2/Culex Fig).

The parasites were also very rare with 0.08% in Aedes, and 1.86% REA in Culex with Trypa-
nosomatidae as the dominant family in Culex and the Albuginaceae and Lecudinidae families

dominant in Aedes (S4A1 and S4A2/Aedes Fig,S4B1 and S4B2/Culex Fig). Common to both

mosquitoes was the genus Albugo.

Subsequent RT-PCR assays were performed on ten sub-pools of C. quinquefasciatus mos-

quitoes in order to confirm the presence of the trypanostomatids detected in the metage-

nomics analysis. All primers and references are listed in S1 Table. Amplicons of the correct

size were produced in four of the ten sub-pool PCRs (S5 Fig). Three Sanger-sequenced ampli-

cons had identical sequences to each other while the fourth failed to sequence. The best spe-

cies-level match was Paratrypanosoma confusum, a recently characterized trypanostomatid

that is likely insect-specific (identity: 99.7% to GenBank accession number KF963538.1) [53].

The dominant viruses in Aedes were described in previous publication [47]. Due to the lim-

itations in the databases presently available, a large amount of reads for viruses from the meta-

genomic analysis remained un-classified, but for Culex, the Circoviridae (33.41% REA) family,

particularly the genus Circovirus was the most dominant. The next most abundant family in

Culex was Rhabdoviridae, dominated specifically by Grenada mosquito rhabdovirus 1. Finally,

the third most abundant virus family for Culex was Flaviviridae dominated by Culex flavivirus

(S6A1 and S6A2/Aedes Fig,S6B1 and S6B2/Culex Fig).

RT-PCR using hemi-nested pan-flavivirus primers produced amplicons of the expected size

in nine of ten sub-pools (S1 Table, S7 Fig). Sanger sequencing of two of the amplicons con-

firmed infection with Culex flavivirus (identities: 98.8% and 99.2% to GenBank accession

number MH719098.1), while the other seven amplicons produced overlapping reads, suggest-

ing a mixed infection.

Two viruses with unknown families were also detected in Culex: Culex phasma-like virus

and Terena virus.

Discussion

The understanding of an organism can no longer be assessed in isolation, but rather needs to

be viewed as a complex that includes its community of associated microorganisms and their

interactions [27]. With this in mind, our study goals were to identify and compare the micro-

biota of two important vectors of mosquito-borne pathogens in Grenada, Aedes aegypti and

Culex quinquefasciatus. Studies on the role of microbial communities in the mosquito biology
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and pathogen interference has led to the development of new vector control approaches based

on microbiota modifications [54]. It has also been shown that environmental factors influence

the microbial composition of breeding sites and food resources (plant materials, water sources,

blood) [23,27,55] that become part of the adult mosquitoes’ microbiome. Similarly, the micro-

biome for a given mosquito species can differ based upon geography and parental lineage

[6,33,41]. Thus, it is important that regional studies are conducted, as microbiome region-spe-

cific vector control approaches may be required. Our results could lead to future studies on the

use of these organisms in mosquito control projects in Grenada.

Our results were similar to several other studies [6,33,41], despite differences in techniques

used for identification and characterization of microbiota. For instance, microbiota in Grena-

dian mosquitoes is dominated by bacteria, particularly those associated with the gut, an obser-

vation confirmed in other studies [56]. In Aedes aegypti adult mosquito for example,

Proteobacteria, Bacteroides, Firmicutes, and Actinobacteria are the phyla that contain more

than 99% of the total microbiota [29]. Among these, members of the families: Enterobacteria-
ceae, Erwiniaceae, Yersiniaceae, Acetobacteraceae, Enterococcacea, and Bacillaceae are the

most-frequently described bacteria from the gut of adult Aedes spp. (reviewed in [6]).

Numerous efforts have been made to directly modify the mosquito genome in order to

limit their ability to transmit pathogens, but there are biological and logistical limitations to

overcome and public concerns about safety that must be addressed before these mosquitoes

are introduced into the wild population universally [52,57–60]. An alternative approach to

manipulating the mosquito genome is the use of microbe symbionts of the mosquito. Para-

transgenesis has emerged as a more suitable approach for vector control based on the use of

symbiotic bacteria to deliver effector molecules to wild vectors [61]. An understanding of mos-

quito microbiota is critical for a paratransgenic system approach and includes: 1) the identifi-

cation of microorganisms that are well established in mosquitoes, 2) are cultivable, 3) are

amenable to genetic manipulation, and 4) can be transmitted to the next generation to propa-

gate the desired traits [61–65]. Furthermore, the chosen bacteria should be capable of coloniz-

ing a wide variety of mosquito species so that they can be deployed in different species,

reducing the need of producing different transgenic mosquitoes for particular environment

[52,60,66]. Among bacteria identified in this study, Pantoea, Pseudomonas, and Serratia have

been put forward as potential candidates for paratransgenic modifications for vector control

strategies [29]. Another candidate for paratransgenesis is Escherichia coli, which is not only

one of the most abundant organisms in both Aedes and Culex from Grenada, but also are easy

to genetically manipulate, and are culturable. Some studies have already used E. coli in para-

transgenesis systems [60,67]. Unfortunately, it also has been shown that these constructs of E.

coli disappear quickly from the midgut of some mosquitoes which may make them non-suit-

able for the use in paratransgenic interventions [60]. Some of these symbiotic bacteria may

play a critical role in the mosquitoes’ survival [68], and hence, further studies are needed to

determine the effect of these bacteria on the two very important populations of Aedes and

Culex mosquitoes.

Other common bacteria found in our study, in the genus Asaia, have been found to have

permanent association with mosquitoes and are able to quickly colonize tissue in several mos-

quito species including A. aegypti and mosquitoes from the C. pipiens complex [52]. Asaia bac-

teria can be cultured and genetically manipulated. Furthermore, they can be transmitted from

males to females during mating [61,68,69].

A potential problem with the use of Asaia in mosquito control includes Asaia interference

with the vertical transmission of Wolbachia [27], a bacteria of great importance in mosquito

control. According to the literature, co-colonization of the mosquito with Wolbachia and

Asaia, restricts Asaia to the gut [6,70]. However, Asaia is able to colonize reproductive organs
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and salivary glands in species uninfected by Wolbachia such as A. aegypti (reviewed in [27]).

The exclusion pattern observed between Wolbachia and Asaia is also found in A. albopictus
and C. quinquefasciatus naturally infected by both bacteria. [70]. Most studies focus on the

microbiota of the gut because of its direct implications with mosquito vector biology [71], so

we decided to confirm the location of Asaia in Aedes and Culex. Asaia reads were found in

both Aedes and Culex mosquitoes using metagenomics. In agreement with published observa-

tions [70,72], Asaia from individual mosquitoes was cultured from all A. aegypti from both the

salivary gland and gut, but only from the guts of C. quinquefasciatus. These observations sug-

gest competition between the Wolbachia and Asaia for colonization outside the gut but con-

firm its presence in the guts of both mosquitoes. Therefore, Asaia may be a promising

candidate for the control of Aedes and Culex, as reviewed in [6], and confirmed here. Further

studies will be required to establish the suitability of Asaia as a candidate paratransgenetic

organism.

Fungi can also be used in paratransgenic processes [73]. In our study, we found a common

fungus belonging to the Sclerotinaceae family which was present in both mosquito populations.

Many species in this family are plant pathogens which do not affect insects, and therefore

make them unsuitable for paratransgenic techniques.

The presence of some bacteria found in this study, like Serratia (in both mosquito genera)

as well as Wolbachia (in Culex) are known to provide protective effects from pathogen infec-

tions, particularly arboviruses [29,74–78]. Reports on pathogen blocking by Wolbachia mainly

reflect studies with dengue virus, but there is also evidence of pathogen blocking of other med-

ically important, positive, single-stranded RNA viruses such as Zika, yellow fever, and chikun-

gunya [79–82].

Wolbachia is an intracellular endosymbiont naturally present in mosquitoes such as A.

albopictus, C. pipiens, and C. quinquefaciatus, but is not thought to be present in Anopheles
species or A. aegypti [83,84]. Recently, different Wolbachia strains were artificially introduced

into A. aegypti (wMelPop-CLA and wMel from Drosophila [85,86], wAlbB from A. albopictus
[87], and wMelwAlbB [88]) where they formed stable infections. In Grenada, C. quinquefascia-
tus was found to have an abundant population of Wolbachia among their bacterial microbiota

(62.79% REA) while the A. aegypti population was not found to carry Wolbachia. This is con-

sistent with other studies in which A. aegypti is rarely, if ever, infected with Wolbachia natu-

rally, whereas C. quinquefasciatus is infected throughout its range and in most individual

mosquitoes tested [89–91].

Serratia odorifera, a species of Serratia found in both Aedes and Culex in this study. Serratia
secretes SmEnhancin, a protein that cleaves off membrane-bound mucins and weakens the

peritrophic matrix favoring viral dissemination out of the mosquito midgut, and is thus able to

enhance DENV-2 susceptibility in the mosquito [74,92]. Serratia-positive mosquitoes were

obtained from DENV endemic regions, while Serratia-negative mosquitoes were caught in

non-DENV-endemic regions supporting the hypothesis that microbiota composition may

contribute to the observed differences in vector competence across A. aegypti populations

[93].

A common parasite found in this study was Albugo, a common plant-pathogen known as

white blister rust. Also, of interest is that Ascogregarina was among the parasites found in

Aedes. Ascogregarina culicis is a common gregarine parasite of A. aegypti [94]. The sporozoites

of these parasites invade the midgut epithelial cells and develop intracellularly and extracellu-

larly in the gut to complete their life cycles. The midgut is also the primary site for virus repli-

cation in the vector mosquitoes. In previous studies it was found that Ascogregarina culicis
may have an important role in the maintenance of chikungunya virus during the inter-epi-

demic period [94].
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The main virus that colonizes Aedes aegypti in Grenada is the insect-specific virus belonging

to the Phasivirus genus, Phasi charoen-like virus [47]. In Culex, a very large number of unclassi-

fied viruses exist. Of those identified, the Circoviridae family was the most abundant, dominated

by the animal virus Circovirus, whose natural hosts are pigeons, ducks, and pigs [95–97].

The second most abundant viral family was Rhabdoviridae, specifically the Grenada mos-

quito rhabdovirus 1, a virus first described from a pool of female Deinocerites spp. mosquitoes

collected in St. John Parish, Grenada, W.I. in March 2015 [42]. To our knowledge this is the

first report of this virus in Culex spp. Recent publication by Shi et al. (2019) [98] reported a

novel virus, the Guadeloupe Culex rhabdovirus in C. quinquefasciatus that has a 99.36% iden-

tity to the previously reported Grenada mosquito rhabdovirus 1 and the one reported in this

study.

The third dominant virus was the insect-specific Culex flavivirus (CxFV). CxFV strains

have been detected from different Culex sp. mosquitoes including C. pipiens, C. quinquefascia-
tus, C. coronator and others, in many parts of the world [99–107]. Different strains of CxFV

have been characterized in the literature [107]. CxFV in natural mosquito populations is main-

tained by vertical transmission [108].Though one study suggested a positive association

between infection with CxFV and WNV [102], other studies found no effect of CxFV on

WNV replication, infection, dissemination, or transmission in C. quinquefasciatus, as well as

no significant correlation between CxFV and WNV infection rates throughout the United

States [109,110].

Conclusions

Our study describes the composition of microbial communities in two common mosquito

genera in Grenada, West Indies. that are involved in the transmission of human pathogens.

We have identified few common bacteria among the two arboviral-vectors that may be used in

mosquito control strategies. The results highlight the importance of these kind of studies in

identifying targets for the development of alternative vector control approaches based on

microbiota modification. Future studies are warranted to determine the impact of the organ-

isms found here on the growth and vectorial capacity of the mosquitoes, as well as their feasi-

bility for transgenesis or other mosquito control applications.
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(TIF)
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103. Calzolari M, Zé-Zé L, Růžek D, Vázquez A, Jeffries C, Defilippo F, et al. Detection of mosquito-only fla-

viviruses in Europe. J Gen Virol. 2012. https://doi.org/10.1099/vir.0.040485–0
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