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Aims Patients with atrial fibrillation (AF) have a higher risk of ischaemic stroke and death. While anticoagulants are effective at 
reducing these risks, they increase the risk of bleeding. Current clinical risk scores only perform modestly in predicting 
adverse outcomes, especially for the outcome of death. We aimed to test the multi-label gradient boosting decision tree 
(ML-GBDT) model in predicting risks for adverse outcomes in a prospective global AF registry.

Methods 
and results

We studied patients from phase II/III of the Global Registry on Long-Term Oral Anti-Thrombotic Treatment in Patients with 
Atrial Fibrillation registry between 2011 and 2020. The outcomes were all-cause death, ischaemic stroke, and major bleeding 
within 1 year following the AF. We trained the ML-GBDT model and compared its discrimination with the clinical scores in 
predicting patient outcomes. A total of 25 656 patients were included [mean age 70.3 years (SD 10.3); 44.8% female]. Within 
1 year after AF, ischaemic stroke occurred in 215 (0.8%), major bleeding in 405 (1.6%), and death in 897 (3.5%) patients. Our 
model achieved an optimized area under the curve in predicting death (0.785, 95% CI: 0.757–0.813) compared with the 
Charlson Comorbidity Index (0.747, P = 0.007), ischaemic stroke (0.691, 0.626–0.756) compared with CHA2DS2-VASc 
(0.613, P = 0.028), and major bleeding (0.698, 0.651–0.745) as opposed to HAS-BLED (0.607, P = 0.002), with improvement 
in net reclassification index (10.0, 12.5, and 23.6%, respectively).

Conclusion The ML-GBDT model outperformed clinical risk scores in predicting the risks in patients with AF. This approach could be 
used as a single multifaceted holistic tool to optimize patient risk assessment and mitigate adverse outcomes when managing 
AF.
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Graphical Abstract

Currently, clinical risk scores, derived from a specific set of weighted risk factors, are utilized to predict risks of all-cause mortality, ischaemic stroke, and 
major bleeding for patients diagnosed with AF. Consider a patient as an example: a patient might score 5 on the CCI, 4 on the CHA2DS2-VASc, and 3 on the 
HAS-BLED. Based on these scores, clinicians use predefined cut-offs to determine the suitable treatments. We aim to build a machine learning model, which 
integrates additional data (both input and output information) to improve risk prediction. Clinicians could leverage the developed model to enhance the 
overall outcomes for AF patients, benefiting from its superior predictive capabilities and the clarity provided by its feature importance ranking.

AF, atrial fibrillation; CCI, Charlson Comorbidity Index; CHA2DS2-VASc includes congestive heart failure, hypertension, age, diabetes mellitus, stroke or 
transient ischaemic attack, vascular disease, and sex (female); HAS-BLED includes hypertension, abnormal renal or liver function, stroke, bleeding, inter-
national normalized ratio, elderly (age over 65 years), and drugs or alcohol usage; ML-GBDT, multi-label gradient boosting decision tree.

Keywords Atrial fibrillation • Death • Ischaemic stroke • Major bleeding • Machine learning • Risk

Introduction
Atrial fibrillation (AF) is the most common cardiac arrhythmia, increas-
ingly affecting over 45 million people globally.1 Patients diagnosed with 
AF have significantly elevated risks of ischaemic stroke and death.2 Oral 
anticoagulation therapy is used to mitigate the risks of ischaemic stroke 
and all-cause death, but it increases the risk of major bleeding.3,4 It is 
also well recognized that patients may still suffer from residual risks 
of death and ischaemic stroke despite receiving anticoagulants.5,6

The CHA2DS2-VASc7 and HAS-BLED8 scores are recommended by 
clinical guidelines for evaluating stroke and bleeding risks, respective-
ly.9,10 However, these scores have only a modest discriminatory cap-
acity for ischaemic stroke and major bleeding in patients with AF.11,12

Apart from the risk factors employed in these simple clinical risk scores, 
ethnicity or geographic regions have been identified as potential add-
itional factors that can influence the prognosis for patients after being 
diagnosed with AF.13 For example, studies have shown that the modi-
fied risk stratification tool mCHA2DS2-VASc tends to provide more ac-
curate risk predictions for Asian patients with AF.14 Risk factors for 
stroke or bleeding are also risks for death, although the Charlson 

Comorbidity Index (CCI)15 is an established tool applied to predict 
one-year death based on specific comorbidities.16

Machine learning (ML) algorithms have shown better risk-predictive 
performance, after accounting for the presence of multimorbid condi-
tions and dynamic changes in risk.17 Additionally, multi-label ML can 
predict different patient outcomes simultaneously (e.g. stroke, major 
bleeding, and death) taking into account the interdependence between 
risks, therefore offering a more effective and multifaceted approach to 
predicting event risks faced by patients with AF. This would allow us to 
predict death, as well as ischaemic stroke and major bleeding risks for 
patients with AF by incorporating their diverse comorbidities, existing 
treatment strategies, and demographics including ethnicity and geo-
graphical region. This offers valuable insights for early intervention on 
the most significant risks, leading to improved clinical outcomes.

In our previous study in an Australian AF registry, we constructed 
and assessed different multi-label ML algorithms, among which the 
multi-label gradient boosting decision tree (ML-GBDT) model demon-
strated superior performance for predicting stroke and bleeding risk in 
patients with non-valvular AF compared with clinical risk scores 
(CHA2DS2-VASc and HAS-BLED).18 One major limitation of this 
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previous study was the retrospective nature of the dataset which was 
sourced exclusively from one geographical region with the predomin-
ant ethnic group being Caucasians. Moreover, non-vitamin K antagonist 
oral anticoagulants (NOACs) had not yet reached widespread use in 
our previous study. An external validation of our approach in global 
prospectively collected AF cohorts would be highly desirable.

Herein, we aimed to investigate our prior ML-GBDT algorithms to 
predict death, ischaemic stroke, and major bleeding within the first 
year after the baseline visit for patients with newly diagnosed non- 
valvular AF. We used a large, contemporary global cohort of patients 
from the prospective GLORIA-AF (Global Registry on Long-Term 
Oral Anti-Thrombotic Treatment in Patients with Atrial Fibrillation) 
registry.19 Our goal was to assess the applicability and utility of multi- 
label ML across diverse AF patient populations and determine its poten-
tial for widespread clinical adoption.

Methods
We used data from Phase II/III of the prospective GLORIA-AF registry, which 
is a prospective international registry that gathered information about pa-
tients from 935 medical centres in 38 countries across Asia, Europe, 
North America, Latin America, and Africa/Middle East.19 The registry com-
prised adults with newly diagnosed non-valvular AF (within 3 months prior 
to baseline visit) and an increased risk of stroke (CHA2DS2-VASc score ≥ 1).

We included patients (all five regions) from the GLORIA-AF registry 
enrolled between 2011 and 2020 who had at least 1 year of follow-up or 
died during the first year. We formed subsets based on age (age 65 years 
or more), anticoagulant treatment, residential region (Europe, North 
America, and Asia, excluded Latin America and Africa/Middle East due to 
the limited data samples collected from these regions), and whether pa-
tients had primary prevention or secondary prevention of ischaemic stroke. 
This enabled an in-depth exploration into the performance of different risk 
prediction models within the sub-cohorts sharing certain characteristics, 
and thereby providing nuanced insights into their predictive capacities, iden-
tifying factors that may impact the risk prediction in patients with AF.

AF classification was as per the European Society of Cardiology recom-
mendations.20 The severity of AF-related symptoms was determined based 
on the European Heart Rhythm Association classification.21 The 
CHA2DS2-VASc, HAS-BLED scores, and CCI were calculated from data 
within the registry. Due to the limitations in data availability, specifically 
for comorbidities such as lymphoma and acquired immunodeficiency syn-
drome, we employed a tailed adaptation of the CCI.

Predictors
We included 110 variables (features) in the initial model, including patient 
demographics, vital signs, comorbidity history, medication treatment, med-
ical procedures, and laboratory results. The complete list of variables is 
available in Supplementary material online, Table S1. We did not include 
variables with more than 25% missing values (n = 16) and imputed the re-
maining missing values using the multivariate feature imputation method.22

Detailed missing rate information is presented in Supplementary material 
online, Table S2. Categorical variables were presented as counts and per-
centages and tested for differences with the χ2 test. Continuous variables 
are presented as mean ± standard deviation (SD) and tested for differences 
with the t-tests. A two-sided P < 0.05 was considered statistically significant.

Outcome
Follow-up was 1 year from the baseline AF diagnosis. The primary outcome 
of interest was all-cause death, ischaemic stroke, and major bleeding within 
the 1-year follow-up. Additionally, we also investigated the short-term risks 
associated with these outcomes, specifically within the first 90 days. Stroke 
was defined as an acute onset of a localized neurological impairment which 
originated from a vascular source and was continuous for a minimum of 
24 h or led to death. Data from computed tomography scans, magnetic res-
onance imaging, or autopsy were applied by the GLORIA-AF investigators 
to determine the presence of ischaemic stroke.6 Major bleeding was 

classified by the GLORIA-AF investigators according to the definition 
from the International Society on Thrombosis and Hemostasis.23

Machine learning model
A gradient boosting decision tree19-based classifier chain,20 namely, 
ML-GBDT, was the best-performing algorithm (compared with support 
vector machine and multi-layer neural networks) in previous studies for 
predicting risks in AF patients.18 The order of the classifier chain was estab-
lished as major bleeding, ischaemic stroke, and all-cause death based on our 
previous experimental results18 and time-to-event for different outcomes. 
The predicted probability of major bleeding was used to predict ischaemic 
stroke, and both predictions were used to predict all-cause death. This ef-
fectively empowered the model to handle patients with multiple events. For 
comparison purposes, we also constructed single-label GBDT models to 
predict each outcome independently. Modelling and statistical analyses 
were performed using Python 3.9 and Stata (16.1, StataCorp LLC, USA).

Development vs. validation
Compared with our previous study, predictors were modified based on the 
available variables.18 We added medical treatments for AF as predictors but 
were unable to incorporate predictors such as haemoglobin and indigenous 
ethnicity, which were not recorded in the GLORIA-AF registry. We utilized 
different data sources to define outcomes. In the current study, we used 
clinical information. We also implemented different hyperparameter tuning 
strategies while doing the validation. The feature importance measurement 
strategy was updated to permutation features importance, which tends not 
to be biased on high cardinality features.

Sampling and processing
We split the data into three sets for different purposes. We randomly allo-
cated 70% of the data for training and internal validation; 10% of the training 
data were used for internal validation and hyperparameter tuning. The re-
maining 30% of the data were assigned for testing. Text data were encoded 
as binary or categorical variables. The continuous variables were standar-
dized with a mean of 0 and a SD of 1, ensuring that all continuous features 
are on a similar scale.24

Feature importance
We included all the relevant available variables in the initial model. We 
then used the permutation feature importance25 and presented 25–30 
top-ranked features using bar plots. The permutation feature importance 
was defined as the reduction in a model’s performance metrics when the 
values of an individual feature were randomly shuffled. The feature import-
ance ranking plot was presented as a horizontal bar chart, with each bar re-
presenting a variable in our data. The length of the bar indicated the level of 
the impact on the ML-GBDT predictive performance.

Performance measurement
Measures of prediction performance included the area under the receiver 
operating characteristic curve (AUC-ROC), sensitivity, specificity, and net 
reclassification index (NRI). A probability threshold of 0.5 was selected to 
determine the sensitivity and specificity of clinical risk scores. We then re-
served a similar specificity for the ML-GBDT model while choosing the 
thresholds and calculated the sensitivity. A decision curve analysis was em-
ployed to show the net benefits of each model across a range of threshold 
probabilities, and Kaplan–Meier survival curves were presented to visualize 
the probability of an event occurring over the 3-year follow-up time based 
on the predicted probability.

Application
We developed an online risk calculator for clinical use, selected only 25 key 
variables through permutation feature importance predicting all-cause 
death, ischaemic stroke, and major bleeding risks within the 1-year follow- 
up. Despite this simplification, we managed to maintain a similar AUC as the 
model using the full variable set. The primary goal of this tool is to equip 
healthcare practitioners with the means to provide personalized, refined 
risk assessments for patients with AF.
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Table 1 Baseline characteristics of the study cohort identified from Phase II/III of the Global Registry on Long-Term 
Oral Anti-Thrombotic Treatment in Patients with Atrial Fibrillation registry stratified by outcome

All-cause death Ischaemic stroke Major bleeding

No event 
(n = 24 759)

Event 
(n = 897)

P-value No event 
(n = 25 441)

Event 
(n = 215)

P-value No event 
(n = 25 251)

Event 
(n = 405)

P-value

Demographics
Age, mean (SD) 70.1 (10.3) 76.2 (9.2) <0.0001 70.2 (10.3) 74.5 (9.2) <0.0001 70.2 (10.3) 74.3 (8.9) <0.0001
Female, No. (%) 11 114 (44.9) 369 (41.1) 0.03 11 387 (44.8) 96 (44.7) 0.97 11 299 (44.7) 184 (45.4) 0.78

BMI (kg/m2) 28.7 (6.2) 27.1 (6.6) <0.0001 28.6 (6.3) 27.2 (5.6) 0.001 28.6 (6.3) 28.6 (6.2) 0.8

Region, No. (%)
Europe 12 325 (49.8) 467 (52.1) <0.0001 12 684 (49.9) 108 (50.2) 0.066 12 593 (49.9) 199 (49.1) <0.0001

North America 5593 (22.6) 201 (22.4) 5754 (22.6) 40 (18.6) 5651 (22.4) 143 (35.3)

Asia 4661 (18.8) 108 (12.0) 4715 (18.5) 54 (25.1) 4726 (18.7) 43 (10.6)
Latin America 1874 (7.6) 115 (12.8) 1977 (7.8) 12 (5.6) 1969 (7.8) 20 (4.9)

Africa/Middle East 306 (1.2) 6 (0.7) 311 (1.2) 1 (0.5) 312 (1.24) 0 (0.0)

Race, No. (%)
White 18 840 (76.1) 716 (79.8) <0.0001 19 405 (76.3) 151 (70.2) 0.023 19 221 (76.1) 335 (82.7) <0.0001

Asian 4333 (17.5) 112 (12.5) 4393 (17.3) 52 (24.2) 4399 (17.4) 46 (11.4)

Black or Afro-Caribbean 424 (1.7) 22 (2.5) 440 (1.7) 6 (2.8) 431 (1.7) 15 (3.70)
Arab or Middle East 324 (1.3) 5 (0.56) 329 (1.3) 0 (0.0) 327 (1.3) 2 (0.49)

Other 838 (3.4) 42 (4.7) 874 (3.4) 6 (2.8) 873 (3.5) 7 (1.73

Vital signs
Heart rate (bpm) 80.0 (21.2) 83.7 (20.6) <0.0001 80.1 (21.2) 79.7 (18.7) 0.77 80.1 (21.2) 80.0 (20.3) 0.96

Systolic BP (mmHg) 132.5 (18.5) 128.4 (20.8) <0.0001 132.3 (18.6) 135.7 (18.5) 0.01 132.4 (18.6) 130.9 (20.0) 0.12

Diastolic BP (mmHg) 78.2 (11.9) 74.6 (12.9) <0.0001 78.1 (11.9) 77.3 (12.4) 0.33 78.1 (11.9) 75.7 (12.4) <0.0001
Scores
CHA2DS2-VASc 3.15 (1.5) 4.1 (1.6) <0.0001 3.18 (1.5) 3.95 (1.7) <0.0001 3.17 (1.5) 3.83 (1.5) <0.0001

HAS-BLED 1.32 (0.9) 1.7 (0.9) <0.0001 1.33 (0.9) 1.68 (0.9) <0.0001 1.33 (0.9) 1.69 (0.9) <0.0001
CCI* 3.84 (1.9) 4.53 (1.8) <0.0001 3.84 (1.9) 4.53 (1.8) <0.0001 3.83 (1.9) 4.86 (2.2) <0.0001

Laboratory result
Creatinine clearance (mL/min) 82.2 (52.7) 62.9 (32.6) <0.0001 81.6 (52.4) 71.2 (32.7) 0.004 81.7 (52.5) 70.7 (30.5) <0.0001
Comorbidities
Hypertension, No. (%) 18 653 (75.3) 673 (75.0) 0.83 19 149 (75.3) 177 (82.3) 0.02 19 000 (75.2) 326 (80.5) 0.02

Hypercholesterolemia, No. (%) 9951 (40.2) 345 (38.5) 0.3 10 198 (40.1) 98 (45.6) 0.1 10 088 (40) 208 (51.4) <0.0001
Diabetes mellitus, No. (%) 5670 (22.9) 266 (29.7) <0.0001 5882 (23.1) 54 (25.1) 0.49 5822 (23.1) 114 (28.1) 0.02

Coronary artery disease, No. (%) 4628 (18.7) 269 (30) <0.0001 4842 (19) 55 (25.6) 0.01 4792 (19) 105 (25.9) 0.0004

Congestive heart failure, No. (%) 5304 (21.4) 396 (44.1) <0.0001 5653 (22.2) 47 (21.9) 0.9 5583 (22.1) 117 (28.9) 0.001
Left ventricular hypertrophy,  

No. (%)
4528 (18.3) 197 (22) 0.01 4683 (18.4) 42 (19.5) 0.67 4648 (18.4) 77 (19) 0.76

Prior thromboembolism, No. (%) 3615 (14.6) 205 (22.9) <0.0001 3741 (14.7) 79 (36.7) <0.0001 3739 (14.8) 81 (20) 0.004
Prior bleeding, No. (%) 1285 (5.2) 59 (6.6) 0.07 1335 (5.2) 9 (4.2) 0.49 1301 (5.2) 43 (10.6) <0.0001

Peripheral artery disease 686 (2.8) 61 (6.8) <0.0001 737 (2.9) 10 (4.7) 0.13 726 (2.9) 21 (5.2) 0.01

COPD, No. (%) 1409 (5.7) 124 (13.8) <0.0001 1518 (6) 15 (7) 0.53 1485 (5.9) 48 (11.9) <0.0001
Dementia 138 (0.6) 6 (0.7) 0.0004 142 (0.6) 2 (0.9) 0.02 139 (0.6) 5 (1.2) <0.0001

Peripheral vascular disease 3138 (12.7) 73 (8.2) <0.0001 3199 (12.6) 12 (5.6) 0.39 3177 (12.6) 34 (8.4) <0.0001

Cancer 2424 (9.8) 42 (4.7) 0.002 2459 (9.7) 7 (3.3) 0.90 2447 (9.7) 19 (4.7) 0.13
Metastatic cancer 116 (0.5) 6 (0.7) 0.005 122 (0.5) 0 (0.0) 0.55 119 (0.5) 3 (0.7) 0.03

Peptic ulcer disease 419 (1.7) 5 (0.6) 0.85 422 (1.7) 2 (0.9) 0.50 422 (1.7) 2 (0.5) 0.83

Liver disease 365 (1.5) 11 (1.2) 0.0006 376 (1.5) 0 (0.0) 0.29 374 (1.5) 2 (0.5) 0.96
Chronic kidney disease 370 (1.5) 34 (3.8) <0.0001 400 (1.6) 4 (1.9) 0.01 398 (1.6) 6 (1.5) 0.01

Treatment
OAC, No. (%) 21 266 (85.9) 711 (79.3) <0.0001 21 812 (85.7) 165 (76.7) 0.0002 21 614 (85.6) 363 (89.6) 0.02
Dabigatran 8326 (33.6) 213 (23.7) 8477 (33.3) 62 (28.8) 8428 (39.0) 111 (27.4)

VKA 4547 (18.4) 226 (25.2) 4737 (18.6) 36 (16.7) 4656 (21.5) 117 (28.9)

Continued 
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Results
The study cohort comprised 25 656 patients in total, which 10 961 
patients were excluded due to a lack of follow-up information. The 
patients were predominantly anticoagulated (86.0%) with a mean age 
of 70.3 years (SD 10.3), and 44.8% female, and with a mean 
CHA2DS2-VASc score of 3.2 (SD 1.5) (see Supplementary material 
online, Table S3 for characteristics of the total cohort, and 
Supplementary material online, Tables S4–S7 for characteristics of the 
excluded patients and sub-cohorts).

During the first-year follow-up, there were 215 (0.8%) ischaemic 
stroke events with a median time-to-event 139 days, 897 (3.5%) all- 
cause death with a median time-to-event 158 days, and 405 (1.6%) ma-
jor bleeding events with median time 138 days. Among patients who 
received anticoagulant therapy, the incidence of ischaemic stroke was 
0.75 per 100 patient-years (PYs), the incidence of all-cause death 
was 3.2 per 100 PYs, and the incidence of major bleeding was 1.7 per 
100 PYs.

The incidence of all-cause death varied across different regions, with 
incidence of 3.7 per 100 PYs among patients residing in Europe, 3.5 per 
100 PYs for patients in North America, 2.3 per 100 PYs for patients res-
iding in Asia, and 5.8 per 100 PYs for patients in Latin America. Table 1
presents a comparison of the baseline characteristics of patients with 

ischaemic stroke with those who had major bleeding or died during 
the same period. The use of oral anticoagulants (OACs) was lower in 
patients who suffered an ischaemic stroke (76.7 vs. 85.7%) or died 
(79.3 vs. 85.9%), but higher in patients with major bleeding (89.6 vs. 
85.6%).

Performance
The predictive ability of the model for all-cause death was significantly 
better for ML-GBDT compared with CCI, with an AUC-ROC of 0.785 
(95% CI: 0.757–0.813) vs. 0.747 (0.718–0.777), respectively (P = 0.007) 
(Figure 1). We also evaluated the performance of CHA2DS2-VASc in 
predicting all-cause death, and it performed worse than the CCI 
(0.676 vs. 0.747, P < 0.001). The NRI for predicting all-cause death 
was 10.0% on the total cohort using our ML-GBDT model. 
Correspondingly, the decision curve for ML-GBDT showed a higher 
net benefit than the CCI across the majority of the threshold probabil-
ity range. Relative to CCI, the ML-GBDT yielded a higher sensitivity 
(0.726 vs. 0.677) while maintaining comparable specificity (0.707 vs. 
0.704).

The AUC-ROC for predicting ischaemic stroke was significantly 
higher (P = 0.028) for ML-GBDT [0.691 (0.626–0.756)] compared 
with CHA2DS2-VASc [0.613 (0.538–0.689)]. The NRI showed an 
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Table 1 Continued  

All-cause death Ischaemic stroke Major bleeding

No event 
(n = 24 759)

Event 
(n = 897)

P-value No event 
(n = 25 441)

Event 
(n = 215)

P-value No event 
(n = 25 251)

Event 
(n = 405)

P-value

Apixaban 4274 (17.3) 134 (14.9) 4368 (17.2) 40 (18.6) 4347 (20.1) 61 (15.1)

Rivaroxaban 3803 (15.4) 130 (14.5) 3908 (15.4) 25 (11.6) 3863 (17.9) 70 (17.3)
Edoxaban 316 (1.3) 8 (0.9) 322 (1.3) 2 (0.9) 320 (1.5) 4 (1.0)

AF ablation, No. (%) 438 (1.8) 4 (0.4) 0.003 441 (1.7) 1 (0.5) 0.15 439 (1.7) 3 (0.7) 0.13
Antiplatelet, No. (%) 5923 (23.9) 276 (30.8) <0.0001 6139 (24.1) 60 (27.9) 0.2 6070 (24) 129 (31.9) 0.0003

Antiarrhythmic drug, No. (%) 6399 (25.8) 226 (25.2) 0.66 6592 (25.9) 33 (15.3) 0.0004 6530 (25.9) 95 (23.5) 0.27

ACE-i, No. (%) 7534 (30.4) 289 (32.2) 0.25 7765 (30.5) 58 (27) 0.26 7689 (30.5) 134 (33.1) 0.25
Angiotensin receptor blocker,  

No. (%)
6393 (25.8) 214 (23.9) 0.19 6554 (25.8) 53 (24.7) 0.71 6498 (25.7) 109 (26.9) 0.59

Beta blocker, No. (%) 15 579 (62.9) 580 (64.7) 0.29 16 025 (63) 134 (62.3) 0.84 15 881 (62.9) 278 (68.6) 0.02
Digoxin, No. (%) 2001 (8.1) 119 (13.3) <0.0001 2095 (8.2) 25 (11.6) 0.07 2075 (8.2) 45 (11.1) 0.04

Diuretic, No. (%) 9255 (37.4) 493 (55) <0.0001 9673 (38) 75 (34.9) 0.35 9555 (37.8) 193 (47.7) 0.0001

Statin, No. (%) 11 104 (44.8) 430 (47.9) 0.07 11 406 (44.8) 128 (59.5) <0.0001 11 311 (44.8) 223 (55.1) <0.0001
AF classification
Type of AF, No. (%)
Paroxysmal 13 807 (55.8) 429 (47.8) <0.0001 14 135 (55.6) 101 (47.0) 0.032 14 027 (55.6) 209 (51.6) 0.284
Persistent 8482 (34.3) 339 (37.8) 8730 (34.3) 91 (42.3) 8670 (34.3) 151 (37.3)

Permanent 2470 (10.0) 129 (14.4) 2576 (10.1) 23 (10.7) 2554 (10.1) 45 (11.1)

EHRA classification, No. (%)
I 8399 (33.9) 350 (39.0) <0.0001 8653 (34.0) 96 (44.7) 0.007 8586 (34.0) 163 (40.3) 0.003

II 10 085 (40.7) 278 (31.0) 10 297 (40.5) 66 (30.7) 10 225 (40.5) 138 (34.1)

III 4853 (19.6) 215 (24.0) 5027 (19.8) 41 (19.1) 4997 (19.8) 71 (17.5)
IV 1422 (5.7) 54 (6.0) 1464 (5.8) 12 (5.6) 1443 (5.7) 33 (8.2)

*CCI was derived using characteristics including age, myocardial infarction, congestive heart feature, peripheral vascular disease, cerebrovascular accident or transient ischaemic attack, 
dementia, COPD, peptic ulcer disease, liver disease, diabetes mellitus, chronic kidney disease, cancer, and metastatic cancer. Information for connective tissue, hemiplegia, leukaemia, 
lymphoma, and AIDS were not available in the data. 
ACE-i, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; BMI, body mass index; BP, blood pressure; CCI, Charlson Comorbidity Index; COPD, chronic obstructive pulmonary 
disease; EHRA, European Heart Rhythm Association; OAC, oral anticoagulant; SD, standard deviation; VKA, vitamin K antagonist; AIDS, acquired immunodeficiency syndrome.
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improvement of 12.5%. A similar specificity for both the model and 
score were obtained while choosing the probability thresholds with 
ML-GBDT consistently demonstrating superior sensitivity.

An improvement was also observed in predicting major bleeding, 
with the AUC-ROC significantly (P = 0.002) higher for ML-GBDT 
than HAS-BLED: 0.698 (0.651–0.745) compared with 0.607 (0.559– 
0.655). The ML-GBDT model yielded a higher sensitivity (0.664 vs. 
0.546) when predicting major bleeding. Of the three outcomes, the 
NRI for major bleeding was the highest at 23.6%, in alignment with 
the decision curve analysis (Figure 1). The survival curve (Figure 1) for 
the ‘low risk’ (first and second quartiles) groups were observed to 
have a slower decline, indicating higher survival rates over time, com-
pared with the ‘high risk’ (third and fourth quartiles) groups. It also out-
performed single-label GBDT and Cox regression model in predicting 
the risks for patients independently (see Supplementary material online, 
Table S8). Although we limited the number of variables to 25 in our 
model for clinical application, it maintained a similar AUC in predicting 
all-cause death [0.787 (0.763, 0.811)], ischaemic stroke [0.711 (0.654, 
0.768)], and major bleeding [0.686 (0.637, 0.734)].

As shown in Table 2, the performance of ML-GBDT predicting pa-
tients’ risk within 90 days mirrored its performance in the 1-year 
follow-up. CCI also achieved similar performance in predicting short- 
term all-cause mortality risks for patients. However, AUC-ROC of 
CHA2DS2-VASc and HAS-BLED decreased when predicting short- 
term risks compared with their long-term prediction.

Sub-group analyses
The ML-GBDT model demonstrated superior discriminatory capacity 
than the CCI (P < 0.05) on all sub-cohorts, excluding patients for sec-
ondary stroke prevention. The CCI showed a reduced AUC-ROC 
while predicting all-cause death in patients who were older (age ≥  
65), anticoagulated, and residing in European, North American, or 
Asian regions, compared with the total cohort (Table 3 and 
Figure 2). For patients who were not anticoagulated, those 
from Europe, or patients for primary or secondary stroke preven-
tion, AUC-ROC of CCI was comparable or higher than the total 
cohort.

Figure 1 Performance of machine learning model compared with that of clinical scores in predicting risk of all-cause death, ischaemic stroke, and 
major bleeding in patients with atrial fibrillation. (A) Area under the receiver operating characteristic curve and (B) decision analysis curve. The 
x-axis represents the threshold probability, and the y-axis illustrates the net benefit derived from each model. The ‘treat all’ and ‘treat none’ strategies 
are also depicted on the decision curve. (C ) Kaplan–Meier survival curves. The survival curves plot time in years on the x-axis, against the survival prob-
ability on the y-axis. The predicted probabilities were grouped into quartiles, with each represented by a distinct survival curve, corresponding to the 
respective predicted probability range. ROC, receiver operating characteristic; ML, machine learning.
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The AUC-ROC of the CHA2DS2-VASc score was higher among 
elderly, anticoagulated, European and North American sub-cohorts, 
as opposed to its AUC-ROC for the total cohort while estimating 
the risks of ischaemic stroke (Table 3). However, its performance de-
clined in patients from Asia or those for either primary or secondary 
stroke prevention, relative to the total cohort. The ML-GBDT model 
outperformed the CHA2DS2-VASc score in predicting ischaemic 
stroke across all the sub-groups, but none were statistically 
significant.

The AUC-ROC of HAS-BLED remained consistent or increased 
among several sub-groups of patients when compared with its 
AUC-ROC for the total cohort. These sub-groups included those 
who received anticoagulant therapy (n = 21 987), those who were 
from European (n = 12 792) and North American regions (n =  
5974), and patients for primary stroke prevention (n = 21 912). 
Conversely, it was lower for elderly patients, those not receiving an-
ticoagulation therapy (n = 3678), patients from Asia (n = 4769), and 
those for secondary stroke prevention (n = 3744), in comparison to 
the total cohort. The ML-GBDT achieved higher AUC-ROC than 
the HAS-BLED, but not all observed predictions were statistically 
different.

Figure 3 and Figure 4 illustrate the top 25 or 30 most important vari-
ables for total and sub-cohorts in the ML-GBDT model. Age, smoking, 
creatinine clearance, anticoagulant therapy, and history of stroke or 
transient ischaemic attack (TIA) emerged as the most critical variables 
in predicting the risks for patients diagnosed with AF. In the sub- 
cohorts, the ranking of top features changed, including blood pres-
sure, regions, body mass index (BMI), previous thromboembolism, 
diabetes, respiratory disease, congestive heart failure, and statin ther-
apy. These additional variables, along with age, creatinine clearance, 
and history of stroke/TIA, significantly impacted risk prediction. 
Furthermore, we have transformed the categorical variable ‘OAC 
type’ with one-hot encoding and evaluated their feature importance 

in the retrained model. Vitamin K antagonist emerged as the most in-
fluential OAC treatment on patients’ risks, followed by dabigatran, 
while apixaban, rivaroxaban, and edoxaban were deemed less import-
ant. A similar approach was applied to analyse the importance of dif-
ferent regions and races. Detailed feature ranking is listed in 
Supplementary material online, Figures S1–3.

Discussion
In this study, we have shown that our ML-GBDT model performed bet-
ter than three clinical risk scores in predicting both short- (90-day) and 
long-term (1-year) risk of death, ischaemic stroke, and major bleeding, 
for patients diagnosed with AF. This attained statistically significant op-
timized performance in comparison to the CCI for predicting the risk of 
all-cause death, the CHA2DS2-VASc score for ischaemic stroke risk, 
and the HAS-BLED score for major bleeding risk. Moreover, our study 
is the first to present the feature importance ranking for patient co-
horts featured by geographical regions, receiving anticoagulant therapy, 
and history of stroke.

During the past decades, there has been growing recognition that 
death, especially cardiovascular death, associated with AF is increasing,2

although there is no dedicated score for this specific population. It is 
therefore important to implement appropriate measures to mitigate 
the risk of death for patients with AF. Our developed ML-GBDT model 
provides statistically significant improved performance in assessing the 
risk of all-cause death accounting for the risk of ischaemic stroke and 
major bleeding.

Whilst OAC therapy is used to reduce the risk of stroke, it simultan-
eously increases the likelihood of major bleeding events.3,26 Patients 
may still experience an ischaemic stroke event despite receiving anti-
coagulant therapy.5 Also, despite an uptake in the use of anticoagulants, 
one-third of high-risk patients with AF do not receive any anticoagulant 
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Table 2 Evaluation of the performance of multi-label gradient boosting decision tree and clinical risk scores at different 
time point during follow-up in the total cohort

CCI (95% CI) CHA2DS2-VASc (95% CI) HAS-BLED (95% CI) ML-GBDT (95% CI)

90 days
All-cause death (n = 279) AUC 0.747 (0.718, 0.777) 0.498 (0.439, 0.556) 0.786 (0.743, 0.830)

SENS 0.661 (0.611, 0.724) 0.727 (0.657, 0.837)

SPEC 0.697 (0.687, 0.708) 0.707 (0.697, 0.718)
Ischaemic stroke (n = 98) AUC 0.476 (0.378, 0.575) 0.698 (0.589, 0.807)

SENS 0.500 (0.374, 0.754) 0.680 (0.558, 0.955)

SPEC 0.605 (0.594, 0.616) 0.618 (0.608, 0.629)
Major bleeding (n = 76) AUC 0.481 (0.403, 0.558) 0.633 (0.550, 0.716)

SENS 0.325 (0.220, 0.526) 0.558 (0.448, 0.758)

SPEC 0.618 (0.607, 0.629) 0.632 (0.622, 0.643)
1 year

All-cause death (n = 897) AUC 0.747 (0.718, 0.777) 0.676 (0.643, 0.709) 0.785 (0.757, 0.813)

SENS 0.677 (0.617, 0.733) 0.726 (0.667, 0.778)
SPEC 0.704 (0.693, 0.714) 0.707 (0.697, 0.717)

Ischaemic stroke (n = 215) AUC 0.613 (0.538, 0.689) 0.691 (0.626, 0.756)

SENS 0.548 (0.425, 0.666) 0.629 (0.505, 0.738)
SPEC 0.614 (0.603, 0.625) 0.617 (0.606, 0.628)

Major bleeding (n = 405) AUC 0.607 (0.559, 0.655) 0.698 (0.651, 0.745)

SENS 0.546 (0.457, 0.633) 0.664 (0.575, 0.742)
SPEC 0.634 (0.623, 0.644) 0.634 (0.623, 0.645)
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treatment.27 As a result, the risk of death, stroke, and major bleeding 
should be monitored to identify patients at increased risk so that appro-
priate intervention or closer monitoring can be initiated. The low num-
ber of events, specifically ischaemic stroke, resulting from the use of 
anticoagulant therapy, is a challenge for prediction. This has indeed im-
pacted the predictive performance for both clinical scores and our 
model.

Using clinical risk scores, anticoagulant therapy is recommended in 
patients with a CHA2DS2-VASc score ≥ 2 in males or ≥3 for females 
and should be considered when CHA2DS2-VASc score is 1 in males or 
2 for females. Meanwhile, patients at high risk of bleeding (HAS-BLED 
score ≥ 3) should be scheduled for early and more frequent clinical 
review and follow-up.9 However, scores which only include a limited 
number of risk factors report a modest capacity in predicting patient 
risks, particularly in predicting short-term risks of ischaemic stroke and 
major bleeding. Our model which additionally incorporated treatments, 

interventions, and an extensive range of comorbidities, yielded the best 
results. It also demonstrated its reliability and robustness, as evidenced 
by its consistent performance in predicting both short- and long-term 
risks for patients with AF. By leveraging the predicted risk probability 
and feature importance, clinicians could address modifiable risk factors 
and adjust treatments and interventions utilizing our model. Fox 
et al.28 have built a GARFIELD-AF risk tool for predicting all-cause mor-
tality, non-haemorrhagic stroke, and major bleeding. It also outper-
formed CHA2DS2-VASc and HAS-BLED, which is consistent with our 
study. While both studies targeted newly diagnosed AF patients with 
at least one stroke risk factors, our model demonstrated higher 
AUC-ROC in predicting all-cause mortality (GARFIELD-AF 0.75 vs. 
0.79 ML-GBDT), particularly among patients not receiving anticoagulant 
treatment (GARFIELD-AF 0.77 vs. 0.82 ML-GBDT). However, the differ-
ing cohort size and follow-up durations between our study and 
GARFIELD-AF must be considered while interpreting the performance.
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Table 3 Comparison of the area under the receiver operating characteristic curve of the multi-label gradient boosting 
decision tree model and clinical risk scores across various study sub-groups

CCI (95% CI) CHA2DS2-VASc  
(95% CI)

HAS-BLED  
(95% CI)

ML-GBDT  
(95% CI)

P-value (score vs.  
ML model)

Age ≥ 65 years old (n = 19 032)

All-cause death (n = 792) 0.712 (0.679, 0.746) 0.752 (0.718, 0.785) 0.0283

Ischaemic stroke (n = 184) 0.653 (0.575, 0.730) 0.715 (0.652, 0.778) 0.0913
Major bleeding (n = 352) 0.548 (0.492, 0.605) 0.627 (0.572, 0.682) 0.0214

Anticoagulated (n = 21 987)

All-cause death (n = 711) 0.720 (0.687, 0.752) 0.759 (0.728, 0.790) 0.0027
Ischaemic stroke (n = 165) 0.698 (0.622, 0.774) 0.750 (0.677, 0.823) 0.0772

Major bleeding (n = 363) 0.601 (0.554, 0.647) 0.685 (0.637, 0.733) 0.0018

Not anticoagulated (n = 3678)
All-cause death (n = 186) 0.759 (0.703, 0.816) 0.819 (0.766, 0.872) 0.0396

Ischaemic stroke (n = 50) 0.620 (0.475, 0.765) 0.694 (0.593, 0.796) 0.2394
Major bleeding (n = 42) 0.584 (0.416, 0.752) 0.678 (0.540, 0.815) 0.2838

Europe (n = 12 792)

All-cause death (n = 467) 0.747 (0.711, 0.783) 0.796 (0.763, 0.828) 0.0014
Ischaemic stroke (n = 108) 0.681 (0.600, 0.762) 0.737 (0.663, 0.810) 0.2102

Major bleeding (n = 199) 0.645 (0.581, 0.709) 0.690 (0.611, 0.753) 0.3232

North America (n = 5974)
All-cause death (n = 201) 0.723 (0.663, 0.783) 0.804 (0.742, 0.865) 0.0050

Ischaemic stroke (n = 40) 0.696 (0.515, 0.878) 0.705 (0.530, 0.880) 0.8928

Major bleeding (n = 143) 0.653 (0.564, 0.742) 0.708 (0.626, 0.789) 0.3186
Asia (n = 4769)

All-cause death (n = 108) 0.692 (0.584, 0.799) 0.840 (0.766, 0.914) 0.0123

Ischaemic stroke (n = 54) 0.532 (0.390, 0.675) 0.676 (0.515, 0.836) 0.1419
Major bleeding (n = 43) 0.582 (0.452, 0.713) 0.606 (0.467, 0.746) 0.7973

Primary prevention (n = 21 912)

All-cause death (n = 698) 0.744 (0.714, 0.773) 0.782 (0.750, 0.814) 0.0104
Ischaemic stroke (n = 137) 0.527 (0.455, 0.598) 0.598 (0.518, 0.677) 0.1343

Major bleeding (n = 327) 0.623 (0.569, 0.676) 0.656 (0.604, 0.709) 0.2380

Secondary prevention (n = 3744)
All-cause death (n = 199) 0.743 (0.681, 0.805) 0.773 (0.707, 0.839) 0.4192

Ischaemic stroke (n = 78) 0.532 (0.440, 0.624) 0.627 (0.530, 0.724) 0.2319

Major bleeding (n = 78) 0.556 (0.414, 0.697) 0.630 (0.518, 0.743) 0.3848

The ML-GBDT was trained and tested on the sub-cohort. 
AUC-ROC, area under the receiver operating characteristic curve; CI, confidence interval; CCI, Charlson Comorbidity Index; ML-GBDT, multi-label gradient boosting decision tree.
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AF necessitates a multifaceted, holistic approach to its management and 
requires active patient involvement in partnership with clinicians. The 
Atrial Fibrillation Better Care pathway was introduced as an approach 
to simplify the integrated care in patients with AF,29 and adhering to it 
has been shown to improve the prognosis of AF patients.30,31 Current 
guidelines stipulate that a holistic or integrated care approach to AF man-
agement should identify and manage risk factors and comorbidities.9,10

With insights from feature importance in the ML-GBDT model, it is 
additionally possible to characterize subclinical processes and target key 
modifiable risk factors to modify patient risks, such as hypertension, dia-
betes, and BMI. This could potentially enrich the precision of interven-
tions and lead to optimized patient care. The ML-GBDT model and its 
feature importance could further be integrated with electronic medical 
records or mobile apps in the future in daily clinical practice to facilitate 

Figure 2 Comparison of area under the receiver operating characteristic curve for clinical scores and multi-label gradient boosting decision tree in 
predicting risk of all-cause death, ischaemic stroke, and major bleeding. It illustrates area under the receiver operating characteristic curve values along 
with their respective confidence intervals, demonstrating the performance of the total cohort as well as specific sub-groups.

Figure 3 Permutation feature importance in the multi-label gradient boosting decision tree model on the total cohort while predicting outcomes of 
all-cause death, ischaemic stroke, and major bleeding. ASA, aspirin; BMI, body mass index; CAD, coronary artery disease; CHF, congestive heart failure; 
EHRA, European Heart Rhythm Association; GFR, glomerular filtration rate; OAC, oral anticoagulant; PPI, proton pump inhibitor; TIA, transient ischae-
mic attack.
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Figure 4 Permutation feature importance rankings in the multi-label gradient boosting decision tree model on the sub-cohort while predicting out-
comes of all-cause death, ischaemic stroke, and major bleeding. ACE-i, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; ASA, aspirin; BMI, 
body mass index; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; EHRA, European Heart 
Rhythm Association; GFR, glomerular filtration rate; MI, myocardial infarction; NOAC, non-vitamin K antagonist oral anticoagulant; OAC, oral anti-
coagulant; PAD, peripheral artery disease; PPI, proton pump inhibitor; RIV, rivaroxaban; STK, stroke; TIA, transient ischaemic attack; VKA, vitamin 
K antagonist.
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better stratification of risk and improve the prognosis of patients 
through tailored management.

Anticoagulation
Despite receiving anticoagulation treatment, patients with AF may still 
face an enduring risk of stroke and mortality. Residual risks for death 
and ischaemic stroke were predicted by our model in patients who 
received anticoagulant therapy. As indicated in Table 2, the use of anti-
coagulant therapy had a significant impact on the performance of AF 
patient risk prediction.

Most patients in the GLORIA-AF registry received anticoagulant ther-
apy due to their elevated risk of ischaemic stroke (CHA2DS2-VASc 
score ≥ 1), and the number of patients who were not anticoagulated 
was small, resulting in a less statistically significant finding while comparing 
the performance of model and scores in the latter group. Notably, more 
than three-quarters of anticoagulated patients were under NOAC in our 
cohort, and about 50% of these patients received Dabigatran, known for 
its lower risk of major bleeding.32 The prevalent use of NOAC may have 
contributed to the lower observed incidence of major bleeding. 
Consequently, this reduction could have impacted HAS-BLED in accur-
ately predicting patients’ risks for major bleeding.

Patient location
Our results indicated that the location where patients reside was stat-
istically significant for each outcome (P < 0.0001) and influenced the 
risk prediction performance. The AUC-ROCs for all the clinical risk 
scores were lower for patients from Asia. This could potentially be ex-
plained by the age difference across regions (see Supplementary 
material online, Table S4). Chao et al.14 showed that a modified 
CHA2DS2-VASc optimized performance for stroke risk prediction in 
Asian patients, which reflected the age threshold in Asian patients 
with AF for an increased risk of ischaemic stroke could be 50 years.33

Primary vs. secondary prevention 
sub-groups
Stroke history is a critical risk factor while assessing a patients’ risk of 
ischaemic stroke. Both ML models and clinical risk scores yielded sub- 
optimized performance in predicting the risks for patients who have 
not previously had a stroke. Lower event rates were observed in these 
patients (0.63%) compared with 2.1% for secondary prevention (see 
Supplementary material online, Table S5). This was lower than the ob-
served event rate in the Darlington AF registry,34 but this could be due 
to more than 85% of patients in the GLORIA-AF registry receiving anti-
coagulant therapy. The OAC use was also ranked as one of the top im-
portant factors for patients with secondary prevention of stroke in 
Figure 3.

Machine learning
Machine learning has been increasingly applied to predict risks for pa-
tients with AF using various data sources.35–38 Ambale-Venkatesh et al. 
employed different data sources, including imaging, text, questionnaires, 
and biomarkers, to improve cardiovascular event predictions through ML 
algorithms.36 ML has also been used to uncover risk factors that were 
previously unknown and improve stroke prediction in patients with 
AF.37 Sequential measures of international normalized ratio have also 
been used to predict clinical outcomes in newly diagnosed patients using 
ML.38 Compared with other applications of ML, our ML-GBDT model 
took into account the relationship between different outcomes (all-cause 
death, ischaemic stroke, and major bleeding) for patients with AF. We 
have also compared the feature importance ranking of different sub- 
cohorts, which could provide additional support in practice.

Application
Our approach to clinical implementation focused on making risk assess-
ment more accessible and accurate for healthcare practitioners. The 
link to our online risk calculator is available in Supplementary material 
online. By limiting the variables to 25 for clinical application, we main-
tained robust model performance without overwhelming users. This 
strategy emphasizes our tool balances comprehensiveness and ease 
of use, ensuring it can be efficiently integrated into clinical workflows.

Limitations
A key limitation in our study cohort is the relatively low number of 
events, especially ischaemic stroke, due to the use of anticoagulant ther-
apy. The current study does not account for possible changes in anti-
coagulant status during follow-up, nor the impact of clinical 
interventions that impact death, stroke, or bleeding, such as early rhythm 
control.39,40 Another limitation to the predictive performance could be 
the structure of the classifier chains. The sequential nature of the model, 
where each subsequent classifier’s input includes the output of the pre-
ceding one, implies that information propagates along the chain, including 
both performance gains and inaccuracies. Although inaccuracies may af-
fect the prediction, the information propagation may have ultimately led 
to enhanced performance. One of the challenges associated with the ap-
plication of ML models is the requirement for a much larger number of 
variables compared with risk scores because it accounts for an extensive 
range of patient comorbidities, current treatments, and interventions. 
This might pose an additional workload to collect these variables in al-
ready busy clinical settings. However, the ML process has the capability 
of full automation, by integrating the model directly into electronic health 
record systems. The whole process, from data extraction to risk predic-
tion could occur in real-time. This could substantially mitigate the asso-
ciated burden of the required data collection, making the adoption of 
models more feasible and less disruptive in future.

Conclusions
Our study validates that the multi-label ML model outperforms the clin-
ical risk scores in predicting the risk of all-cause death, ischaemic stroke, 
and major bleeding in patients with AF from a contemporary global 
registry. We also provide feature importance ranking for various pa-
tient cohorts by geographical regions, receiving anticoagulation therapy, 
and history of stroke. Our approach could be used as a multifaceted and 
holistic tool to optimize patient risk assessments and mitigate adverse 
outcomes in diverse AF populations.
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Supplementary material is available at European Heart Journal – Digital 
Health.
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