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Abstract: The validity of a local positioning system (LPS) to measure inter-unit distance was
investigated during a team sport movement circuit. Eight recreationally active, female indoor
team-sport players completed a circuit, comprising seven types of movements (walk, jog, jump,
sprint, 45◦ change of direction and shuffle), on an indoor court. Participants wore a receiver tag
(ClearSky T6, Catapult Sports) and seven reflective markers, to allow for a comparison with the
reference system (©Vicon Motion Systems, Oxford Metrics, UK). Inter-unit distance was collected
for each combination of participants. Validity was assessed via root mean square error, mean bias
and percentage of variance accounted for, both as an overall dataset and split into distance bands.
The results presented a mean root mean square error of 0.20 ± 0.05 m, and mean bias detected an
overestimation for all distance bands. The LPS shows acceptable accuracy for measuring inter-unit
distance, opening up opportunities to utilise player tracking for tactical variables indoors.

Keywords: player tracking; team sports; tactical; validity; positioning; performance analysis; local
positioning system

1. Introduction

1.1. Player Tracking Technology

Electronic performance and tracking systems (EPTS) have recently seen large developments,
allowing them to facilitate tracking of players both indoors and outdoors with greater accuracy.
Until recently, EPTS were limited to outdoor sports, whereby the Global Positioning System (GPS) was
used to track a player’s locomotion, position and speed [1,2]. With a large focus on GPS in outdoor
sports, the accuracy of this type of technology has been extensively investigated, showing adequate
accuracy for assessing players’ distance [1]. However during unstructured movements, high rates
of change in velocity and at peak speeds, less favourable results were found. Overestimations of
up to 19.3% were found in changes in velocity during decelerations [3], while peak speeds were
underestimated compared to the reference system by 14–29% [4]. Even with the considerations of
GPS accounted for, use of GPS has been inaccessible for indoor sports, with stadium infrastructure
preventing clear signals to satellites. As such, indoor sports including basketball, handball, futsal and
netball have been restricted to expensive optical tracking systems, which are susceptible to player
occlusion errors [5]. However, recent developments in local positioning systems (LPS), specifically
bluetooth-based and ultra-wideband (UWB) technologies, have opened up opportunities to integrate
EPTS in indoor sports [6–8].
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1.2. Ultra-Wideband

Local positioning systems operate indoors usually on short-range communication between radio
wave generators and receivers. As such, they can run on varying bandwidths depending on the
technology, and UWB specifically occupy a large frequency bandwidth (>500 MHz) [9]. Operating
at this bandwidth allows UWB systems penetration through objects such as wood, plastic, brick,
and other building materials, excluding metal [10]. This provides the ability for the tracking of
humans without occlusion errors occurring [9]. Additionally, unlike other radio frequency-tracking
technologies, UWB’s high bandwidth combined with very low short pulses waveforms, allows for
reduced signal interference from other radio frequency devices and increased signal stability [10,11].

Local positioning systems using UWB technology have been validated previously for analysing
position, speed and distance [8,12,13]. During linear drills, mean and peak acceleration and speed
displayed errors in the range of 0.5% to 7.5% [12], while total distance was found to have error ranges
between 0.5% to 2.3% [8,12]. Finally, position was found to have the least amount of error, with 0.19%
to 0.58% error ranges [13]. However, this paper used known distance as a reference, which may
underestimate the difference between systems. Conversely, research pertaining to the reliability of
UWB systems for indoor sports is currently limited, however one study has assessed the inter-unit
reliability of one system (WIMU PRO™, RealTrack Systems, Almeria, Spain) for position, reporting an
intra-class correlation coefficient for x-coordinate and y-coordinate of 0.65 and 0.88 respectively [14].
Additionally, reliability measures of the system were not significantly affected during replication
of typical movements of team sport which reached speeds >15 km/h [9]. With validation of UWB
for locomotion and player position, research has now focused on describing the match and training
demands of each sport [15–18].

However, recent research using GPS positional data has focused on spatiotemporal tactical
variables to analyse team collective behaviours and dynamics. Now with the same ability as GPS
to track player positions on an indoor court, positional data from UWB systems can be used to
provide contextual information to analyse players’ tactical roles and how they impact other players’
performance [19].

1.3. Tactical Variables

Tactical variables are used to explain player, team and opposition dynamics on the field through
their interactions, spacing, synchronisation and integration alongside technical and physical variables.
Tactical variables can be understood as variables that occupy both space and time (i.e., spatiotemporal)
and are derived from the field of geometry [20]. Thus, spatiotemporal data, when used to describe
collective behaviours of players, can provide a measure of tactical performance [21]. The most basic
tactical variable is inter-player distance; identifying the distance between players’ positions on the
field [22,23] and providing insight into their interactions and coordination tendencies. Team-based
tactical variables include surface area and dominant region; explaining the effective playing space a
team or group of players look at controlling [24,25], stretch index and length per width ratio; indicating
the contraction and expansion of a team as they move through the transitional phases of a game [26–28].
Finally, the collective behaviour and synchronisation of a team has previously been analysed using the
team centroid and approximate entropy; describing the behaviour and centre position of a team of
players and their inter-player coordination respectively [25,29].

These tactical variables have previously been analysed for outfield sports using GPS [28,30].
While research is beginning to utilise LPS and optical EPTS, for tactical analysis indoors [6,7,26],
these systems have yet to be validated for their accuracy in measuring inter-unit distance. This is of
importance for tactical analysis, as most tactical variables are primarily made up of inter-unit distances
which are then combined to create team level variables. If inter-unit distance accuracy is poor, this may
compound when calculating multiple inter-unit distances for larger spatiotemporal variables. As such,
the aim of this study is to assess the criterion validity of the Catapult ClearSky T6 local positioning
system for measuring inter-unit distance, applicable to all indoor sports for tactical analysis.
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2. Materials and Methods

2.1. Participants

Eight recreationally active female indoor team sport players (26.9 ± 3.7 years old, 174.0 ± 8.2 cm,
67.5 ± 8.4 kg) were recruited to participate in this study. All participants received verbal and written
information regarding the procedures of the study and provided written consent for their participation
in the study. The investigators’ institutional Human Research Ethics Committee approved the study.

2.2. Experimental Overview

The study was conducted at Melbourne Arena (Melbourne, Australia), a commonly used arena
for team sports competition. Melbourne Arena had previously been fitted with the UWB tracking
system and surveyed for calibration of court dimensions. The testing session comprised a team sport
movement circuit measuring 15 × 20 m on an indoor parqueted surface. Participants completed the
circuit while wearing a receiver tag (ClearSky T6, Catapult Sports, Melbourne, Australia) which was
placed in a wearable vest, positioned between the participant’s scapulae. Participants also had attached
seven reflective markers, placed on the receiver tag and other prominent landmarks of the participants,
and these were used for the reference system to capture participant position and for future reference
system analysis. The reference system was set-up around the circuit area, with a larger capture area of
19–24 m to ensure no black spots occurred. All participants completed a self-paced warm-up, before
the start of the circuit.

2.3. Data Collection

2.3.1. Circuit

The indoor sports movement circuit comprised locomotion activities commonly occurring in
indoor sports, as presented in Figure 1. The circuit was designed using research assessing frequently
recurring movement sequences to imitate indoor team-sports movements [31]. Participants performed
seven movement sequences at self-paced intensities and one maximal acceleration, which was verbally
encouraged by a researcher positioned at the beginning of the acceleration station. The movement
sequences were performed in the following order:

1. Self-paced walk (9 m).
2. Self-paced jog (9 m).
3. Self-paced jump.
4. Self-paced run (13 m).
5. Maximal acceleration (9 m).
6. Three self-paced 45◦ changes of direction (13 m).
7. Self-paced side shuffle (15.4 m).
8. Self-paced walk (13m)

2.3.2. Catapult ClearSky T6 Setup

The LPS (Catapult ClearSky T6, Catapult Sports, Melbourne, Australia) previously installed for
the area comprised 20 fixed anchor nodes. Nodes were fixed at varying heights ranging between
19.7–20.9 m and proximity from the court boundaries ranging between 12–32 m, as presented in
Figure 1; this ensured full court coverage and minimised metal interference. The master anchor
was connected via Ethernet cabling to the data processing laptop, which captured data at a reported
frequency of 10 Hz. Data were processed using Openfield™ console software version 1.22.2 (Catapult
Sports, Melbourne, Australia), with receiver tags worn by participants seen by the system at all times.
The system utilises a narrow UWB frequency of range 3.1 to 10.6 GHz to locate receiver tags in the
surveyed area. A minimum of three anchor nodes were required to have clear lock on a receiver tag,
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with the location of the tags being calculated through a multi-process algorithm using two-way ranging
(TWR), angle of arrival (AoA) and time difference of arrival (TDOA).
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Figure 1. Schematic representation of Vicon setup (white indented circles), ClearSky setup (black
pentagons) and circuit boundaries (dashed line), with illustration of circuit movements: start (black
circle), walk (A,G), jog (B), jump (white circle), run (C), maximum acceleration (D), change of direction
45◦ (E) and shuffle (F).

2.3.3. Vicon Setup

The reference system used was a Vicon motion analysis system (©Vicon Motion Systems,
Oxford Metrics, UK), set up using 20 cameras (T40 and Vantage) as presented in Figure 1. The system
captured at a frequency of 100 Hz, with the cameras mounted on tripods offset 2 m from the perimeter
of the circuit area, for a capture area of 19 × 24 m. Seven, 40-mm reflective markers were attached to
the receiver tag and other prominent landmarks on the participants:

1. Catapult Unit (receiver tag).
2. Right Shoulder.
3. Left Shoulder.
4. Left Front Hip.
5. Right Front Hip.
6. Right Back Hip.
7. Left Back Hip

The reflective marker attached to the outside of the pouch containing the receiver tag was used
as the reference system’s comparative position, while the other six reflective markers were used for
future analysis. All 20 cameras were connected via two-gigabit switches that were attached to the
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data-processing laptop (separate from the LPS laptop) via ethernet cabling. The reference system was
calibrated to the capture area, with Vicon calibration image and world errors of 0.094 mm and 0.525 mm
respectively. Additionally, the refinement frames were set at 3000 frames with the origin of calibration
set using Active Wand v2. Reference system marker dropout was accounted for using Vicon Nexus
software version 2.8.2 (©Vicon Motion Systems, Oxford Metrics, UK), by gap filling through automatic
pattern detection (maximum 10 frame gaps only filled). This automatically used other marker locations
to determine the trajectory of the dropped marker. If these markers were unavailable, the spline fill
option was used, which calculates the position based on 10 frames either side of the dropped marker.
Finally, when marker dropout was for a substantial length, the data were excluded from the analysis.

2.4. Data Processing

Data was exported from the LPS and reference system software and analysed in R statistical
software (R: A language and environment for statistical computing, Vienna, Austria). Raw Vicon
data was smoothed and filtered using a proprietary Butterworth and moving average filters, to mimic
the same processing that is applied to the ClearSky data (further details of smoothing and filtering
processes are protected by a non-disclosure agreement). As Vicon data were captured at 100 Hz,
compared to Catapult captured at 10 Hz, raw Vicon data were down-sampled from 100 to 10 Hz
by sub-setting every 10th frame. Each subset of data was inspected for best fit to the Catapult data.
Additionally, the Y component of Vicon data required translation, as it had been captured as the
Z-axis. Therefore, by finding the mean between the Vicon data and Catapult dataset, Vicon data were
translated down to the same scale

2.5. Statistical Analysis

Inter-unit distance was calculated for each combination of participants as the distance between each
players x, y coordinates. Each participant combination was used once only, resulting in 21 individual
combinations (one participant was not used due to poor Vicon data quality). This was calculated for
both ClearSky and Vicon datasets using the formula below:

D =

√
(ax − bx)

2 +
(
ay − by

)2
(1)

where D is the distance between the two participants, a is participant one and b is participant two and
x and y are the coordinates. The two datasets, ClearSky and Vicon were visually inspected to ensure
they lined up at a common starting point (Figure 2).

Sensors 2020, 20, x  5 of 10 

 

analysis. All 20 cameras were connected via two-gigabit switches that were attached to the data-

processing laptop (separate from the LPS laptop) via ethernet cabling. The reference system was 

calibrated to the capture area, with Vicon calibration image and world errors of 0.094 mm and  

0.525 mm respectively. Additionally, the refinement frames were set at 3000 frames with the origin of 

calibration set using Active Wand v2. Reference system marker dropout was accounted for using Vicon 

Nexus software version 2.8.2 (© Vicon Motion Systems, Oxford Metrics, UK), by gap filling through 

automatic pattern detection (maximum 10 frame gaps only filled). This automatically used other 

marker locations to determine the trajectory of the dropped marker. If these markers were 

unavailable, the spline fill option was used, which calculates the position based on 10 frames either 

side of the dropped marker. Finally, when marker dropout was for a substantial length, the data were 

excluded from the analysis. 

2.4. Data Processing 

Data was exported from the LPS and reference system software and analysed in R statistical 

software (R: A language and environment for statistical computing, Vienna, Austria). Raw Vicon data 

was smoothed and filtered using a proprietary Butterworth and moving average filters, to mimic the 

same processing that is applied to the ClearSky data (further details of smoothing and filtering 

processes are protected by a non-disclosure agreement). As Vicon data were captured at 100 Hz, 

compared to Catapult captured at 10 Hz, raw Vicon data were down-sampled from 100 to 10 Hz by 

sub-setting every 10th frame. Each subset of data was inspected for best fit to the Catapult data. 

Additionally, the Y component of Vicon data required translation, as it had been captured as the  

Z-axis. Therefore, by finding the mean between the Vicon data and Catapult dataset, Vicon data were 

translated down to the same scale 

2.5. Statistical Analysis 

Inter-unit distance was calculated for each combination of participants as the distance between 

each players x, y coordinates. Each participant combination was used once only, resulting in 21 

individual combinations (one participant was not used due to poor Vicon data quality). This was 

calculated for both ClearSky and Vicon datasets using the formula below: 

𝐷 = √(𝑎𝑥 − 𝑏𝑥)2 + (𝑎𝑦 − 𝑏𝑦)2 (1) 

where D is the distance between the two participants, a is participant one and b is participant two 

and x and y are the coordinates. The two datasets, ClearSky and Vicon were visually inspected to 

ensure they lined up at a common starting point (Figure 2). 

 

Figure 2. Example comparison of ClearSky (white circles) and Vicon (black circles) inter-unit distance. 

Vicon data was smoothed and filtered to match Catapult using a proprietary combination of filtering 

techniques. 

Figure 2. Example comparison of ClearSky (white circles) and Vicon (black circles) inter-unit
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Criterion validity was measured using root mean square error (RMSE), reported in metres using
the following equation:

RMSE =

√
Σn

i=1(Pi −Oi)
2

n
(2)

where P is ClearSky data; O is Vicon data and n the length of the time series. Mean bias was used to
measure the bias of the ClearSky LPS, and it was calculated using the following formula:

MB =
1
n

n∑
i=1

(Pi −Oi) (3)

where P is ClearSky data, O is Vicon data and n is the length of time series. Finally, the percentage of
variance accounted for (%VAF) was used to measure the portion of the variance for Vicon, accounted
for by ClearSky. This was calculated for each combination and distance band using the formula below:

% VAF = 100×

1−

∑n
t=1 (Ot − Pt)

2∑n
t=1 (Ot)

2

 (4)

where P is Catapult data, O is Vicon data, n is length of time series and t is the time.
Additionally, a rolling RMSE function was used on all combinations, providing a matrix of RMSE

as a function of cumulative time. This was used to compute RMSE stabilisation at a threshold of 1/500
of the final rolling cumulative RMSE (Figure 3), to ensure enough data were analysed, whereby the
error rates stabilises. Through this stabilisation analysis, data lengths between 43 and 50 s were
found to be sufficient for stabilisation of error. All combination datasets were cut at 50 s to ensure
consistent results. Finally, analysis was conducted on the association between distance of units and its
function on the accuracy of inter-unit distance. Distances were discretised into five interval bands
to highlight differences between smaller and larger inter-unit distances on the RMSE, mean bias and
%VAF between the LPS and reference system. The accuracy measures were calculated for each distance
band, by analysing the values that resided within each band. The five bands were:

1. 0–5 m
2. 5–10 m
3. 10–15 m
4. 15–20 m
5. >20 m
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The study methodology was written following a recently published protocol [32] in order to warrant
the strict description of the use of technology, scoring 16 points out of 21 (76%). The authors confirm that
the data supporting the findings of this study are available within the articles Supplementary Materials.

3. Results

The overall RMSE between the Catapult LPS and Vicon system for inter-unit distance was
0.20 ± 0.05 m, while the mean bias was 0.10 ± 0.06 m. Comparisons between ClearSky and Vicon
inter-unit distance at different distance bands is presented in Table 1. Inter-unit distance based on
distance bands resulted in larger RMSE values at larger distances. Bands of 5–10 m, 10–15 m, 15–20 m
and >20 m had RMSE values in the range of 0.20 to 0.22 m, compared to the 0–5 m band with a RMSE
of 0.18 m.

Table 1. Difference Between Distance Bands’ Inter-Unit Distance Accuracy, Root Mean Square Error,
Mean Bias and Percentage of Variance Accounted For.

Distance Band N. Frames RMSE (m) Mean Bias (m) Percentage of Variance Accounted for (%)

0–5 m 2731 0.18 ± 0.08 0.14 ± 0.10 94.34 ± 0.09
5–10 m 3232 0.20 ± 0.07 0.14 ± 0.10 98.64 ± 0.01

10–15 m 2643 0.20 ± 0.07 0.07 ± 0.06 98.32 ± 0.01
15–20 m 1684 0.21 ± 0.06 0.03 ± 0.05 97.88 ± 0.03
>20 m 210 0.22 ± 0.05 0.06 ± 0.08 74.37 ± 0.28

4. Discussion

The objective of this investigation was to assess the criterion validity of the Catapult ClearSky T6
local positioning system for assessing inter-unit distance. The overall results of the study returned
a mean RMSE of 0.20 ± 0.05 m, which was more favorable compared to a previous investigation
of a Bluetooth Low Energy Channel tracking system, presenting a mean error of 0.30 ± 0.13 m [7].
The current study also found a mean bias of 0.10 ± 0.06 m, including all distance bands displaying bias
overestimates of the true values, especially at distances below 10 m. Finally, %VAF analysis was stable
across all distance bands, excluding distances above 20 m. These findings are important for the use of
the LPS to accurately measure spatiotemporal variables, as these variables’ base function is centered
on inter-unit distances.

These results align with similar research which found the ClearSky T6 LPS to have mean error of
0.21 ± 0.13 m for measuring position [8] in the optimal setup. Previous investigations into the errors
associated with anchor placement on validity of the ClearSky system have found increased error in-sub
optimal setups (1.79 ± 7.61 m) compared to optimal setups (0.21 ± 0.13 m) for position estimates [8].
This was attributed to node positions, near corners and proximity between node and court boundaries
which could reduce accuracy due to increased multipath propagation [33]. Errors of this nature were
mitigated as setup was optimized within the stadium, as seen in Figure 1, which represents varying
anchor heights to mitigate metal infrastructure interference and adequate proximity of node to edge of
the field.

Analysis of the associations between different distance bands and inter-unit distance accuracy
indicates increased error at larger distances. These findings suggest that as distances between units
increase so does the error of observed values, as seen with a linear increase in RMSE results from
0.18 ± 0.08 at distances between 0–5 m to 0.22 ± 0.05 m above 20 m. It is difficult to compare these
results with previous studies, as to our knowledge this study is the first to analyse inter-unit distance
accuracy at distances above 20 m. A previous investigation found higher accuracy for larger distances,
however the studies distances only ranged from 0.5–1.8 m [7]. The limited amount of research assessing
the validity of UWB systems over a spectrum of distances covered in indoor team sports highlights
the contribution of the current findings in further understanding the capabilities of the UWB system.
While the fixed setup of this study was optimal for the stadium used, each stadium requires correct
surveying and optimal positioning of anchors to mitigate black spots and interference. This is especially



Sensors 2020, 20, 3693 8 of 10

important, as a mobile version of the system is available, which allows for transportation and manual
setup at stadiums. However further research is warranted for this version, to ensure validity and
reliability during the manual setup. Additionally, research testing the accuracy of a different number
of anchors used in the system would provide further understanding of the system’s capabilities and
the minimum number of anchors required for a valid accurate signal. Also, while the number of
participants (n = 8) provided an adequate 21 combinations for analysis, additional research into
unstructured movements using more participants such as small-sided games or match simulations
could be warranted. Finally, further validation of tactical variables is required, as only one study thus
far has investigated EPTS for measuring tactical variables [13]. Therefore, future research should look
at validation of the inter-stadium reliability of EPTS to allow accurate comparison of tactical variables
during matches and training.

5. Conclusions

With acceptable inter-unit distance accuracy found in this study, as well as adequate ability to
measure distance, speed and position [8,12], the ClearSky LPS can be confidently used to capture
spatiotemporal tactical variables which can be used to assess team tactical synchronisation, inter-player
interactions, and coordination tendencies. The RMSE for inter-unit distance ranged between 0.18–0.22 m
for all distance bands, representing acceptable validity at all distances investigated. This opens up
opportunities for increased investigation using spatiotemporal tactical variables in indoor sports.
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Data S1: Data.zip
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