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The emergence of cross-modal learning capabilities requires the interaction of
neural areas accounting for sensory and cognitive processing. Convergence of
multiple sensory inputs is observed in low-level sensory cortices including primary
somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas
such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional
connectivity between sensory cortices participate in cross-modal processing. However,
little is known about the functional interplay between neural areas underlying sensory
and cognitive processing required for cross-modal learning capabilities across life.
Here we review our current knowledge on the interdependence of low- and high-level
cortices for the emergence of cross-modal processing in rodents. First, we summarize
the mechanisms underlying the integration of multiple senses and how cross-modal
processing in primary sensory cortices might be modified by top-down modulation
of the PFC. Second, we examine the critical factors and developmental mechanisms
that account for the interaction between neuronal networks involved in sensory and
cognitive processing. Finally, we discuss the applicability and relevance of cross-
modal processing for brain-inspired intelligent robotics. An in-depth understanding
of the factors and mechanisms controlling cross-modal processing might inspire the
refinement of robotic systems by better mimicking neural computations.

Keywords: cross-modal processing, primary sensory cortices, prefrontal cortex, top-down, bottom-up,
development

SENSORY-COGNITIVE INTERPLAY DURING CROSS-MODAL
PROCESSING

The brain permanently receives sensory information addressing multiple modalities. Its capability
to process diverse sensory inputs is mandatory to create a coherent perception of the environment,
and ultimately to guide adaptive behavior. The diverse sensory components of a stimulus
are processed and conveyed in a discrete manner by modality-specific pathways (Figure 1A),
where each modality provides unique information about the stimulus. Complementing stimulus
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FIGURE 1 | Continued
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FIGURE 1 | Bottom-up and top-down cross-modal processing. (A) Schematic drawing of a mouse receiving visual information (red arrow) about a
behaviorally-irrelevant object (trees) and a behaviorally relevant object (approaching eagle) that is accompanied by tactile and auditory information (vibrations and
sounds, green and blue arrows). (i) Schematic diagram showing how visual (ii), tactile (iii), and auditory (iv) information is transferred in the brain. (B) Schematic
diagram of bottom-up sensory information flow from primary sensory cortices to PFC. The black arrows correspond to cross-modal processing from primary
sensory cortices to PFC, whereas the gray arrows correspond to cross-modal processing within primary sensory cortices. (C) Schematic diagram of top-down
prefrontal modulation of neuronal activity in primary sensory cortices. PFC has been proposed as the source of top-down attention signals that modulate
cross-modal processing in primary sensory cortices in favor of the attended features. Studies have highlighted the effects of attention on neuronal responses in
primary sensory cortices, such as an increase in neuronal discharges and a decrease in the variability of neuronal responses. The black arrows correspond to the
direct connections from PFC to primary sensory cortices. The gray arrows correspond to the top-down modulation of sensory processing in primary sensory cortices
during attention. (D) Neural mechanisms of bottom-up and top-down cross-modal processing. (i) Spike trains before and after stimulus. Neuronal firing is random
pre-stimulus, whereas post-stimulus firing rate is enhanced and marked by a precisely timed onset. Stimulus is represented by the red arrow. (ii) Phase reset as a
mechanism of bottom-up cross-modal processing. The phase of oscillatory activity is random pre-stimulus, but resets post-stimulus. Stimulus is represented by the
red arrow. (iii) Phase locking as a mechanism of bottom-up and top-down sensory processing. Black lines on the peak of the ongoing oscillation indicate spikes.
Effective communication occurs when spiking activity of area b arrives at the high excitatory phase of area c and induces spikes in area c. Ineffective communication
occurs when spiking activity in area b arrives at the low excitation phase of the signal a and fails to induce spikes in area a. When spiking activity in area b arrives at
the rising phase of area a, communication between effective and ineffective levels (indicated by crossed-out check mark) occurs. (iv) Communication between two
areas using cross-frequency coupling (CFC). Signal b shows that green and gray high frequency rhythms “ride” on the black low frequency rhythm. CFC between
signal a and b enables area a and b to communicate through high frequency rhythm (marked in green). CFC between signal b and c enables b and c to
communicate through high frequency rhythm.

information reduces stimulus uncertainty and enhances
behavioral responses, thus leading to faster and more accurate
decision-making (Stein et al., 1988; Gleiss and Kayser, 2012;
Siemann et al., 2014; Hammond-Kenny et al., 2017; Meijer
et al., 2018). The process of sensory convergence, where inputs
of different senses are combined without being able to easily
dismantle them into independent unimodal components,
is termed as cross-modal integration (Keil and Senkowski,
2018; Nikbakht et al., 2018). In order to evoke a coherent
cross-modal perception, neural areas accounting for sensory
and cognitive processing need to optimally interact with each
other. This appears to be a challenging computation given the
multidimensionality of neural activity and the fact that neural
areas specialized in processing one component of a stimulus are
located at distant parts in the brain (Harris and Mrsic-Flogel,
2013; Runyan et al., 2017; Stringer et al., 2019). In addition,
the neural interactions of systems accounting for sensory and
cognitive processing are highly dynamic, emerging at early age
and developing over time (Goodman and Shatz, 1993; Siegel
et al., 2012; Parisi et al., 2019). Comparable sensory systems and
the ease of measuring behavioral effects motivated the use of large
mammalian species as prime models to study the mechanisms of
cross-modal processing and their emergence during development
(Stein et al., 1993; Wallace and Stein, 1997; Calvert and Thesen,
2004). Here we focus on the interdependence of primary sensory
cortices (S1, V1, A1) and PFC in rodents, aiming to critically
review our current understanding of the mechanisms that enable
the communication between remote brain areas dedicated to
sensory and cognitive processing during cross-modal perception.
In addition, we will review how bottom-up and top-down
mechanisms underlying cross-modal processing emerge during
development. Despite possible differences of neuronal processing
when compared to larger mammals such as cats or monkeys,
the use of rodent models bears several advantages for the
study of cross-modal processing. Recent developments in
rodent behavior and genetics, viral methods, and genetically
encoded Ca2+ indicators offer the possibility to study causal
relations in the brain, monitor neuronal activity over time, and

explore the relationship between neural network properties and
behavior underlying cross-modal processing (Fenno et al., 2011;
Chen et al., 2013). Relying on these state-of-the-art methods,
our understanding of the cellular and network mechanisms
underlying cross-modal processing as well as their development
should be fostered. Detailed insights on the neural computations
are critical for the development of autonomous agents and their
optimal interaction with the environment under conditions of
sensory uncertainty. Thus, by providing knowledge of neuronal
computations underlying cross-modal integration, this review
aims to uncover general principles of neuronal processing and to
inspire multidisciplinary research in the field of robotics.

Bottom-Up Cross-Modal Processing in
Primary Sensory Cortices
Sensory interactions have primarily been demonstrated in high-
level association cortices, such as PFC or posterior parietal cortex
(PPC) (Lippert et al., 2013; Yau et al., 2015; Song et al., 2017).
However, cross-modal processing has been shown to take place
already at early stages of sensory processing, such as in the
brainstem (Aitkin et al., 1981; Jain and Shore, 2006; Koehler et al.,
2011), thalamus (Komura et al., 2005; Allen et al., 2017; Bieler
et al., 2018) or primary sensory cortices (Lakatos et al., 2007;
Kayser et al., 2010; Sieben et al., 2013).

The superior colliculus (SC) of the midbrain received
particular attention when investigating the principles of
multisensory processing. The SC receives multiple ascending
(Edwards et al., 1979; Mize, 1983) and descending (Clemo
and Stein, 1984; Meredith and Clemo, 1989) unisensory
afferent sources that converge onto individual neurons,
making the SC a prime model to study mechanisms of cross-
modal processing. Deep-layer multisensory neurons of the
SC control sensory as well as motor responses. Cross-modal
but not unimodal, or multiple unimodal stimuli of the same
modality (Alvarado et al., 2007), cause an enhancement of
neuronal firing (Meredith and Stein, 1983; Perrault et al.,
2005), which consequently mediates orienting behavior
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(Stein et al., 1988; Gingras et al., 2009). It has been shown
that the inputs from cortical association areas are critical
to manifest cross-modal responses in the SC (Stein et al.,
2002; Alvarado et al., 2009). While SC neurons in behaving
animals continue to respond to multiple sensory modalities
following cortical inactivation, multisensory responses
are suppressed, and multisensory integration is eliminated
(Jiang et al., 2002, 2007).

The described neuronal responses to cross-modal stimuli in
first-order thalamic nuclei and primary sensory cortices occur at
too short latency to result from processing feedback information.
Thus, also low-level putatively unimodal brain areas integrate
cross-modal information in a bottom-up manner. The bottom-
up detection and discrimination of stimuli are fundamental
stages of sensory processing, because they allow, on the one hand,
for rapid detection of a stimulus, and on the other hand, for
discrimination between similar stimuli based on fine details (Guo
et al., 2017). The detection and discrimination of a stimulus are
improved when it provides features from multiple modalities
(Gleiss and Kayser, 2012; Sheppard et al., 2013; Siemann et al.,
2014; Hollensteiner et al., 2015; Nikbakht et al., 2018).

Similar mechanisms of cross-modal processing first described
in the cat SC have also been found in rodent SC (Gharaei
et al., 2018) as well as in primary sensory cortices, thus
challenging the strict hierarchical model of sensory processing
(Foxe and Schroeder, 2005). For example, co-presentation of
an auditory stimulus enhances orientation selectivity of V1
neurons (Ibrahim et al., 2016). This cross-modal enhancement
of neuronal firing was strongest under low-contrast conditions,
suggesting that cross-modal information is particularly beneficial
for perceptually-guided behavior under ambiguous situations. In
addition to cue-integration, cross-modal processing also depends
on modality segregation, i.e. the suppression of neuronal activity
in one modality-specific primary sensory cortex due to the
concurrent presentation of a stimulus of a non-matching sensory
modality (Iurilli et al., 2012; Song et al., 2017; Bieler et al.,
2018; Gharaei et al., 2018). For example, Gharaei et al. (2018)
demonstrated that unisensory stimulation enhances neuronal
responses in the SC, whereas cross-modal stimulation rarely
enhances but rather suppresses neuronal firing discharges. At
the level of primary sensory cortex, Iurilli et al. (2012) showed
that evoked activity in A1 enhances local inhibitory firing in
deep layers of V1, which in turn decreases the activity of V1
supragranular pyramidal neurons. Consequently, at behavioral
level, visually-conditioned responses were suppressed by acoustic
stimulation. Experimental research examining the mechanisms
of sensory convergence in low-level sensory regions emphasized
the processing and relay of basic object feature information
(Iurilli et al., 2012; Sieben et al., 2013; Bieler et al., 2018;
Morrill and Hasenstaub, 2018). However, the formation, storage,
and utilization of cross-modal object representations during
behavior require an interaction of neuronal areas accounting
for sensory and cognitive processing (Hindley et al., 2014;
Reid et al., 2014; Jacklin et al., 2016). Thus, while both
sensory integration and separation are part of bottom-up cross-
modal processing in primary sensory cortices, the mechanisms
underlying the functional communication between low- and

high-level brain areas during cross-modal perception are still
largely unknown.

Top-Down Modulation of Cross-Modal
Processing in Primary Sensory Cortices
Creating a consistent mental representation of the multisensory
environment depends on more than the convergence of sensory
information in primary sensory cortices (Choi et al., 2018).
Sensory processing in primary sensory cortices is modulated top-
down to create a multisensory perception, and finally, behavioral
action (Ernst and Newell, 2007; Gilbert and Li, 2013; Talsma,
2015; Bizley et al., 2016; Kunicki et al., 2019). In particular,
top-down influences from high- to low-level brain areas allow
for the preferential processing, and thereby the facilitation of
specific sensory inputs in primary sensory cortices (Talsma et al.,
2010). Such top-down information may be related to attention,
expectation or perceptual demands (Paneri and Gregoriou, 2017;
Choi et al., 2018). Attention is a core property of all perceptual
and cognitive operations. Given the limited capacity to process
competing environmental inputs, attentional mechanisms allow
for the selection and modulation as well as for sustained focus
on information most relevant for behavior (Chun et al., 2011).
Attention modulates neuronal activity and improves the signal-
to-noise ratio thereby increasing signal efficacy for attended
stimuli and enhancing the representation of attended features
(Noudoost et al., 2010). Attention facilitates the integration of
multisensory inputs in a top-down manner (Fiebelkorn et al.,
2010; Mühlberg and Soto-Faraco, 2019). Top-down modulation
enables the flexible selection of information based on task goals,
as well as providing an order for selectively modulating multiple
stimuli within each modality if they are competing for processing
resources (Alsius et al., 2005; Doty et al., 2006). For example,
Terreros et al. (2016) showed that mice are able to selectively
focus on a visual stimulus, ignoring distractive auditory stimuli
during selective attention in a two-choice visual discrimination
task (Terreros et al., 2016). Furthermore, top-down modulation
reweights sensory information and facilitates the integration
of cross-modal inputs (Alsius et al., 2005; Busse et al., 2005;
Bresciani and Ernst, 2007; Talsma et al., 2007; Lakatos et al.,
2009; Fiebelkorn et al., 2010; Muhlberg et al., 2014). Prior cross-
modal exploration of task-relevant objects significantly facilitates
the detection performance of a rat in a cross-modal object
recognition task (Jacklin et al., 2016). Moreover, rats are able
to recognize a visually presented object, which has been only
explored by the tactile sense (Winters and Reid, 2010). Top-
down task demands further modulate cross-modal processing
in primary sensory cortices. For example, during the free
exploration of novel objects in the dark (whisker-based tasks),
V1 and S1 responses carried comparable amounts of information
about object identity (Vasconcelos et al., 2011). However, during
the execution of an aperture tactile discrimination task, which is
based on top-down task demands, S1 showed faster and more
robust tactile recruitment when compared to V1.

Several frontal and parietal cortical regions, such as PPC and
PFC, have been proposed as the source of top-down modu-
latory signals (Noudoost et al., 2010; Winters and Reid, 2010;

Frontiers in Neurorobotics | www.frontiersin.org 4 February 2020 | Volume 14 | Article 7

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neurorobotics#articles


fnbot-14-00007 February 14, 2020 Time: 16:4 # 5

Xu et al. Cross-Modal Abilities During Life

Jacklin et al., 2016; Paneri and Gregoriou, 2017; Mohan et al.,
2018). For example, it has been shown that top-down modulation
originating in PPC influences cross-modal processing in primary
sensory cortices (Mohan et al., 2017; Kunicki et al., 2019),
and damage to PPC leads to performance deficits in sensory
discrimination tasks (Binkofski et al., 2001; Winters and Reid,
2010). Given the well-established role of PFC in cognitive control
and executive function (Miller and Cohen, 2001), it has been
hypothesized that it modulates sensory processing in primary
sensory cortices as well (Buschman and Miller, 2007). Bichot
et al. (2015) showed in non-human primates performing a visual
search task, that feature-based attention adjusts the neural firing
activity of prefrontal neurons representing an attended feature
to quickly locate a target object (Bichot et al., 2015). Moreover,
neural responses in PFC emerge earlier when compared to
the responses in visual cortex during covert attention tasks
(Gregoriou et al., 2009; Monosov et al., 2010; Zhou and
Desimone, 2011; Lennert and Martinez-Trujillo, 2013; Bichot
et al., 2015; Siegel et al., 2015). Pharmacological inactivation
of PFC induced space-specific impairments in a covert visual
search task, and was particularly prominent when a shift in
attention was required (Monosov and Thompson, 2009). The
PFC might provide top-down modulatory signals to primary
sensory cortices through direct axonal projections. For example,
Zhang et al. (2014) showed that activation of prefrontal local
GABAergic circuits powerfully influences sensory processing
in V1 through direct connectivity from PFC to V1 (Zhang
et al., 2014). Moreover, prefrontal modulatory signals may reach
primary sensory cortices via the sensory thalamus. Stimulating
the PFC has been shown to increase tactile responses and alter
basal activity in the ventrobasal region of the thalamus (Cao
et al., 2008). In line with this, optogenetic manipulation of
prefrontal activity perturbs the ability of mice to appropriately
select between conflicting visual and auditory stimuli during a
cross-modal divided-attention task that is known to depend on
prefrontal-thalamic interactions (Wimmer et al., 2015).

Anatomical Substrate of Interactions
Between Neuronal Networks Accounting
for Sensory and Cognitive Processing
Direct bottom- up (Henschke et al., 2015; Mowery et al., 2016;
Bieler et al., 2017b; Henschke et al., 2017) and top-down cortico-
cortical (Zhang et al., 2014; Makino and Komiyama, 2015) as
well as indirect cortico-thalamo-cortical pathways (Theyel et al.,
2010; Roth et al., 2016) represent the anatomical substrate of
the functional communication between low- and high-level brain
areas during cross-modal processing (Figures 1B,C).

Short latency cross-modal interactions in low-level sensory
cortices rely on direct long-range connections (Sieben et al.,
2013; Stehberg et al., 2014; Henschke et al., 2015). For
example, visual stimulation modulates S1 activity via direct
cortico-cortical connections, while pharmacological inactivation
of V1 diminishes cross-modal effects in S1 (Sieben et al.,
2013). In addition, optogenetic stimulation of A1-V1 projection
neurons sharpens the orientation selectivity of neurons in V1
(Ibrahim et al., 2016). Similarly, impairing the direct A1-V1

connectivity by cortico-cortical transections abolishes the sound-
driven hyperpolarization of V1 (Iurilli et al., 2012). Compared
to the described connectivity patterns between primary sensory
cortices in rodents (Burkhalter, 1989; Wang and Burkhalter,
2007; Stehberg et al., 2014; Henschke et al., 2015), direct cortico-
cortical projections are sparse in primate primary sensory areas,
which has functional implications on cross-modal processing
(Falchier et al., 2002; Clavagnier et al., 2004; Cappe and Barone,
2005). Single-cell recordings revealed only subthreshold neuronal
responses in primate primary sensory areas (Molholm et al., 2002;
Lakatos et al., 2007; Kayser et al., 2008), and suprathreshold
multisensory neurons were restricted to higher cortical areas
(Fu et al., 2003; Ghazanfar et al., 2005). In contrast to primate
low-level areas where feedback cross-modal information only
has a subthreshold influence on its postsynaptic targets (Allman
et al., 2009), multisensory responses in rodent primary sensory
cortices might rely on the direct cortico-cortical connections and
less on feedback information from higher cortical association
areas. This suggests that the presence or absence of multisensory
suprathreshold effects might result from the number and strength
of cross-modal inputs reaching rodent or primate primary
sensory cortices respectively.

In contrast to the early cross-modal responses in primary
sensory cortices, cross-modal effects occurring at longer
poststimulus latency may be under the control of feedback
information, which is sent via projection neurons from high-
to low-level sensory areas (Smith et al., 2010; Banks et al.,
2011). Recently, Morrill and Hasenstaub (2018) revealed that
a minority of neurons in A1 responds at 40 ms after visual
stimulus presentation, exceeding the time delay of monosynaptic
information transmission. Inputs from higher sensory cortex,
such as secondary visual cortex, might account for the occurrence
of visual responses with a long latency in A1 (Bizley et al., 2007;
Banks et al., 2011). Information between primary sensory
cortices may also be transferred via a cortico-thalamic-cortical
route (Hackett et al., 2007; Sherman, 2016). For example,
Hackett et al. (2007) showed that thalamic nuclei (first-order
medial geniculate complex and higher-order posterior nucleus
of thalamus) share anatomical connections with somatosensory
as well as with auditory cortex. This cortico-thalamo-cortical
pathway might resemble the anatomical substrate of tactile
information transfer from somatosensory to auditory cortex
through first- as well as higher-order thalamus (Schroeder et al.,
2001; Kayser et al., 2005).

Besides anatomical projections from higher sensory cortices,
long-range prefrontal projection neurons have been proposed
to modulate cross-modal responses in primary sensory cortices
(Vaneden et al., 1992; Sellers et al., 2015; Zhang S.Y. et al.,
2016). For example, Zhang S.Y. et al. (2016) identified
retrogradely labeled neurons in the cingulate sulcus of PFC
targeting V1. Furthermore, the anterior cingulate subdivision
of PFC shares direct connections with V1, while primary
and secondary motor cortices are connected to somatosensory
and auditory cortex (Zhang S.Y. et al., 2016). The identified
direct long-range projections between PFC and primary sensory
cortices might act as anatomical substrate for the functional
communication between low- and high-level areas during
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cross-modal processing. Future studies using virus-assisted
circuit mapping and optogenetic manipulations shall unravel
the contribution of top-down projections from PFC to primary
sensory cortices during cross-modal processing.

Mechanisms of Bottom-Up Cross-Modal
Processing in Primary Sensory Cortices
Encoding of information requires coordinated neuronal firing
that selectively filters relevant from irrelevant environmental
information (Parker and Newsome, 1998; Connor et al., 2004;
Harris and Mrsic-Flogel, 2013). Two neural communication
codes – rate coding (i.e., changes in the frequency of action
potentials) and temporal coding (i.e., changes of spike timing
in relationship to the phase of network oscillations) – have
been described (Oram et al., 2002; Kayser et al., 2009; Meredith
and Allman, 2015). These two coding strategies often occur
concurrently (Biederlack et al., 2006; Kayser et al., 2009; Bieler
et al., 2017b), and as a result, increase the coding capacity
(Tiesinga et al., 2008; Kayser et al., 2009; Figure 1Di). It is
hypothesized that rate changes in single neurons code for the
discrete properties of a stimulus, whereas temporal coding marks
the relatedness of neuronal firing among neurons eventually
leading to a coherent perception of the stimulus (Singer,
2009). Studies in the SC have identified two major operating
principles of cross-modal processing. First, the more spatially and
temporally coincident cross-modal cues appear, the greater is the
multisensory enhancement (i.e., an increased neuronal response
after cross-modal when compared to unimodal stimulation)
(Meredith and Stein, 1983; Wallace et al., 1998). Second, the
strength of the unimodal cues defines the magnitude of the
cross-modal effect, such that weaker individual sensory stimuli
evoke stronger cross-modal effects (inverse effectiveness) (Perrault
et al., 2005). These principles of cross-modal integration served
as a general guideline for deciphering cross-modal processing
mechanisms in low-level sensory areas at single-cell and network
level (Bieler et al., 2017b; Bieler et al., 2018).

Oscillatory activity reflects the rhythmic excitability
fluctuations of neuronal populations within particular frequency
bands that correspond to specific spatial scales of brain operation.
This rhythmic nature of neural activity creates time windows
during which inputs are more effective in driving the neurons.
By making use of anatomical connectivity between and within
brain networks, neuronal network oscillations account for
local-global neuronal interactions as well as for maintaining
persistent activity (e.g., during behavioral state) (Buzsaki and
Draguhn, 2004; Buzsaki, 2010; Buzsaki and Wang, 2012).
Synchronization of neuronal network oscillations subserves
neuronal communication and enables the integration of sensory
information across distant locations of the brain (Senkowski
et al., 2008). Selective communication among neural networks
might be achieved by coherence of oscillatory firing patterns
(sending neurons) and gain modulation (receiving neurons)
(Fries, 2015). Thus, rhythmic synchronization generates
sequences of excitation and inhibition which focus the spike
output of firing neurons and sensitivity to synaptic inputs of
receiving neurons to a short temporal window.

Synchrony of activity in distant neural networks ultimately
leads to the binding of anatomically segregated functional
networks (Fries, 2005; Canolty et al., 2010; Canolty and Knight,
2010). Since unisensory networks encode relationships between
detected information by synchronizing their activity, it raises the
likelihood that similar mechanisms are involved in cross-modal
processing. For example, information processing by one modality
can enhance the population synchrony in lower-order regions
responsive to another modality, such as primary sensory cortices
or subcortical regions, in reciprocal relationship with other brain
regions (Kayser and Logothetis, 2007; Driver and Noesselt, 2008;
Tyll et al., 2011). This cross-modal synchrony enhancement of
neuronal activity has been described for evoked as well as for
induced responses: the impact of an external stimulus sensed by
one modality is strengthened by appropriately timed information
about the event in another modality (Figure 1Di; Sieben et al.,
2013). Furthermore, the phase reset of spontaneous neuronal
oscillations might facilitate the communication of distant neural
networks during cross-modal processing (Figure 1Dii). The re-
alignment of phases of ongoing neuronal oscillations in one
processing region in relation to a cue of another sensory
modality allows inputs to arrive at a high excitability phase
(Lakatos et al., 2007; Kayser et al., 2008; Iurilli et al., 2012;
Sieben et al., 2013; Figure 1Diii). In addition, the interaction of
oscillations in different frequency bands, termed cross-frequency
coupling (CFC), has been proposed as another mechanism of
how distant brain regions synchronize their activity to interact
(Canolty and Knight, 2010; Figure 1Div). The question arises
whether CFC acts as a mechanism for the interaction of multiple
sensory areas, and thus the integration of cross-modal inputs
in rodent sensory cortices (Canolty et al., 2006; Schroeder and
Lakatos, 2009). Recently, we examined the oscillatory interactions
underlying CFC in a thalamo-cortical circuit during cross-modal
processing (Bieler et al., 2018). Our study revealed a significant
increase in beta-gamma phase-amplitude CFC between first-
order thalamus and primary somatosensory cortex during cross-
modal but not unimodal processing. Thus, the phase of the
beta rhythm controls the power of coupled gamma oscillations
through synchronization of the gamma amplitude envelope
with the beta phase during cross-modal processing in thalamo-
cortical networks.

While cross-modal effects at functional and anatomical
level are widespread in primary sensory cortices, the exact
configuration of a cross-modal stimulus ultimately defines which
processing strategy, i.e., enhancement or depression of neural
responses, is applied (Meijer et al., 2017).

Mechanisms of Top-Down Modulation of
Cross-Modal Processing in Primary
Sensory Cortices
Several mechanisms of prefrontal top-down modulation of cross-
modal processing in primary sensory cortices have been proposed
(Tomita et al., 1999; Barceló et al., 2000; Monosov et al.,
2011; Gilbert and Li, 2013; Teufel and Nanay, 2017). Temporal
coding of neuronal excitability reflected by oscillatory activity in
primary cortices might provide a temporal window for effective
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processing of top-down information (Figure 1Diii). Phase
locking of oscillatory activity between PFC and primary sensory
cortices was proposed to fulfill this role. In particular, oscillatory
activity in primary sensory cortices creates temporal windows
during which top-down PFC signals are more effective in driving
neuronal activities in primary cortices during sensory processing.
If this holds true, spikes from PFC arriving within temporal
excitation windows of the sensory cortices might produce
postsynaptic spikes in primary sensory cortices more effectively.

Several studies reported enhanced gamma synchronization
between prefrontal and unisensory cortices during attention
tasks. For example, Gregoriou et al. (2009) found a specific
enhancement in gamma phase synchronization between frontal
cortex and V4 during sustained attention in a covert spatial
attention task (Gregoriou et al., 2009). Frontal locking of spikes
to gamma activity in visual cortex encodes the attended location.
Interestingly, frontal spike activity occurred ∼10 ms before the
maximal excitability in visual cortex. This time delay might
correspond to the transmission lag from frontal cortex to V4.
Furthermore, the authors applied Granger causality analysis to
study the directional coupling between PFC and V4. They showed
that during the early stage of the task, when attention must
to be shifted to a relevant location, frontal cortex initiated the
oscillatory coupling across PFC and V4. Enhanced phase locking
to gamma rhythm in V4 during the attention task was restricted
to visual processing neurons, and did not include V4 neurons
representing aspects such as visuo-movement or movement
(Gregoriou et al., 2012). Of note, the gamma coherence between
two distant brain regions may have an artifactual origin. It has
been proposed that gamma coherence might reflect the coupling
of two phase-locked network oscillations as well as the co-
modulating effect of an upstream network common to both
recorded networks (Buzsáki and Schomburg, 2015).

According to a largely accepted hypothesis, the PFC selectively
facilitates the selection of task relevant information and enhances
the representation of attended stimuli in primary sensory cortices
(Baluch and Itti, 2011). To address this, Ardid et al. (2010) built
a simulated model with weak coupling between two networks
resembling a low-level sensory and a high-level brain area (Ardid
et al., 2010). Enhanced gamma coupling between these two
regions heavily influenced the synchronization between specific
neurons encoding attended features across the areas. The results
support the idea that inter-areal LFP coupling between PFC and
primary sensory cortex selectively facilitates the communication
between neurons encoding attention-related information. Several
lines of evidence support the hypothesis that the top-down
prefrontal signal effectively influences sensory processing in
primary cortices. For instance, top-down attention affects V1
processing by enhancing the firing rate of neurons representing
the attended stimulus (Treue and Trujillo, 1999; Bichot et al.,
2005) and reducing the variability of inter-neuronal correlation
(Cohen and Maunsell, 2009; Mitchell et al., 2009; Herrero
et al., 2013). The reduced variability of correlation among
neurons improves the signal-to-noise ratio for attention-relevant
information and promotes efficient coding of attended features.
Consequently, the signal-to-noise ratio improves (Cohen and
Maunsell, 2009; Mitchell et al., 2009). Moreover, top-down

attention modulates local oscillatory activity of primary sensory
cortices in a frequency-specific manner (Gregoriou et al., 2015).
For example, during attentional selection, neurons in visual
and frontal areas encoding the attended location or feature
synchronize their activity in gamma frequency (30–60 Hz) range
(Tallon-Baudry et al., 2004; Bichot et al., 2005; Fries, 2005; Kreiter
et al., 2005; Fries et al., 2008; Gregoriou et al., 2009). This might
facilitate the propagation of information between these two areas
(Salinas and Sejnowski, 2001; Azouz and Gray, 2003; Fries, 2005,
2009). In addition, reduced local alpha-beta oscillatory activity in
V2 and V4 during an attention task (Thut et al., 2006; Fries et al.,
2008; Siegel et al., 2008; Gregoriou et al., 2009; Buffalo et al., 2011)
has been proposed to inhibit distracting inputs (Palva and Palva,
2007; Händel et al., 2011). Top-down attention also modulates
the size and position of visual receptive fields, bursting activity,
response latency as well as feature tuning of neurons (Murray and
Wojciulik, 2004; David et al., 2008).

Investigation of local circuits and synaptic processes provide
additional evidence for top-down modulation of cross-modal
processing. Zhang et al. (2014) demonstrated that long-range
glutamatergic projections from PFC modulate local circuits in V1
(Zhang et al., 2014). Optogenetic activation of prefrontal neurons
led to enhanced responses of V1 neurons. Light stimulation
of prefrontal axonal terminals in V1 induced center-surround
modulation, which increased the response at the activation site,
while suppressing the response at a nearby location. Three
subtypes of interneurons in local visual circuits were targeted
by top-down prefrontal modulation. First, somatostatin-positive
interneurons (SOM+) were critical for surround suppression,
since they inhibited the response of pyramidal neurons to the
prefrontal input within a 200 µm radius. Second, vasoactive
intestinal peptide-positive interneurons (VIP+) were crucial
for center facilitation in V1 (Fu et al., 2014), mediating the
disinhibition of pyramidal neurons. This disinhibition effect
was mainly localized at the site of prefrontal axons in V1
and caused the increase of attention-inducing firing rate.
Third, parvalbumin-positive (PV+) GABAergic interneurons
were required for long distance inhibition, since their inactivation
reduced prefrontal axon-induced inhibitory inputs at a distance
of 400 µm. Thus, long-range prefrontal projections act
through local microcircuits to exert top-down modulation of
sensory processing.

THE EMERGENCE OF
SENSORY-COGNITIVE INTERPLAY
DURING CROSS-MODAL
DEVELOPMENT

The brain’s ability to create a coherent perception of the
environment by integrating information of various sensory
modalities is not present immediately following birth. The
development of cross-modal integrative capabilities is a
protracted process both in rodents (Ghoshal et al., 2011;
Mowery et al., 2016; Hattori and Hensch, 2017) as well as in
humans (Scheier et al., 2003; Lewkowicz and Ghazanfar, 2009;
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Lewkowicz, 2010). This process depends on the alteration and
refinement of neural circuitry following uni- and cross-modal
sensory experiences.

Cross-modal abilities mature under the influence of intrinsic
(i.e., genetic cues) and extrinsic (i.e., environment) factors
(Rauschecker et al., 1992; Yu et al., 2010; Frangeul et al., 2016;
Moreno-Juan et al., 2017). During embryonic development,
molecular cues and genetic programs control the generation,
migration, and differentiation of neurons as well as the formation
of rudimentary connectivity (Toda et al., 2013; Diao et al., 2018;
Telley et al., 2019). At later stages, but before the onset of sensory
transduction, spontaneous electrical activity occurring in distinct
spatial and temporal patterns refine rudimentary connectivity
and facilitate the formation of sensory maps (Galli and Maffei,
1988; Dehorter et al., 2012; Luhmann et al., 2016; Anton-
Bolanos et al., 2019). The patterns of spontaneous network
activity are conserved across species, and their perturbation
causes deficits in network refinement (Huberman et al., 2008).
During defined developmental periods (i.e., critical/sensitive
periods) the circuits, and later behavioral abilities, are particularly
prone to being shaped by experience-dependent electrical activity
(Chapman, 2000; Chang and Merzenich, 2003; Pfeiffenberger
et al., 2006; Ghoshal et al., 2009; Khazipov et al., 2013). The
patterns of electrical activity are similar in age-matched rodents
and humans (Khazipov and Luhmann, 2006).

Development of the Tactile System
By using their highly sensitive whiskers, nocturnal rodents can
acquire tactile information and build spatial representations
of the environment (Petersen, 2007). Whisker-related inputs
are processed in somatotopic maps where each whisker is
represented by a discrete anatomical unit (“barrel”). Barrel-
like cell aggregates form soon after birth (Jhaveri et al., 1991;
Schlaggar and O’Leary, 1994). Early sensory experience is
mandatory for the development of somatosensory processing.
Neonatal whisker trimming from birth on impairs the dendritic
complexity of neurons in the barrel cortex and behavioral
performance in the gap-crossing task during adulthood (Carvell
and Simons, 1996; Lee et al., 2009). Whisker-dependent
exploratory behavior does not develop until the second postnatal
week (Welker, 1964; Figures 2A,B). This suggests that prior
to experience-dependent plasticity other mechanisms must
contribute to the development of somatosensory perception.
Transcription factors, such as Gbx2, Mash1, and Pax6 have been
reported to be involved in pathfinding of axons from thalamus
to S1 (Tuttle et al., 1999; Hevner et al., 2002). In addition,
discontinuous electrical activity, which appears within the first
two postnatal weeks, shapes the development of topographic
organization in S1. Several patterns of neonatal electrical activity
have been characterized, such as gamma oscillations, spindle
bursts with frequencies in theta-beta range, and long-oscillations
(Yang et al., 2009; Minlebaev et al., 2011; Yang et al., 2016).
Peripheral inputs are not mandatory for the emergence of these
early activity patterns. Gamma oscillations and spindle bursts
remain after the peripheral pathways were lesioned (Khazipov
et al., 2004; Minlebaev et al., 2011; Yang et al., 2013). Early activity
patterns may act as a template for the emergence of cortical

topography. For instance, the volume of synchronized neurons
during spindle burst activity reflects the anatomical size of the
future barrels (Yang et al., 2016). Long oscillations are assumed to
synchronize large neuronal networks and boost the formation of
functional neuronal ensembles (Yang et al., 2009). With ongoing
maturation, rodents start to whisker and early tactile experience
further refines the somatosensory circuits.

Development of the Auditory System
Similar to tactile development, the maturation of auditory
pathways containing orderly representations of frequency
selectivity involves both molecular cues and spontaneous
electrical activity. For example, neurotrophins such as BDNF
and NT-3, ephrins (Ernfors et al., 1992; Hossain et al., 2008)
and semaphorins (Gu et al., 2003; Webber and Raz, 2006)
have been reported to guide auditory innervation. Spontaneous
electrical activity further refines and maintains the tonotopic
architecture set by molecular cues (Wang and Bergles, 2015).
In rodents, the ability to respond to acoustic stimuli emerges
around postnatal (P) day 12 (Uziel et al., 1981; Kelly, 1992;
Figures 2A,B). Experience-dependent activity then promotes the
fine-tuning of auditory networks (Friauf and Lohmann, 1999).
Before this age, environmental factors regulate the maturation
of auditory processes. For example, early interactions with the
mother modulate the maturation of the auditory system in
pups (Cárdenas et al., 2015). Auditory reflexes in pups were
accelerated when the mothers were reared in an enriched
environment during gestation. Moreover, exposure to frequency-
enriched acoustic environments during the first 14 days after
birth significantly decreased the threshold of auditory responses
in a frequency-specific manner (Chang et al., 2018). Rearing in a
disturbed acoustic environment impairs the development of the
auditory system (Zhang et al., 2002; Chang and Merzenich, 2003;
Nakahara et al., 2004; Speechley et al., 2007). Early noise exposure
induced permanent structural changes in the rat auditory system
(Ouda et al., 2016). Rat pups exposed to trains of 5 kHz
pure tones showed larger regions of auditory cortex tuned to
5 kHz at adulthood (Han et al., 2007). Thus, over-representations
of certain frequencies during early development likely reduces
auditory discrimination.

Development of the Visual System
Rodents are born blind. The retina starts to be light-sensitive
during the second postnatal week, and shortly after that, the
eyelids open (Figures 2A,B; Sernagor, 2005). From birth on,
axonal projections from the lateral geniculate nucleus (LGN)
target cells in the granular layers of V1 leading to the initiation of
cortical topographical organization. During early development,
when the retina is light-insensitive, bursts of action potentials
(i.e., retinal waves) emerge under the control of the cholinergic
system (Brombas et al., 2017) and propagate across the retina
(Wong et al., 1993). These retinal waves are transmitted via
the optic nerve to the LGN and finally to V1, where they
boost cortical spindle bursts (Hanganu et al., 2006). At each
developmental stage of V1, retinal waves differ in their properties,
thereby instructing the development of visual feature processing
mechanisms (Huberman et al., 2008).
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FIGURE 2 | Schematic diagram displaying the developmental milestones of sensory and limbic development in rodents. (A) Schematic illustration displaying the
developmental timeline of sensory development from postnatal day (P) zero onward. (B) Schematic arrows showing the time points (marked by dotted line) of (i) the
critical/sensitive period of somatosensory (green), auditory (blue), and visual (red) development, (ii) the onset of unisensory behavior, and (iii) the start of cross-modal
modulation. Uni- and cross-modal inputs in the first days of life are hypothesized to drive the development of the limbic system in a bottom-up manner, while
bottom-up as well as top-down interactions between the primary sensory cortices and limbic system are present at later stages of development (gray boxes,
bottom). (C) Same as (B) for PFC. Time points shown in gray arrow mark developmental milestones of limbic system development.

With the onset of light sensitivity, visual experience shapes
the cortical topography (Smith and Trachtenberg, 2007). In
cats, monocular visual deprivation led to a size reduction of
columns corresponding to the sutured eye, whereas columns
corresponding to the non-deprived eye expanded (Hubel
et al., 1977; Le Vay et al., 1980). Visual deprivation during
the sensitive period leads to alterations in thalamo-cortical
connectivity (Fox and Wong, 2005; Hofer et al., 2008) and
as a consequence alters the input organization from both
eyes (Espinosa and Stryker, 2012). Experience has been

shown to control the tuning of V1 neurons to stimulus
orientation and direction (Hubel and Wiesel, 1962; Weliky
et al., 1996). Thus, even though coarse orientation selectivity
emerges under the influence of experience-independent
neuronal activity (White et al., 2001), high-level orientation
selectivity appears only in the presence of visual inputs
(Chapman and Stryker, 1993). In contrast, neither molecular
cues nor spontaneous activity, but visual experience seems
to be required for tuning V1 neurons to stimulus direction
(Li et al., 2006).
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External Inputs Controlling the
Development of Cross-Modal Processing
in Rodent Primary Sensory Cortex
While a wealth of studies documented the relevance of
early electrical activity for the maturation of topographic
organization, few studies addressed the mechanisms of cross-
modal development in primary sensory cortices. One key
question is whether perturbing unisensory development –
even prior to full responsiveness of all stimulus-related
sensory modalities – has long-lasting consequences for the
development of cross-modal processing. It appears that cross-
modal development requires a certain level of unisensory
maturity (Ghoshal et al., 2011; Sieben et al., 2015). For instance,
Sieben et al. (2015) showed that tactile deprivation shortly
after birth (P0-5) causes abnormal visual-tactile cross-modal
processing later in life. Furthermore, it has been shown that
the power and phase of neuronal activity were modulated by
cross-modal stimuli of juvenile rats with only minimal cross-
modal experience (i.e., closed eye lids, but light-sensitive retina
and tactile sensation in P14-16 rats) (Bieler et al., 2017a).
Thus, network interactions ensuring cross-modal processing
emerge before cross-modal experience and refine during juvenile
development (Figure 2B).

Development of the PFC
As previously mentioned, the PFC is involved in memory,
attention, and decision-making (Miller, 2000; Vertes, 2006). In
addition, it is considered to act as a hub of cross-modal processing
(Fuster et al., 2000; Nieder, 2017). Overall, the PFC follows the
developmental milestones described for primary sensory cortices.
Early patterns of oscillatory activity are highly discontinuous and
temporally fragmented (Brockmann et al., 2011), yet they emerge
a few days later when compared with V1 or S1. Moreover, the
maturation of the PFC is remarkably prolonged when compared
to other cortical areas (Leipsic, 1901; van Eden and Uylings,
1985). The prefrontal cytoarchitecture and correspondingly, the
executive and mnemonic abilities, are not fully developed until
adolescence (van Eden and Uylings, 1985).

The functional development of PFC seems to be controlled
by activity in the intermediate/ventral hippocampus (HP).
Hippocampal theta bursts emerging a few days before prefrontal
spindle bursts, drive the generation of neonatal prefrontal
oscillations by phase-locking the neuronal firing via axonal
pathways (Brockmann et al., 2011). Remarkably, the early
entrainment of prefrontal-hippocampal networks is critical for
the mnemonic ontogeny at juvenile stage (Krüger et al., 2012).
During later development (∼P10), the oscillatory activity in both
PFC and hippocampus switches from discontinuous bursts to
continuous theta-gamma oscillations. This switch occurs almost
simultaneously in the prefrontal and primary sensory cortices
(Colonnese and Khazipov, 2010).

Sensory-Cognitive Interactions During
Development
As outlined in sections “Development of the Tactile System,”
“Development of the Auditory System,” and “Development
of the Visual System,” early endogenous and sensory-driven

activity patterns contribute to the development and refinement of
neuronal networks (Hanganu et al., 2006; Minlebaev et al., 2009;
Yang et al., 2009; Yang et al., 2013). Perturbing sensory inputs
during critical/sensitive periods of development has profound
effects on the neuronal activity and its underlying anatomical
connectivity, and thus affects behavior (Fagiolini et al., 1994;
Carvell and Simons, 1996; Erzurumlu and Gaspar, 2012; Levelt
and Hubener, 2012; Kral, 2013).

Perturbation of a sensory input leads to anatomical and
functional modifications in the remaining sensory systems. As
a consequence, neurons adaptively reorganize to integrate the
function of other sensory systems, in a process termed cross-
modal plasticity (Bavelier and Neville, 2002; Lee and Whitt, 2015).
Cross-modal plasticity alters perceptual abilities. For example,
several studies have shown that bilateral lid suture or enucleation
impairs orientation and direction selectivity of V1 neurons, but
enhances the processing of auditory and somatosensory inputs
in V1 (Rauschecker et al., 1992; Rauschecker and Kniepert,
1994; Yaka et al., 2000; Izraeli et al., 2002). Similar cross-modal
activation patterns after sensory deprivation have been observed
in other primary sensory cortices (Goel et al., 2006; Hunt et al.,
2006; Lee and Whitt, 2015; Meng et al., 2015).

Recently, the effects of non-visual inputs on experience-
dependent plasticity in V1 during early postnatal development
have been investigated (Hattori and Hensch, 2017; Figure 2B).
Concurrent visual-auditory inputs impaired the development of
orientation selectivity of V1 neurons if they occurred before or
after the critical period. However, the effect was dampened if
cross-modal visual-auditory stimuli occurred during the critical
period. The authors suggest that this effect is likely caused
by a sound-driven balance of suppression and enhancement
of V1 spiking activity, which is required for the tuning and
consolidation of visual selectivity. Similarly, it has been shown
that the onset of visual experience controls the development
of auditory processing (Mowery et al., 2016). In particular,
the critical period of auditory development was precociously
closed by early eyelid opening and extended by delayed eyelid
opening (Figure 2B).

Few experimental data have documented the impact of
altering the functional anatomy and neuronal activity of primary
sensory cortices on the development of PFC (Kolb and Gibb,
2015). It has been shown that sensory deprivation increases the
density of interneurons in PFC (Ueno et al., 2015). This is in
line with findings from primary visual cortex where the laminar
distribution of PV+ neurons is altered following enucleation
(Desgent et al., 2010). Overall, a mechanistic understanding
of the effects of sensory deprivation on the bidirectional
communication between primary sensory cortices and PFC is
currently lacking.

As discussed in section “External Inputs Controlling the
Development of Cross-Modal Processing in Rodent Primary
Sensory Cortex,” perturbations of unisensory development prior
to full maturation of all unisensory systems has long-lasting
consequences for the development of cross-modal processing
abilities (Ghoshal et al., 2011; Sieben et al., 2015). Notably,
during the sensitive period of tactile development, the functional
maturation of the PFC is boosted by the excitatory drive
from the hippocampus (Brockmann et al., 2011; Bitzenhofer
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et al., 2017; Ahlbeck et al., 2018; Figure 2C). However, it is
largely unknown how early sensory development affects the
maturation of the limbic system. Several studies have shown that
sensory experience is important for synaptic pruning during PFC
development (Schanberg and Field, 1987; Richards et al., 2012).
For example, raising rodents in a tactile-enriched environment
from birth on increases the prefrontal spine density and
improves the performance in PFC-dependent tasks at adulthood.
The increased dendritic branching and spine density in PFC
(Kolb et al., 2012; Kolb and Gibb, 2015) argue for significant
plastic changes occurring when experiencing a sensory enriched
environment. Thus, sensory-driven activity might directly impact
the maturation of the limbic system.

Early electrical activity in sensory and limbic circuits
may facilitate the network development required for their
communication (Mohns and Blumberg, 2008). Neocortical
spindle bursts are induced by proprioceptive feedback which
is initiated by twitches of the distal limbs (Khazipov et al.,
2004). These spindle bursts drive the activation of CA1 neurons
and critically depend on neocortical-hippocampal interactions
(Mohns and Blumberg, 2010). Since myoclonic movements
induce bursts of activity in the medial entorhinal cortex, which
in turn drives hippocampal responses, it has been suggested
that entorhinal-hippocampal interactions are part of a large-scale
bottom-up circuit activated during neonatal movements (Valeeva
et al., 2019). While the impact of somatosensory processing on
limbic system development began to be elucidated, it is currently
unknown whether similar bottom-up interactions exist for other
sensory systems. Similarly, the impact of top-down PFC activity
on early sensory development and its importance for adult cross-
modal processing capabilities are still unknown.

ANIMAL AND HUMAN RESEARCH AS
BACKGROUND FOR BRAIN-INSPIRED
INTELLIGENT ROBOTICS

Neuroscientific insights can be harnessed to build adaptive and
intelligent machines. Given recent advances in calcium (Ca2+)
imaging using genetically encoded Ca2+ indicators and in the
use of optogenetic tools for causal manipulation of neural circuits
(Fenno et al., 2011; Grienberger and Konnerth, 2012), current
and future research can provide a plethora of insights into the
neuronal computations of cross-modal processing. Based on
brain-like neural architectures and biologically plausible learning
mechanisms (Pitti et al., 2009), computer implementations can
create robot perception and action (Floreano et al., 2014). The
field of robotics is one of the most dynamic areas of technological
development (Zhang B. et al., 2016), and robots performing very
specific tasks are increasingly found in industry, service, and
medicine. A growing field is also the interplay between robotics
and neuroscience. For instance, equipping cognitive robots with
the ability to process and integrate cross-modal information
streams ensures that they will interact with the environment
more efficiently, even under conditions of sensory uncertainty
(Parisi et al., 2019). Similarly, developmental robotics, which is
motivated by human cognitive and behavioral development, aims
to provide a better understanding of the development of cognitive

processes using robots with rich sensory and motor capabilities as
testing platforms (Breazeal and Scassellati, 2002; Lungarella et al.,
2003; Prince, 2008; Cangelosi and Schlesinger, 2015, 2018).

As outlined above, low-level sensory and high-level neural
networks accounting for cognitive processing interact in a
bottom-up and top-down manner to create a coherent perception
of the multisensory environment. Similarly, bottom-up and top-
down processing underlying the integration of multipleisensory
information streams play a crucial role in the development
of autonomous agents and cognitive robots. However, these
two research streams often developed independently. Closer
interactions between them appear mutually beneficial for
several reasons. First, biological inspiration for the modeling
of bottom-up cross-modal processing in robots is of crucial
interest in order to endow agents with improved robustness,
flexibility and performance, particularly in the case of uncertain,
ambiguous or incongruent cross-modal inputs (Parisi et al.,
2019). For example, biological inspiration has played a major
role in the field of odor-guided navigation (Russell, 2001).
Bailey et al. (2005) developed a robot with multisensory
processing capabilities, and in particular stellar odor-tracking
performance similar to that found in animals, in order to
locate the source of chemical plumes (Bailey et al., 2005).
Barsky et al. (2019) applied a deep learning method to
combine disparate sensory inputs, such as auditory and visual
information. Cross-modal processing facilitated the learning
of a humanoid drumming robot to generate suitable motion
sequences to match desired unseen audio or video sequences
(Barsky et al., 2019). Axenie et al. (2016) proposed a
novel audio-visual sensory processing architecture for robust
multisensory fusion in robotic systems, which is inspired by
the distributed macro-architecture of the mammalian cortex
(Axenie et al., 2016).

Second, biological inspiration for the modeling of top-down
cross-modal processing in robots is mandatory for autonomous
agents and cognitive robots to develop perception through
active groping. Fujimoto et al. (2009) developed a robot being
able to pick up dishes based on active groping. The robot
roughly formulated a strategy for selecting dishes placed close
to each other. Subsequently, by actively acquiring the geometric
information of the dishes during the implementation of the
strategy, the robot was able to efficiently complete the task
(Fujimoto et al., 2009). Inoue (1971) developed a robot to search
for a block by actively moving the hand along a predefined
track and detecting contact with items using touch sensors
(Inoue, 1971). Maekawa et al. (1992) developed a finger-shaped
tactile sensor which could reconstruct the shape of an object
by actively moving along a predefined grid and detecting the
position and direction of contact by using sensors (Maekawa
et al., 1992). These studies demonstrate that robots have the
capability to progressively learn in an ever-changing multisensory
environment by means of self-exploration and social interaction.

However, robots are still limited in their dynamic movements,
emotional perception and adaptive interactions with humans,
and this drawback limits their application (Wiese et al., 2017;
Cross et al., 2019). To overcome this challenge, brain-inspired
intelligent robotics may equip systems with advanced human-like
cognitive abilities such as improved multisensory processing
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and learning capabilities by mimicking the structures and
mechanisms underlying sensory-cognitive processing (section
“Sensory-Cognitive Interplay During Cross-Modal Processing”).
In fact, multisensory perception has been named as one of the
key sensory-cognitive functions in order for cognitive robots
to thrive in a complex and dynamic environment (Zhang B.
et al., 2016). A lack of multisensory perceptive capabilities, makes
it more sophisticated to acquire other cognitive computations
and to function autonomously. Continuous learning of robotic
systems is crucial, because internal models of the multisensory
world must be acquired and adapted throughout development in
order for multisensory processing capabilities to emerge (section
“The Emergence of Sensory-Cognitive Interplay During Cross-
Modal Development”) (Rohlf et al., 2017). Recent endeavors led
to the creation of an open source humanoid called NICO (Neuro-
Inspired COmpanion), which due to its flexible design and open
and modular hardware and software framework can adapt to
individual experimental set-ups and opens the door to multimodal
human-robot interaction research with the aim of developing
autonomous agents and cognitive robots (Kerzel et al., 2017).

CONCLUSION AND FUTURE LINES OF
RESEARCH

It has been hypothesized that the bottom-up sensory drive
contributes to establishing neuronal circuits in the limbic
system during early development (Mohns and Blumberg,
2008). At adulthood, the interaction between low-level sensory
and high-level limbic areas enables cross-modal perceptual
decision-making. Cross-modal representations are transferred
from primary sensory cortices to PFC in a bottom-up

manner, and the representation of an attended stimulus
in primary sensory cortices is selectively enhanced by top-
down prefrontal modulation (Bizley et al., 2016). However,
the interactions between primary sensory cortices and PFC
during bottom-up/top-down cross-modal processing have been
poorly characterized. To this end, techniques that specifically
manipulate neuronal pathways between PFC and primary
sensory cortices are necessary. Relying on recent advances
in optogenetic terminal field excitation/inhibition, selectively
illuminating axon terminals originating from PFC and targeting
primary sensory cortices, would allow for the manipulation
of the direct pathways between PFC and primary sensory
cortices. This pathway-specific targeting will link function and
connectivity underlying cross-modal processing within sensory-
limbic circuits.
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