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The MoCA dataset, kinematic  
and multi-view visual streams of  
fine-grained cooking actions
Elena Nicora1, Gaurvi Goyal1, Nicoletta Noceti   1 ✉, Alessia Vignolo2, Alessandra Sciutti   2 & 
Francesca Odone1

MoCA is a bi-modal dataset in which we collect Motion Capture data and video sequences acquired 
from multiple views, including an ego-like viewpoint, of upper body actions in a cooking scenario. It 
has been collected with the specific purpose of investigating view-invariant action properties in both 
biological and artificial systems. Besides that, it represents an ideal test bed for research in a number 
of fields – including cognitive science and artificial vision – and application domains – as motor control 
and robotics. Compared to other benchmarks available, MoCA provides a unique compromise for 
research communities leveraging very different approaches to data gathering: from one extreme of 
action recognition in the wild – the standard practice nowadays in the fields of Computer Vision and 
Machine Learning – to motion analysis in very controlled scenarios – as for motor control in biomedical 
applications. In this work we introduce the dataset and its peculiarities, and discuss a baseline analysis 
as well as examples of applications for which the dataset is well suited.

Background & Summary
The Multiview Cooking Actions dataset (MoCa) is a bi-modal dataset acquired to understand motion recognition 
skills and view-invariance properties of both biological and artificial perceptual systems.

Unlike other recently proposed datasets, where actions and activities are observed in highly unconstrained 
scenarios1,2, our dataset has been acquired in a set-up designed to achieve a compromise between precision and 
naturalness of the movement. Such properties make our dataset an ideal test bed for a number of fields and related 
research questions, among which it is worth mentioning the following:

•	 Cognitive science, in particular for the study of action understanding in humans and the design of artificial 
intelligence simulations. Different problems can be tackled, ranging from the estimation of actions similarity, 
to the detection of action primitives, and the identification of taxonomies. A further, challenging, research 
goal for which our dataset is appropriate is investigating motion properties allowing for actions anticipation 
and the understanding of their final goal

•	 Motor control, a domain where marker-based approaches constitute the gold standard. However, there is a 
growing interest in markerless methods which can guarantee naturalness of movements, and thus a higher 
reliability of the analysis. In this sense, our dataset can serve as a basis for a comparative analysis on the qual-
ity of marker-less methods as opposed to classical marker-based ones.

•	 View-invariance in action recognition, an open question of cognitive science and artificial intelligence systems. 
The combination of multi-view videos and the corresponding position of anatomical features in the 3D space, 
may be a useful test bed to assess the descriptive power of view-invariant representations.

•	 Collaborative robotics, where a fast comprehension of what the partner is doing and when it is the right 
moment to act is a fundamental ability. In this respect, our dataset provides a collection of daily life activities, 
which could serve both in the context of action recognition from the robot camera and in the perspective of 
generating appropriate robot motions.

1MaLGa Center - DIBRIS - Università di Genova, Genova, Italy. 2CONTACT Unit - Istituto Italiano di Tecnologia, 
Genova, Italy. ✉e-mail: nicoletta.noceti@unige.it

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-020-00776-9
http://orcid.org/0000-0002-6482-4768
http://orcid.org/0000-0002-1056-3398
mailto:nicoletta.noceti@unige.it
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-020-00776-9&domain=pdf


2Scientific Data |           (2020) 7:432  | https://doi.org/10.1038/s41597-020-00776-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

On the Uniqueness of the Dataset
We report in Table 1 a comparison between the MoCA and existing datasets for motion understanding tasks. We 
pay particular attention to considering visual data and fields related to potentials usages of the MoCA.

Datasets recently proposed for benchmarking action and activity recognition methods are mostly acquired 
in unconstrained environments or collected from the web1–6. In particular, multi-view7–10 and arbitrary view7 
datasets are often acquired with the goal of designing action recognition methods robust to view-point changes. 
Another specific type of research question is the one involving ego-vision, here the interest is growing but the 
availability of ad hoc datasets is still limited11. To the best of our knowledge, to date, there is no multi-view dataset 
of motion activities which is also incorporating an egocentric view point.

In the context of motor control, particularly in the biomedical field, the use of markers represents a gold 
standard, and this reflects of the main characteristics of the datasets proposed to the purpose12,13, very precise 

Dataset
Visual 
sensors

View(s) 
Setup Body part Envir.

Acquisition 
Conditions Annotated Task

3 RGB FVa Full/Upper Clutt. Web Action Rec.
1 RGB FV Full/Upper Clutt. Web Activity Rec.
4 RGB FV Full/Upper Clutt. Web Action Rec.

Action det.
2 RGB FV Full/Upper Clutt. Web Action Rec.
5 RGB FV Full/Upper Clutt. Web Action Rec.
6 RGB 1 Vb Full/Upper Clutt. LabFM Activity Rec.
11 RGB Ego Arms Clutt. LabFM Activity Rec.

Object Rec.
35 RGB FV (Mostly) upper Clutt. Web Activity Rec.

Object Rec.
7 RGB-D* 6 V Upper Clean LabPA Action Rec.

Skeleton* CVV
8 RGB* 5 V Full Clean LabPA Action Rec.
9 RGBD* 3 V Full Both LabPA Action Rec.

Skeleton*
10 RGBD* 3 Vc Full Clean LabPA Action Rec.

Skeleton*
12 Skeleton — Full — LabGait Gait analysis
13 Skeleton — Legs — LabGait Gait analysis
36 RGB-D FV Upper Clean LabFM Human engag.
37 RGB* 5 V Full/Upper Clutt. LabFM Activity Rec.

Skeleton*
38 RGB* 4 V Full Clutt. LabFM Markerless Motion

Skeleton* Analysis

Activity Rec.

Activity det.
39 RGB Ego Arms Clutt. LabFM Grasp Analysis

MoCA RGB* 3 V Upper Clean LabPA Motion Analysis

Skeleton* Action Primitive Det.

Action Rec.

Table 1.  A comparison of the MoCA dataset with existing benchmarks: HMDB3, Activitynet1, HACS4, 
Kinectics-7002, UCF 1015, MPII Cooking 26, EPIC-Kitchens11, You Cook 235, Arbitrary view7, IXMAS8, 
NUCLA9, NTU10, Schreiber & Moissenet12, Fukuchi et al.13, UE-HRI36, CMU-MMAC37, TUM Kitchen38, Ego 
Yale39. The column View(s) setup reports info on the setup referring to the camera setup, that may include 
different fixed cameras (nV, where n is the number of cameras), may have no specific constraint on the mutual 
position between camera and subject (we named Free Viewpoint - FV), or may consider the use of a wearable 
ego camera (referred to as Ego). In addition, one the benchmarks also includes a continuous varying view 
(CVV). In case of multiple views and/or visual modalities, an refers to the fact the streams have been acquired 
synchronously, meaning that all the visual sensors observed the very same dynamic event. The column 
Environment indicates whether the acquisitions have been performed in a cluttered scene or collected from 
the web (in both cases referred to as Clutt.) or acquired with a clean background to focus on specific aspects of 
the analysis (clean). In column Acquisitions conditions we report information on the fact videos have been 
collected online (Web) or in a laboratory, considering predefined actions (LabPA), free movements (LabFM), 
or more specifically gaits (LabGait). NOTES aActions annotated according to 4 course views (front, back, left, 
right)bAmong the 7 views considered, only one is fully available. cHeight and distance of the 3 cameras have 
been varied to collect acquisitions from a richer set of viewpoints.
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in terms of measurements, but with a limited naturalness. Usually these datasets consider very specific action 
classes, especially gait.

MoCA represents a unique compromise for a visual dataset between the very different approaches to data 
gathering of research communities: from one extreme of action recognition in the wild – the common practice 
nowadays in the fields of Computer Vision and Machine Learning – to motion analysis in very controlled sce-
narios – as in biomedical applications. Indeed, MoCA provides multi-modal sequences offering different levels 
precision and richness (very precise but sparse when derived from the motion capture system, dense but noisier 
when derived from videos), a high variability in terms of observed actions and motion patterns of different gran-
ularity, including both large arms motions and fine fingers movements. Moreover, the availability of multiple 
synchronised videos of the same instance of a dynamic event enables the investigation of view-invariant motion 
properties at a level of detail rarely provided by other datasets. Lastly, the selection of the specific views adopted 
is inspired by interactive contexts, where the agent - be it a human or a robot - has in general a view in first per-
spective (ego) of its own actions and observes its partners most often collaborating with it either in front of it, 
or at its side. The combination of the three camera streams, and their 2D perspectives, with the 3D information 
coming from motion capture data is particularly suited to all applications meant to address action understanding 
for interactive purposes, supporting - from the perceptual side - cross-view action mapping and - from the motor 
side - the generation of appropriate arm actions.

Methods
In this section we highlight the main properties of our data collection. We start describing the design of the study 
and the setup, with its main technical characteristics. Then, we will discuss the pre-processing we applied to the 
data for cleaning and synchronisation purposes.

Study design.  The literature on human motion understanding from visual data has grown considerably over 
the years, influenced by different fields of application, tasks, types of data and feature representation. For these 
reasons, the problem has been shaped and referred to in a variety of ways, as action classification or recognition14,  
gesture recognition15, activity classification16. There is no commonly accepted definition of such tasks. For 
instance, the terms gesture and motion primitive are often used interchangeably, as well as the concept of action 
and activity. At the same time their use may reflect slightly different nuances of the problem. If we consider a 
cooking scenario, we can imagine an activity being the whole process of preparing a recipe or part of it, an action 
being an intermediate step like “mix all the ingredients together” or “peel and slice the apples” and a gesture being 
“reaching for the apple”.

More formally, according to17 actions can be naturally decomposed in phases: each action phase corresponds 
to a primitive gesture, characterized by changes in sub-goals and related to mechanical events18. An activity can 
be hierarchically defined as a sequence of actions.

An additional aspect that needs to be considered is the definition of action instance: with instance (or seg-
ment) we refer to an entire action, associated with a corresponding subgoal, that may be composed by one or 
more gestures, depending on the action itself. Roughly speaking, it may be defined as a motion “portion” after 
which the subgoal has been met.The action of “beating eggs”, for example, may be intended as a repetition of cir-
cular gestures, whereas an action like “rolling the dough” may be considered like the union of two atomic gestures 
(a movement forward and a movement backward).

With this ideal formulation in mind, we identified as an appropriate context, a cooking scenario, a compromise 
between control of the setup and variability of possible actions type. We then selected a variety of upper-body 
actions, with the specific aim of providing a good variability in terms of spatio-temporal properties and complex-
ity. Indeed, the range of actions presents significant diversity in terms of motion granularity – as they may involve 
the movement of fingers, hands or the entire arms – and dynamics – including both slow and faster movements. 
Also, they may involve the use of one or two arm(s) and possibly the use of tools might require application of 
a variety of forces. Only one volunteer has been involved in the acquisitions. On this aspect, we notice that our 
main motivations for the acquisition of the dataset is related with the assessment of movements variability across 
different actions type and with the analysis of their main components. For these reasons, we put our attention on 
the richness of actions portfolio, while controlling the complexity of the problem with respect to other sources of 
variability, being the one related with the presence of many actors one of them.

We report in Table 2 the list of actions we considered in our data collection, which we believe provides a good 
test-bed scenario, accounting for all the considerations above. To enforce this observation, we show in the table 
some objective properties about the actions and their structure. In particular, we defined two distinct possible 
categorizations of our actions. The first one refers to the composition of an action in terms of motion primitives, 
identifying three possible cases:

P1 An action composed by a single primitive
P2 An action composed by a sequence of the same primitive
P3 An action composed by a sequence of different primitives

The second categorization refers to the notion of action instance in relation to the achievement of a goal. In 
this sense we may identify two different actions classes:

S “Single shot” actions, for which a single instance is enough to reach the goal (e.g., open the bottle or transport-
ing an object)
M “Multiple” actions, for which a sequence of primitive gestures, of variable length, is required (e.g., grating a 
carrot or mixing ingredients)

https://doi.org/10.1038/s41597-020-00776-9
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The last columns of the table refers to the presence of objects (for manipulating actions) and the fact that the 
action may involve both arms or just one.

Data acquisition.  As shown in Fig. 1, we set up a simple working scene composed by a table covered by a 
uniform table cloth, a chair in front of it, and a selection of real cooking tools. We focus on upper body motion: 
during the acquisitions, the actor is sitting in front of the table, performing cooking activities that may, or not, 
involve the use of tools. The acquisition infrastructure is composed by three identical IP high resolution cameras, 
acquiring at a rate of 30 fps, and a Motion Capture (henceforth referred to as MoCap) system, composed by six 
VICON infrared cameras, acquiring at a rate of 100 Hz/s. This allowed us to acquire, synchronously, multi-view 
videos of the actor and the skeleton description of the moving arm.

The cameras are mounted on three tripods so that in all acquisitions we have a still uniform background and 
moving foreground objects. The cameras observe the scene from three different viewpoints: a frontal view (see 
Fig. 1c), a lateral view (see Fig. 1a), and a quasi egocentric view, obtained by a camera mounted slightly above the 
subject’s head (see Fig. 1b). In this way all the cameras are fixed, including the egocentric one. As for the MoCap, 
each infrared cameras is equipped with an infrared strobe, capturing the light emitted by six reflective markers 
placed on relevant joints of the right arm of the actor: shoulder, elbow, wrist, palm, index finger and little finger 
(see the details in Fig. 1d). Notice that the use of both arms for performing a certain task can be only appreciated 
in videos, since the reflective markers have been placed on the right arm.

The MoCap system has been calibrated so that all markers positions are expressed according to a common 
reference system, whose ideal origin is placed on the middle-left part of the table (see Fig. 1d). The positions are 
expressed in millimetres. Such positions, collected over time, form trajectories associated with the anatomical 
points corresponding to the marker location on the actor body. As shown in Fig. 1e,f, for actions mixing, eating, 
and squeezing a lemon respectively, joints dynamic provide different amount of information and importance 
depending on the specific action.

During the recordings, no specific constraint has been imposed to the volunteer, that has been instructed to 
act as naturally as possible, with the only attention to move within the boundaries of the working space. The actor 
performed 20 repetitions of the 20 actions reported in Table 2. Depending on the nature of the action, this corpus 
of data may result in a different number of action instances, as it will be discussed in the section discussing data 
annotation. To enable the use of the data in a Machine Learning framework, training and test sequences have 
been acquired in specific acquisition sessions.

In addition, we also acquired sequences of more structured kitchen activities, composed by sequences of 
the considered actions, to simulate different intermediate stages of the preparation of a meal. A main goal in 
this case was to consider more real situations, when different primitive gestures or actions are performed in 
sequence, with a smooth transition between them and with an inevitable influence on each other. The specific 
sequences – a summary of which is provided in Table 3 – have been designed so to offer different complexities: 
so if Scene 2 is a slightly more complex variation of the grating a carrot action, the Scene 4 has a more complex 
structure, being composed by a sequence of diverse primitive gestures and sub-goals, and with multiple objects 
involved in the manipulation.

Action

Structure

Objects ArmsP1 P2 P3 S M

1 Shred a carrot x x n 1

2 Cut the bread x x y 1

3 Clean a dish x x y 1

4 Eat x x n 1

5 Beat eggs x x y 1

6 Squeeze a lemon x x y 1

7 Mince with a crescent x x y 2

8 Mix in a bowl x x y 1

9 Open a bottle x x y 2

10 Turn the pancake x x y 1

11 Pestle x x y 1

12 Pour water in containers x x y 1

13 Pour water in a mug x x y 1

14 Reach an object x x n 1

15 Roll the dough x x y 2

16 Wash the salad x x y 1

17 Salt x x y 1

18 Spread cheese on bread x x y 2

19 Clean the table x x y 1

20 Transport an object x x y 1

Table 2.  List of actions included in the MoCA, with associated main characteristics (see the text for details on 
the categorizations).
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The dataset finally includes about 1 h 35′ of acquisitions, of which 44′ are for the training sequences, 40′ are for 
the test sequences, and 11′ are for the scenes sequences.

We finally mention that MoCA is meant to be a growing project: we are planning new acquisitions covering 
a wider range of actions performed by different actors, possibly observed from new viewpoints. This will further 
expand the share of potential users, opening to new research questions and applications.

Data cleaning.  The sequences of markers positions acquired with the MoCap system may be affected by two 
main types of problems:

	 1.	 Reflections due to the surface of tools manipulated in certain actions may cause the presence of “dummy” 
markers, i.e., false detections

	 2.	 Temporary failures in markers detection may cause incomplete trajectories.

While for the first issue there is not a straightforward solution, to cope with the latter problem, the VICON 
software (https://www.vicon.com/software/) offers the opportunity to approximate the position of missing mark-
ers with a cubic spline interpolation.

No further filtering has been applied to the raw data.
3D coordinates have been exported in c3d files, the standard file format for MoCap systems acquisitions.

Fig. 1  The acquisition setup (d) is composed by a table on which the subject performs a selection of cooking 
activities. The scene is observed with 3 cameras, placed in 3 different viewpoints (see a–c) and a motion capture 
system, collecting trajectories of joints positions over time (see in e–g examples of 3 different actions). The 
volunteer A. Vignolo gave the consent to include her photographs in the publication.
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Data synchronization.  At the beginning of the recording, to facilitate the initial synchronization between 
the motion capture and the cameras streams, the actor performs an encoded action (snapping the fingers), that 
favours the manual identification of the initial times t M

0  and t V
0  of the motion capture stream and videos streams 

respectively.
Our two sources of data are not directly comparable: as mentioned above, video data are recorded with a sam-

pling rate of 30 fps, while MoCap data are acquired at a sampling rate of 100 Hz/s, meaning that we can not find 
an exact discrete mapping between them; indeed, given a video frame timestamp tv, the corresponding tm on the 
motion capture sampling is:

= + − ∗t t t t( ) 100/30 (1)m
M

v
V

0 0

which would correspond to a discrete value (leading to an exact synchronization) every 0.5 seconds, correspond-
ing to intervals of 15 video frames and 50 MoCap frames respectively.

Hence, given the synchronized starting instants of the two visual streams t M
0  and t V

0  (annotation provided, it 
can be found in file synchindex.csv), the rest of the synchronization can be obtained using the following 
formula:

+ ∗ = + ∗ ∈t t t t for t T15 50 0, (2)V M
0 0

where T depends on the length of the specific action.

Data annotation.  Data annotation concerned the identification of action instances in training and test 
sequences, and the detection and labelling of different actions in the scene sequences. The annotation has been 
mainly based on the analysis of the MoCap streams, while using the videos for a visual feedback. Two volunteers 
contributed to the annotation. More precisely, for each action sequence, we analysed the spatial trajectory covered by 
the marker placed on the palm of the hand, as it provides a stable characterization of the movements for all actions. 
From the trajectory, we identified meaningful cut points of the marker position along the most significant axis with 
respect to the MoCap reference system, marking the end of the portion associated with an action instance. Since 
the sequences are composed as repetitions of a same action, the principal axis is[are] the one[s] showing a repetitive 
pattern, facilitating the identification of cut points since they correspond to local extrema of the trajectory.

In Fig. 2 we report some examples to provide a visual intuition on the procedure: we show 3 actions observed 
from the viewpoint 0, together with the plots of their x, y, and z coordinates over time. We mark the anno-
tated time instants with red dots. We notice the procedure above corresponds to mark the local maxima of the 
y-coordinate for rolling the dough (left), the local minima of the z-coordinate for mincing with the mezzaluna 
(middle), and the local minima of the y-coordinate for cleaning a dish (right).

Table 4 provides a visual impression of the action instances distribution for training and test sequences after 
annotation. The percentages are computed over the total number of action instances annotated on the train-
ing and test set respectively (516 for training and 610 for test). The absolute number of instances per action is 
reported in Table 2 (third column), along with a statistical analysis which will be discussed in the next section.

As it can be noticed, for each action, a comparable amount of samples is available for training and test. Some 
actions are associated with a significantly higher number of samples. This holds true in particular for repetitive 
actions, as mixing or beating eggs, for which we decided to provide the annotation at the level of single gesture 
rather that at the level of action instance, as the specific number of gesture primitives composing the action 
instance is, for the nature of the action, variable and somewhat subjective. The hand-made decision of a specific 
splitting would have introduced a certain degree of bias in the annotation.

Concerning the annotation of the scenes sequences, we followed a similar procedure based on the analysis of 
the trajectory. In addition to the labelling of known actions, we also provide information on the presence of por-
tions of the sequence which do not correspond to a known concept (they may be for instance related to a pause in 
the activity or the instance of an unknown action).

Data Records
The dataset is publicly available on the GitHub (https://github.com/nicolettanoceti/cookingdataset) and figshare19 
repositories. In this section we briefly introduce the data structures we devised to store and represent the MoCA 
dataset, and the functions for loading, visualizing and managing the dataset. The reference language is MATLAB, 
MathWorks, Inc.

Scene 1 Preparing an omelet: beating eggs, reaching (the salter), transporting (the salter), salting, transporting (the salter), reaching (the 
jug), single pouring, transporting (the jug), reaching (the bowl), beating eggs

Scene 2 Grating cheese: reaching (the cheese), transporting (the cheese), grating (the cheese, corresponds to grating a carrot), 
transporting (the cheese)

Scene 3 Melting ingredients reaching (the bottle), transporting (the bottle), reaching (the lid), opening a bottle, transporting (the lid), 
reaching (the bottle), single pouring, reaching (the bowl), transporting (the bowl), mixing

Scene 4 Making a sandwich: cutting bread, transporting (the knife), transporting (the slice of bread), reaching (the knife), transporting 
(the knife), spreading, transporting (the knife), reaching (the slice of bread), eating

Scene 5 Preparing a lemonade: reaching (the lemon), transporting (the lemon), squeezing a lemon, transporting (the lemon), reaching 
(the squeezer), transporting (the squeezer), reaching (the cloth), transporting (the cloth), cleaning the table

Table 3.  Sequences of actions for the 5 available scenes.

https://doi.org/10.1038/s41597-020-00776-9
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Data.  The Cooking Dataset includes data regarding 20 different actions, as in Table 2. MoCap data streams and 
video recordings can be found respectively in folders |data/mocap| and |data/video|, both composed by a training 
and a test set, with a separate folder containing test scenes. In the figshare repository, the data are organized in a 
slightly different way, with no DATA folder. Moreover, for each action a folder (named accordingly to the action 

Fig. 2  A sketch of the strategy followed for the annotation. The plots report the evolution of the 3 coordinates 
of different actions (rolling the dough, mincing with the mezzaluna, and cleaning a dish), and, marked with red 
circles, the time locations that have been manually annotated as action instance delimiters. Below, samples 
frames from View 0 clarify to which moment in the action the instants correspond to.

Action Training Test

1 Shred a carrot 12% 15%

2 Cut the bread 4% 3%

3 Clean a dish 4% 3%

4 Eat 3% 3%

5 Beat eggs 15% 16%

6 Squeeze a lemon 4% 3%

7 Mince with a crescent 5% 7%

8 Mix in a bowl 3% 4%

9 Open a bottle 4% 3%

10 Turn the pancake 4% 3%

11 Pestle 5% 4%

12 Pour water in containers 2% 2%

13 Pour water in a mug 4% 4%

14 Reach an object 4% 4%

15 Roll the dough 5% 4%

16 Wash the salad 4% 4%

17 Salt 3% 3%

18 Spread cheese on bread 4% 4%

19 Clean the table 4% 4%

20 Transport an object 7% 7%

Table 4.  Actions instances distribution in training and test sequences, after manual annotation (see Section 
Data Annotation).

https://doi.org/10.1038/s41597-020-00776-9
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itself) contains two sub-folders with training and test videos. MATLAB structures containing the MoCap streams 
are composed by the following fields:

•	 Shoulder, elbow, wrist, palm, index finger and little finger: full raw MoCap streams, with no post-process-
ing; see Fig. 1d.

•	 index: array of manual segmentation indices;
•	 labels (present only in the scenes structures): array of labels of the actions performed in the sequence. Labels 

include an additional pause label, associated with moments in the sequence in which the actor is idle.
The point of view of the video recording is specified by the number at the end of each filename:

•	 “_0.avi” looks at the scene from the right, see Fig. 1a;
•	 “_1.avi” looks at the scene from the actor point of view, see Fig. 1b;
•	 “_2.avi” looks at the scene from the front, see Fig. 1c.

Loading and visualisation functions to access RGB and Kinematic streams can be found in the folder |public-
functions|, along with a pdf file reporting data information.

Technical Validation
In this section we first provide an experimental assessment of the data, then we explore possible scientific ques-
tions to be addressed with our dataset.

Data assessment.  For clarity, in this section, we consider one joint only. We select the palm as it is, on aver-
age, the most representative across actions of different granularity.

We start discussing simple evidences that can be derived by a preliminary data exploration on the Mocap 
sequences. A first characterization may be derived directly from the length of the action instances.

In Fig. 3 we notice how variance in times of execution is considerably higher for activities that require more 
than 2 seconds (that is, 200 frames) to be completed. These activities, in general, are more structured, include 
pauses and a higher displacement; examples are cutting the bread, eating, pouring water, reaching for an object, 
transporting an object.

Some of these considerations can be confirmed with a further data exploration we derived from an analysis 
of 3D positions. It provides a complementary actions characterisation to the one we initially provided in Table 2: 
if there, we highlighted ideal, objective properties guided by the action types and their goal, here we consider in 
Table 5 a quantitative assessment strongly related with the specific actions realisation and the data annotation 
we provided. More specifically, we compute standard deviations of positions and velocities (estimated as dis-
placement between consecutive positions) along the three main axes for each action instance, in order to have an 
intuition on the main direction and spatial displacement of the movements. We may notice different categories of 
actions can be identified according to these spatial properties: for instance carrot and rolling mainly evolve along 
main direction, while in the case of mixing the important directions are two. In order to have an overall intuition 
on this aspect, we report in Fig. 4 a visual representation of these quantities, in terms of the standard deviations of 
the 3D positions for all the classes, normalized between 0 and 1 to facilitate the visual comparison.

With an alternative visual representation, in Fig. 5 we also report sample frames from 3 actions and represent 
the evolution of 3D positions and 3D velocity by means of 3D + t histograms, computed by quantizing the appro-
priate feature space (positions and velocity) in equally spaced portions per input dimension, and then shown with 
a cube-based visualization. The frequency is inversely proportional to the transparency value in the visualization 
we propose. In the middle row, we show actions spatial distribution, in the bottom row their instantaneous velocity 
distributions. Meaningful peculiarities derived from simple motion properties of each action can be appropriately 
encoded with this visualization: the spatial distribution captures relevant trajectories (for instance the eating path),  

Fig. 3  Lengths of action instances in training (left) and test (right) streams.
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while velocity distribution highlight variations in the direction and magnitude of motion (notice how eating is 
a characterized by a uniformly low velocity, while mixing shows visible and smooth changes in direction, and 
rolling very relevant velocity peaks).

A baseline analysis.  In this section we provide a baseline analysis for the action classification tasks, some 
results already presented in20. We consider here the dataset portion of single actions and carry out action recogni-
tion with unimodal data. As for MoCap data, we adopt different combinations of the 3D + t histograms visualized 
in Fig. 5 (space only, velocity only, a concatenation of both) to model the space-time evolution of an action. To 
increase their effectiveness in characterizing the action, we concatenated the histograms related to 4 joints (elbow, 
wrist, palm, index) we empirically found to be the most important to the purpose. The obtained descriptions are 
finally used to feed a linear SVM classifier.

As for the video sources, here we proceed one view at a time (training and testing performed on the same 
view). To learn the representation we consider a variant of the Inception 3D21, a two-stream Inflated 3D ConvNets 
model, originally including two streams, RGB and Optical flow, jointly combined with a late fusion model. 
Conversely, we use only the flow stream of the network, also less prone to overfitting. The model is pre-trained 
on ImageNet dataset22 and on Kinetics-40023. Once trained, the network may be seen as a multi- resolution rep-
resentation of image sequences. The features learnt from the optical flow are flattened, and after a random drop-
out they are fed into a classifier. We compared two different strategies: the use of a Single Layer Perceptron (SLP) 
followed by a batch normalization layer, to promote regularization of the solution, and the adoption of the full 
original architecture, as in21. Results are reported in Table 6, that also includes a result from a state-of-art method 
on action recognition from skeleton data24. The regularity of the movements that the volunteer attains when 
performing repeatedly the very same task favours the overall uniformity of the replicas, thus facilitating the clas-
sification despite the actions complexity.

Examples of use of the MoCA.  We now discuss some examples of scientific questions that can be profita-
bly explored using the MoCA dataset as a test-bed. Noticeably, the tasks refer to different domains, ranging from 
Cognitive Science to Computer Science, with applications to Human-Human Interaction and Human-Machine 
Interaction.

Selecting action timing for collaborative Human-Machine Interaction.  To work efficiently together, human and 
artificial agents require a mutual understanding of what the partner is doing and when it is the right moment to 
act. To this purpose action segmentation allows the artificial agent to understand when an action is ending. In 
some cases one may also identify finer relevant time instants, within an action, which may be informative of the 
partner’s movement timing. The instants can be interpreted as temporal locations where the time signal describ-
ing a motion can be ideally segmented, providing a set of primitives that can be used to build a temporal signature 

Action

rep.

Std.Dev. 3D Pos. Std.Dev. 3D Vel.

Vel. norm# name X Y Z X Y Z

1 Shred a carrot 139 2.85 2.73 36.77 0.66 0.48 5.14 5.00

2 Cut the bread 35 16.68 24.38 12.69 1.34 2.43 0.76 2.54

3 Clean a dish 35 12.23 16.11 11.59 1.65 2.13 1.56 2.66

4 Eat 28 20.49 113.11 92.89 0.45 1.97 1.66 0.51

5 Beat eggs 157 3.79 6.07 6.33 0.98 1.60 1.51 2.41

6 Squeeze a lemon 40 9.31 10.36 6.63 0.89 1.06 0.65 1.49

7 Chop with a crescent 61 32.76 7.14 39.91 3.20 0.74 3.82 4.63

8 Mix in a bowl 37 33.68 28.12 4.37 3.00 2.56 0.43 3.90

9 Open a bottle 34 19.35 8.78 19.97 0.83 0.52 0.71 0.94

10 Turn the pancake 37 9.97 14.53 19.97 0.75 1.32 1.80 1.51

11 Pestle 43 21.65 15.99 7.58 2.04 1.66 0.89 2.87

12 Pour water in containers 22 18.04 9.25 13.22 0.49 0.26 0.43 0.42

13 Pour water in a mug 40 52.76 28.16 86.22 0.99 0.52 1.49 0.81

14 Reach an object 39 108.80 123.43 26.22 2.78 3.25 1.51 0.56

15 Roll the dough 47 6.66 78.90 5.78 0.55 4.58 0.64 5.27

16 Wash the salad 41 19.81 20.88 1.29 1.22 1.24 0.10 1.91

17 Salt 35 36.89 9.44 37.25 3.24 0.76 3.26 2.72

18 Spread cheese on bread 43 13.55 16.28 6.73 0.51 0.54 0.43 0.67

19 Clean the table 40 8.93 73.42 2.42 0.91 6.15 0.28 6.82

20 Transport an object 73 117.59 105.58 26.27 2.17 1.96 1.34 0.86

Table 5.  Some statistics and features on the annotated action instances. From left to right: (Column 1): actions 
identification number. (Col. 2): action name or description. (Col. 3): number of action instances manually 
annotated. (Col. 4-5-6): standard deviation of the motion capture palm marker 3D positions, with respect to the 
three main directions (X, Y, Z). (Col. 7-8-9): standard deviation of the 3D velocities, computed from the motion 
capture palm marker position, with respect to the three main directions (X, Y, Z). Col. 10: 3D velocity norm.
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of the action and finally support the understanding of the dynamics and coordination in time. Such relevant 
instants can be detected by exploiting motion information embedded in the so-called dynamic instants, i.e., time 
instants in which the dynamic of an action is subject to a change, that may be due to variations in velocity, accel-
eration, or direction of motion. In25, dynamic instants are identified as minima of the velocity profile, directly 
derived from the optical flow26, and then classified as instants where an action is starting, ending, or changing27.

In Fig. 6 we show how the dynamic instants in25,27 relate with the annotation we provide for the MoCA 
(for the plots we considered a mixing action). The two plots – referring to a video (top) and a Mocap (bottom) 
sequence – have been adjusted to consider the same temporal extent, using Eq. 1. While the annotation identi-
fies action instances (a full mixing round), the dynamic instants delimit motion primitives (the two halves of 
the round). Detection and annotation can thus be jointly used to reason on actions and their decomposition in 
sub-structures. Furthermore a similar approach has proven to support the possibility for a robot to coordinate in 
time with human partners performing a repetitive action, with no a priori knowledge of the spatial properties of 
their movements27.

Context-less human judgments of motion similarities.  An open research question refers to understanding how 
humans perceive actions and their similarities. Investigating what are the features that we consider when we have 
to judge whether two movements are two instances of the same action, even in absence of contextual informa-
tion, may provide useful insights on how to enable the same capabilities on artificial agents and establish a shared 
perception with them.

The MoCA dataset can be used to this purpose. In Fig. 7 we provide a visual representation of an experiment 
in which the actions are provided to users with no contextual information (using visualizeSkeleton to show the 
skeleton over time), asking to judge the similarity among different action instances. The experiments, that have 
been described in28, have been organized as follows. Triplets of instances of actions (that we will call stimulus A, 

Fig. 4  Normalized standard deviation of the palm 3D position for each action, referring to columns 4, 5 and 
6 of Table 2. This visualisation emphasizes the presence of one or more peaks in the standard deviation of the 
3 coordinates, suggesting a possible categorization of the actions – according to the number of dimensions in 
which the movement mainly evolves – and providing a guide for manual annotation.
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stimulus B and Target Action) have been concurrently shown to users, that had to decide whether the Target was 
of type A or B.

With the aim of understanding the relationships, if any, between a biological agent and an artificial one, an 
analogous experiment has been replicated using the computational models described in20. The outcome of the 
analysis suggested that, overall, human visual system seems to prioritize the spatial properties of the visual stimuli 
(including their relative positions) more often than the speed information29.

This observation opens to further interesting questions, related to the relative importance of the kinematic 
features depending on the conditions of observations of the motion, for instance the viewpoint or the specific type 
and granularity of the movements. In this sense, the MoCA represents an ideal test-bed.

Cross-view action recognition.  As a last example, we consider view-invariant action recognition. This task plays a 
crucial role in humans, supporting the capability to solve the correspondence problem, i.e., identifying a mapping 
between the others’ actions and their own, which is necessary for crucial activities as social learning, imitation 
or mimicry30.

In this section we report the results of an analysis based on a domain adaptation procedure that allows us to 
counter-balance the limited size of MoCa with respect to the typical size required by modern machine learning 

Fig. 5  Example of 3D + t histograms for 3 different actions. Above: sample frames to show the evolution of 
actions. Middle: histograms of action positions. Below: histograms of instantaneous velocities. All histograms 
refer to the palm joint.

Method Accuracy

MoCap

Space 3D + t histograms + linSVM20 0.92 ± 0.19

Vel 3D + t histograms + linSVM20 0.82 ± 0.27

Full 3D + t histograms + linSVM20 0.95 ± 0.11

Haskel24 0.98 ± 0.01

Videos
I3D features + SLP 0.94 ± 0.22

Full I3D model(*) 0.92 ± 0.23

Table 6.  Action recognition benchmark, see text. (*) The final 2 layers of the I3D model were finetuned on the 
training data.
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architectures. Specifically, we assess the potential of pre-trained intermediate deep features in mimicking the role 
of view-dependent neurons and view invariant higher level descriptions. The features are the same we adopted 
in the baseline analysis. The resulting validation accuracies are shown in Table 7. We first consider a one-view 
out protocol, when the classifiers are trained with 2 viewpoints and tested on the third; if compared to baseline 
results (see Table 6), there is a notable and expected drop in the capability of the classifiers to correctly classify 
the actions, but considering they are not explicitly trained to identify actions view-invariantly, this drop is not 
remarkable. Notice in particular how the egocentric view is the hardest to classify if it does not participate in the 
training phase. Second, we adopt a one-one protocol, training classifiers on a single viewpoint and evaluating on 
another viewpoint, to analyse view-view relationship. When both views are allocentric ({0|2},{2|0}), the resulting 
values are almost as high as in one-view out experiments. But in all cases where V1 is involved in the one-one 
protocol ({0|1},{1|0},{1|2},{2|1}), there is a noticeable drop in the performance. The results highlight the specific 
challenge in dealing with view invariance when ego-vision is one of the views considered. This experiment raises 
further multidisciplinary questions that could be explored with the help of the proposed dataset. Indeed, from 
the numerical point of view, the consideration on the complexity of ego-vision appears to be understandable for 
the smaller amount of dynamic information included in the ego view of the actions. Instead, it is in contrast with 
recent findings in neuroscience. First-person view seems to have a prominent role relative to other perspectives 
in terms of responsiveness in the sensorimotor areas of the brain during action observation31 and has been shown 
to facilitate certain forms of action understanding (e.g., estimating the size of an object to be grasped)32.

Marker-less pose estimation.  We close the section with a view on our preliminary results in the domain of 
motor control. We are exploring the use of state-of-art marker-less methods for human pose estimation33 and 

Fig. 6  A visual comparison between time locations corresponding to dynamic instants – i.e. local minima of a 
velocity profile obtained from optical flow maps as in25 – and to the annotation we provide for the MoCA for a 
sequence of mixing actions. While the latter identifies action instances, the first delimit motion primitives.

Fig. 7  A visual representation of the experiment designed to evaluate the ability of humans to judge action 
similarities in absence of contextual information.

https://doi.org/10.1038/s41597-020-00776-9


13Scientific Data |           (2020) 7:432  | https://doi.org/10.1038/s41597-020-00776-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

motion analysis, as opposed to a marker-based approach, the gold-standard in in motor control applications. In 
Fig. 8 we show examples of features automatically detected on the videos, with a detection method based on the 
DeepLabCut architecture34, from where the accuracy in the detection – regardless the specific viewpoint – can 
be appreciated. The MoCA, providing both videos and motion capture data, is an ideal test-bed for a quantitative 
comparison between the different strategies of detection.

Code availability
We made available the following functions that allow the user to load and process the data. Further information 
on how to use the code can be found in the correspondent MATLAB files.

• loadDataset, loadAction: allow the user to load and save the MoCA dataset in an easy-to-use data structure. 
loadAction gives the user the possibility of loading only part of the data streams, specifying for example an 
action label, a marker or an instance;

• segmentAction: segments the single instances of action from the full MoCap streams. It makes use of the 
index array mentioned above.

Three types of visualisation functionalities are available:

• visualiseAction: it produces a 3D plot of each marker’s trajectory
• visualiseSkeleton: shows the arm skeleton over time while performing a complete action instance, from 

MoCap data;
• initSynch and synchronizedView: jointly shows the action using RGB and Kinematic data. By means of the 

csv file synch_index.csv, the function initSynch prepares the data structures used in synchronizedView for 
the actual visualisation.

All the functions we provided can be used also on the test scenes.
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