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Abstract: Yield is one of the most important agronomic traits for the breeding of rapeseed
(Brassica napus L), but its genetic dissection for the formation of high yield remains enigmatic,
given the rapid population growth. In the present review, we review the discovery of major loci
underlying important agronomic traits and the recent advancement in the selection of complex traits.
Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution
genetic breeding of rapeseed. Biparental linkage analysis and association mapping have become
powerful strategies to comprehend the genetic architecture of complex agronomic traits in crops. The
generation of improved crop varieties, especially rapeseed, is greatly urged to enhance yield produc-
tivity. In this sense, the whole-genome sequencing of rapeseed has become achievable to clone and
identify quantitative trait loci (QTLs). Moreover, the generation of high-throughput sequencing and
genotyping techniques has significantly enhanced the precision of QTL mapping and genome-wide
association study (GWAS) methodologies. Furthermore, this study demonstrates the first attempt to
identify novel QTLs of yield-related traits, specifically focusing on ovule number per pod (ON). We
also highlight the recent breakthrough concerning single-locus-GWAS (SL-GWAS) and multi-locus
GWAS (ML-GWAS), which aim to enhance the potential and robust control of GWAS for improved
complex traits.

Keywords: quantitative trait loci; multi-locus GWAS; yield-related traits; high-throughput genotyping

1. Introduction

Rapeseed (Brassica napus L., genome AACC, 2n = 38) is one of the second top-
most oilseed crops predominantly grown for protein meal and vegetable oil across the
world [1–4]. Feeding the ever-expanding population is a major challenge due to the ever-
expanding demand from humans and the production of biofuels increases global food
security [5,6]. To fulfill the global food demand, grain production is expected to increase up
to 50% by 2025 [7]. Therefore, to accomplish this exploiting demand, different plant vari-
eties with improved agronomic traits will steadily need to be generated. Various agronomic
traits include stress-inducive response, yield and yield-related traits, which are controlled
by many genes that are being significantly influenced by the environment [8]. Therefore, to
elaborate the actual mechanism of agronomic traits, the dissection and isolation of complex
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traits into the single chromosome locus and their characterization for each quantitative
trait locus (QTL) is imperatively noticed.

With the rapid progress in sequencing technology and bioinformatics tools, QTL
analysis, offering the ever-increasing opportunity, has been a highly significant, precise
and efficient genotyping approach that utilizes molecular markers (e.g., single nucleotide
polymorphism, SNPs) by engineering a powerful marker-based selection system that
stringently controls the complex genomic traits [9]. For gene mapping, the population
of 60 K illumines Infinium SNP arrays for B. napus can be sustainably transferred to a
gene-based, low-cost and high-throughput genotype-based screening method [10]. To
control the desired trait, this system is tremendously effective in mapping the QTLs within
a narrow-range genomic level; it can also be the source of supply markers within the
desired traits [11]. A previous study has incredibly triggered the rapid outcomes between
Arabidopsis and Brassica species. These outcomes showed that 12 genes have been identified
with 8 quantitative trait nucleotides (QTNs) underlying seed weight. Moreover, a single
gene-specific marker (BnAP2) was also identified [12].

Linkage disequilibrium (LD) mapping, also known as association mapping, demon-
strates the statistical relationship between the genetic markers and phenotypes within the
natural populations, which constitutes an efficient approach for the association mapping
of QTL traits. Genome-wide association studies (GWAS) are an effective and promising
approach for partitioning complex traits [13,14]. More recently, GWAS has been promis-
ingly involved for many crop varieties [15], including Avena sativa [16], Sorghum bicolor [17],
Hordeum vulgare [18], Triticum aestivum [19], Glycine max [20], Oryza sativa [21], Zea mays [22],
Arachis hypogaea [23] and Brassica napus [24].

The analysis of these crops by QTL/GWAS methods will be rapidly expanding and
applied to cereals crops. Therefore, the present study mainly focuses on the rapeseed QTL
characteristics that are an important model for future research. The current review also
provides a benchmark summary of the recently studied literature with a major concern on
rapeseed QTLs that demonstrate a significant role in future breeding strategies. Further-
more, this study also highlights the comprehensive information about both the single-locus
GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS) approaches, which can expand the
robustness of GWAS for complex genetic traits.

2. Breeding Objectives in Rapeseed Crop

To focus on breeding strategies in almost all cultivated plants to improve their yield,
more specifically, seed yield is our major target. In rapeseed, seed yield remains an
important breeding goal. In particular, oil quality, low erucic acid and glucosinolates
contents have been important aspects for breeding in rapeseed cultivars [25,26]. These
efforts have been utilized to reduce linolenic acid and to improve oleic acid contents,
shelf-life and palatability of the oil for human consumption [27,28] and have led to the
development of double-low cultivars [25,29], known as “HOLLi”. In addition to oil quality,
seed oil contents are also becoming a key target. Researchers have concentrated their
attention on exploring the genetic effects and mechanisms controlling oil production [30] to
satisfy edible oil and biofuels production requirements. In this regard, several QTLs have
been identified maintaining oil contents [31,32] and improving the quality of rapeseed
breeding. The targets are not only focused on seed oil content but also on protein content
to enhance the energy value of meals for livestock as a feed resource. To improve the
feed meal, researchers have focused on reducing the level of glucosinolates, tannins and
sinapate esters [26]. Genetic engineering strategies have successfully improved the seed
protein content by increasing the utility of essential amino acids.

Further objectives have been focused on quality improvement, including reducing
tannin contents in the seed protein and decreased fiber content [25,26] to boost meal quality
and palatability; as mentioned, seed yield is the priority effort of breeders. According to
Nesi et al. [26], seed yield has been increased by 50% during the last fifty years. However,
the increasing demands on the plant’s edible oil and biofuels attracted the breeders to breed
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cultivars with increased production [29]. Besides yield improvement, researchers have
also been focused on environmental stress and tolerance through engineered cultivars that
resist environmental stresses, such as salinity and alkalinity stress [33,34], water stress [35]
and nutritional deficiency [36–38]. These efforts will improve the final seed yield. Yield
is the most important and complex feature in crop plants that reflects the environmental
interaction and governs the developmental processes and growth events prevailing the
entire lifecycle of the plant [39].

There are three direct factors for seed yield, including seed weight, seed number and
silique number per plant. Other factors that indirectly affect the component traits include
biomass, harvest index, plant architecture and adaptation, resistance to the biotic and
abiotic constraints [40]. Hence, seed yield can be improved by keeping into consideration
the direct component features and the other indirect contributing traits. Previous reports
described some morphological and agronomic traits, such as siliques (pods) per plant,
seed per silique, silique length, seed weight, plant height and oil contents [40–42], as yield
accelerating traits. These yield accelerating traits can be used based upon selection criteria
for yield improvement in rapeseed. Among the contributing traits, siliques per plant
(SP) and seeds per silique contribute to the total number of seeds produced by the plant;
thus, they directly control and determine the seed yield [43]. Moreover, these traits are
further controlled by other plant traits such as plant height, branches per plant, silique
density on the plant and silique traits (silique length, number of siliques, etc.). Analyzing
the fundamental genetic mechanism and control of these traits separately will help to
understand the dependent traits, hence improving seed yield in B. napus [44].

3. The Role of Genome-Wide Association Studies (GWAS) in Molecular
Plant Breeding

The GWAS technique has been efficiently utilized to integrate novel traits in crops,
which ameliorate the statistical correlation between genetic markers and phenotypic traits
in the various crop varieties within the natural populations [45–47]. GWAS is a well-known
technique in the framework of human genetics and possesses many useful aspects to cover
and straighten out a variety of positive correlations between complicated diseases, as
well as common/useful variants, but, due to the missing heritability, which still comes
across as a problematic challenge, millions of molecular markers and the majority of in-
dividuals would be prerequisite to identify a wide range of QTLs. Nonetheless, in plant
breeding, the missing heritability seems to be less serious due to some genetic variants,
which explicitly demonstrates the phenotypic variation [48]. More recently, GWAS has
been promisingly involved for many crop varieties [15], such as Oryza sativa [21], Zea
mays [22], Triticum aestivum [19], Hordeum vulgare [18], Avena sativa [16], Brassica napus [24],
Glycine max [20], Arachis hypogaea [23] and Sorghum bicolor [17], cataloged in Table 1. In plant
breeding, GWAS methodologies seem to be more successful, because the previous find-
ings coherently demonstrated the greater extent of phenotypic variations over the human
GWAS outcomes [48]. The drawback of GWAS is the “fanciful” fabrication between the
desired trait of interest and molecular markers. The previous outcomes demonstrated that
the cryptic population is one of the significant determinants of fictitious relations [49,50].
Pritchard et al. [51] implicitly visualized the complete population structure that is based
on the Bayesian clustering approach (STRUCTURE). They standardized a K population’s
model where the individuals were nominated according to their genotype ratio among
different population varieties. They also predicted the allele frequency of the population.
Price et al. [52] developed a new strategy through the routine practice of principal compo-
nent analysis in order to interpret the population structure in a given genetic dataset [50]
that significantly governs the statistics of “axes of variation”. Moreover, various methods
have been proved, although they have shown limited success [51,52]. Apart from these
conventional methodologies adopted for phenotypic records and pedigree analysis, modi-
fication at the DNA level seems to contribute sufficient information about the principal
population structure [53]. In crop breeding, the information about population structure can
perform a vital role in establishing the manipulation of competent germplasm [54]. Thus,
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due to its wide range of applications, GWAS has the efficacy to be utilized directly in plant
breeding programs [55].

Table 1. The enigmatic role of genome-wide association studies in various crop species.

Crop Population
Size Markers Traits References

Aegilops tauschii 322 7185 SNPs Morphological traits [56]
B. napus 523 41 SNPs Flowering time [57]
B. napus 248 60K SNPs Seed germination and vigor [58]
B. napus 472 60,000 SNPs Seed weight and quality [47]
B. napus 155 35,791 SNPs Harvest index [59]
B. napus 521 60K SNPs Seed oil content [60]
B. napus 523 60K SNPs Flowering time [61]
B. napus 348 60K SNPs Silique related traits [62]
B. napus 472 19,945 SNPs Plant height and primary branch number [63]
B. napus 143 60K SNPs Branch angle [64]
B. napus 520 60K SNPs Branch angle trait [65]
B. napus 158 60K SNPs Flowering time and yield responses [66]
B. napus 192 369 SSR, 740 AFLP Yield-related traits [44]
B. napus 370 60K SNPs Quantity of fatty acids [67]
B. napus 422 60K SNPs Root development [68]
B. napus 333 60K SNPs PH, BIH, and BN [69]
B. napus 588 385,692 SNPs Oil content [70]
B. napus 300 201,187 SNP Fatty acid composition [71]
B. napus 216 30,262 SNPs Root architectural traits [72]
B. napus 157 742 SNPs Seed weight and silique length [73]
B. napus 327 33,186 SNPs Branching morphogenesis. [74]
B. napus 435 60K SNPs Fatty acid composition and content [75]
B. napus 331 60K SNPs Silique number [76]
B. napus 307 60K SNPs Seed glucosinolates contents [77]
B. napus 419 60K SNPs Seedling stage [78]
B. napus 300 201,817 SNPs Earliness traits [79]
B. napus 368 60K SNPs Salt tolerance-related traits [34]
B. napus 520 60K SNPs Fatty acid composition [80]
B. napus 210 23,435 SNPs Hypocotyl elongation [81]
B. napus 520 Brassica 60K Seven yield-determining traits [82]
Barley 175 107 SSRs Seed aging and longevity [83]
Barley ~500 1536 SNPs Morphological trait [84]
Barley 122 DH lines 9680 SNPs 14 main agronomic traits [85]
Barley 275 9K SNP, 3072 SNP Six-rowed spring barley [86]
Barley 233 7864 SNPs Root and shoot architecture traits [87]
Barley 25 9 K iSelect SNPs Plant growth under drought stress [88]

Barley 222-2-303
6-rowed 7864 SNPs. Adherence of hulls to the caryopsis [89]

Barley 109 15,828 DArTseqs and
7829 SNPs

Chlorophyll fluorescence induction (OJIP)
parameters [90]

Barley 166 777 DArT markers Drought stress [91]
Cotton 169 53,848 SNPs Fiber quality traits [15]
Cotton 319 55,060 SNPs Drought stress [92]

Cotton 231 122 SSR and 4729 SNP
markers

Fiber quality
traits and yield components [93]

Cotton 196 CottonSNP80K Salt tolerance [94]
Cotton 316 81,675 SNP Drought tolerance [95]
Cotton 83 15,369 SNPs Oil content [96]
Cotton 215 ~1.57 million SNPs Salt tolerance [97]

Flax 370 258,873 SNPs Pasmo resistance [98]
Foxtail millet 916 0.8 m SNPs Agronomic traits [99]

Maize 384 681,257 SNPs Seedling root architecture traits [100]
Maize 999 56,110 SNPs Northern corn leaf blight resistance [101]
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Table 1. Cont.

Crop Population
Size Markers Traits References

Maize 368 1.03 m SNPs Kernel oil concentration fatty acid
composition [102]

Maize 25000 SNPs Southern leaf blight resistance [103]
Maize - SNPs Leaf architecture [104]

Maize 144 43,427 SNPs The regenerative capacity of the
embryonic callus [13]

Maize 257 48,193 SNPs Stalk lodging resistance [14]
Maize 230 145,232 SNPs Starch pasting properties [61]
Rice 413 44,100 SNPs Agronomic traits [105]
Rice 9 71,710 SNPs Agronomic traits [106]
Rice 220 6000 SNPs Salinity tolerance [107]
Rice 517 ∼3.6 m SNPs Agronomic traits [108]
Rice 950 SNPs Flowering time grain-related traits [109]
Rice 20 32,655 SNPs Agronomic traits [110]
Rice 236 147,692 SNPs Cooked rice texture [111]
Rice 478 162,529 SNPs Salt-tolerance [112]

Sorghum 971 ~26,500 SNPs Plant height and architecture [17]
Sorghum 245 85,885 Forage quality-related traits [113]

Soybean 96 SSRs

Plant height pods/plant 100-seed weight
plant growth

habit seeds/pod days to 50% flowering
and maturity

[114]

Soybean 368 62,423 SNPs Plant height and the number of nodes [115]
Soybean 219 292,035 SNPs Photosynthetic response to low P stress [116]
Soybean 144 SoySNP660k Protein content [117]

Sugarcane 20 20 SSRs Cane weight tillers/plant [118]
Tomato 174 182 SSRs Flavor traits [119]
Wheat 382 SNPs Agronomic traits and carbon isotope [120]
Wheat 182 14,646 SNPs 20 free amino acid [121]
Wheat 339 13,098 SNPs Karnal bunt resistance [122]
Wheat 160 10,172 SNPs Wheat quality and yield-related traits [123]
Wheat 635 10,802 SNPs Flour yield and alveograph quality traits [124]

The Role of QTLs and GWAS in Three Yield-Related Traits in Rapeseed

Yield is the most important but one of the complex traits in crops. Because of the ever-
growing population, the increase in the food demand has been deemed a global concern
and is now becoming the major challenge for the speedy breeding of plant cultivars to
generate high yield oilseed rape cultivars with increasing agricultural sustainability and
productivity to fulfill the burgeoning demand globally [125,126]. Besides pod number,
seeds per silique (SS) and thousand-seed weight (TSW) are the other two important yield-
determining components of a single plant, both of which are directly associated with ovule
development. According to a recent assessment of rapeseed cultivars, the approximated
number of seeds per pod is about ~20, which is thought to be far lower than the germplasm
ratio, which exhibited a higher range of ~30 [127,128]; this holds the scientists’ interest in
the genetic modification and improvement of rapeseed cultivars by means of increasing
the number of seed per silique. The most important factors that control the number of
seeds per silique include the number of ovary/ovules and the number of unfertile/fertile
ovule, as well as the number of fertile ovules that convert into seeds. In B. napus, the
number of ovules per ovary is measured through different phases occurring during the
ovule development [129]. In contrast, the number of unfertile/fertile ovules depends on
various fertilization events, i.e., pollen/pollen tubes interaction, pollen sterility and ovule
fertility [130,131]. The most desirable outcomes of the fertilized ovule that develops into a
seed are principally governed by the biological process of seed development characterized
by physiological and nutritional requirements, as well as many other environmental
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factors, such as abiotic and biotic stimulus [130,132]. QTL mapping for ovule numbers
had been studied in other plants, such as Glycine max [133], Vicia faba [133] and Raphanus
sativa [134]. More recently, Yuan and Kessler [135] found a locus associated with NERDI in
A. thaliana, which plays a vital role in the regulation of ovule number in both female and
male gametophytes. The above discussion suggests that limited literature is available in
regard to the genetic basis for ovule number in crops, especially in oilseed rape. To the best
of our knowledge, there is no study conducted for ON in B. napus yet.

Additionally, the development of high yielding varieties is a major goal in rapeseed
breeding, which is determined by three yield components, i.e., siliques per plant (SP),
SS and SW [43]. Previous studies articulately observed a negative interaction between
silique-related traits. Furthermore, it was also determined that these traits had a derogatory
impact on the breeding event by scrutinizing QTNs and genes, which is accomplished for
each desirable trait [136,137]. Over the last ten years, TSW has shown rapid development
in the field of molecular marker technology [40]. Recently, ~65 and ~168 QTLs, for SS and
TSW, respectively, have been examined in 19 linkage groups [37,40,41,43,136–149].

Li et al. [150] detected 133 QTLs for 12 yield-related traits (including SS and TSW,
etc.) in rapeseed, containing 14 QTLs consistently identified across two locations. Most
of the QTLs were found on the N2 and N7 linkage positions. Radoev et al. [142] also
identified 33 QTLs for seed yield and yield component traits at four locations. These
results revealed that 10 QTLs had a significant effect on the target traits. On the other
hand, Shi et al. [40] employed an extensive study on two populations, i.e., RC-F2 and
TNDH, in ten environments. They found 85 QTLs for seed yield and 785 QTLs for 8 yield-
related traits (seed number per silique, thousand seed weight, etc.). Bagheri et al. [151]
identified 47 QTLs for 17 traits associated with seed yield and plant architecture, which
explained from 6% to 56% of the total variance for the targeted traits. Shi et al. [137] found
one major QTL (qSN. A06) for SS, which explained 32.1% of the phenotypic variation.
Similarly, Yang et al. [129] also found a major QTL for SS on qSN. A06. Raman et al. [152]
identified 2 QTLs on Chr A03 and Chr A07, explaining from 5% to 19% of the phenotypic
variation for FT and SY. Zhao et al. [153] detected 18 QTLs for SYs and 208 QTLs for YDTs.
Recently, Luo et al. [149] studied 22 traits and found 1904 QTLs; among them, 80 QTLs
were associated with yield, while 535 QTLs contributed to SY.

Seed size/weight is also an essential factor in Sys [43], having greater heritability than
the other yield component traits (YCTs) [40]. In different populations, 6, 4 and 7 QTLs for
seed weight were identified located on N7, N17 and N19 linkage groups, respectively [141].
Shi and his group discovered a major QTL qSW.A07-2 [40], while Fan and his colleagues
also identified 2 major QTLs TSWA07a and TSWA7b on the same chromosome, which
explained from 27.6% to 37.9% of the variation in said trait [41]. Further, Yang and his
group detected 1 major QTL (cqSWA09), which also explained high variation (28.2%) for
silique length and seed weight [146]. Li et al. [47] carried out a comprehensive study about
seed weight and silique length (SL) and 13 and 9 QTLs were identified, which showed the
highest variations of 67% and 54%, respectively. Some QTLs were consistently detected
through experiments and the authors suggested that these QTLs were more stable and
reliable for future study. Using two different populations, 21 and 20 QTLs were identified
for seed weight and silique length. The ranges of phenotypic variations for seed weight
(SW) and seed length (SL) were observed to be from 24.4% to 62.9% and from 55.1% to
74.3%, respectively [154].

Based on a 60K SNP array, some studies were conducted on various traits of B. napus
(flowering time and harvest index) [61,155]. Based on a 60K SNP array, Li et al. [47]
identified significant SNPs for erucic acid content (A08 and C03), glucosinolates content
(A09, C02, C07 and C09) and seed weight (A07 and A09). These results revealed that the
identified significant SNPs were suitable for fine mapping complex traits of B. napus [47].
Cai et al. [44] employed GWAS for six yield-related traits using 192 inbred lines of rapeseed.
They identified seven and nine associated markers for seed per silique and thousand
seed weight. These lines were genotyped using 451 SLM markers and 740 AFLP markers.
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Schiessl et al. [66] studied seed yield and yield-determining traits using a 60K SNP array
and identified 36 loci associated with target traits in B. napus. GWA studies have not
been extensively adopted in the genetic dissection of ovule number, seed per silique and
thousand seed weight in rapeseed [66].

More recently, Khan et al. [4] carried out a GWAS analysis on 521 accessions of
oilseed rape, genotyped with a Brassica 60 K SNP array, by using single-locus GWAS
(SL-GWAS) and multi-locus GWAS (ML-GWAS) methods. The outcomes of this study
presented the significant numbers of 31 and 280 QTLs/QTNs, that were detected by
analyzing SL-GWAS and ML-GWAS methodologies, respectively. Among these sequences,
74 common significant QTNs (which include 8 for ovule number (ON), 32 for SS and 34
for TSW) were repeatedly detected by more than three ML-GWAS models and in multiple
environments [4]. Figure 1 shows the distribution of important loci associated with seed
per silique and thousand-seed weight across the chromosomes of rapeseed by QTL and
GWAS studies.
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Figure 1. Distribution of QTLs for seeds per silique (SS) and seed weight (TSW) across the chromo-
somes (A01–A10; C1–C9) of rapeseed. Values between parentheses indicate the number of QTLs for
a given trait (for details see Supplementary Table S1).

We greatly emphasize that the genetic modification of these traits may also improve
rapeseed molecular breeding to develop eco-friendly and improved yield-related cultivars.
The outcomes analyzed by this approach may principally favor a strong revolution for the
improvement of rapeseed.
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4. Candidate Genes and Superior Alleles of Seed Yield Related Loci Identified
in Rapeseed

The candidate gene approach implies the identification of significant genes that are im-
portant for quantitative traits and agriculture. The candidate gene approach was first used
for maize (flowering time) [156,157] and then also used for many important traits [158,159].
Recently, in B. napus three independent pieces of literature were available on candidate
genes related to YDTs [126]. Zhao and his group identified candidate genes for seed yield
(4), TSW (2) and plant height (1) [33]. Zheng and his colleagues also detected candidate
genes, 31 for plant height, 15 for branch initiation height and 17 for branch number using
diverse oilseed rape accessions [69]. Lu et al. [82] used 520 accessions of rapeseed and dis-
covered 6, 7, 7 and 3 candidate genes for seed per silique, pod number, branch pod number
and TSW, respectively. Khan et al. [4] further prophesied the genes associated with SS, TSW
and ON, respectively. They found a total of 42 candidate genes, which were homologous
to A. thaliana yield-determining traits, which lie in the range of QTLs. The candidate genes
for ON, SS and TSW were identified in the numbers of 3, 17 and 20, respectively, whereas
2 candidate genes were linked with SS/TSW (Bn-A09-p30391674/Bn-A09-p30404228) or
TSW/SS (Bn-A08-p16523108/Bn-scaff_16665-p54637).

In rapeseed, only two findings were reported that demonstrated the gene cloning for
TSW and SS, respectively. For SS, qSS.C9, the QTL is thought to be one of the important
QTLs [160] that play a significant role in developing female gametophytes [131]. Addi-
tionally, the ARF18 gene controls both TSW and SL QTL formation [161]. Moreover, the
ARF18 gene slowed down the function of the auxin gene and had an inhibitory effect on its
biological activity, which was assumed to modulate the activity of silique wall development
and TSW by regulating maternal genes [161]. Furthermore, many other genes also play a
tremendous role in cloning many other important traits, viz. yield, abiotic stress, seed oil,
disease resistance, etc., as presented in Figure 2.
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More recently, Ma et al. [13] identified, in maize crop, 63 common QTNs within the
31 elite inbred lines. Of them, 36 QTNs were showed in <50% superior alleles, which
anticipated that these identified alleles were not appropriate for the artificial selection
method, whereas 27 further QTNs were identified to be >50%; therefore, these findings
confirmed that these alleles were the best match for artificial selection [13]. Subsequently,
the recent outcomes of Khan et al.’s study [4] identified 74 significant QTNs by utilizing
multiple methods in a different environment. The identified QTNs were determined to be
significant QTNs that were strongly associated with yield-determining traits. Of these, 8,
13 and 34 QTNs were observed to have superior alleles for ON, SS and TSW, respectively.
In fact, the allele percentage ranged from 9.4% to 85.41%, from 7.67% to 82.34% and from
4.79% to 68.13%, for SS, TSW and ON, respectively. Interestingly, one of the identified
QTN for ON (Bn-A09-p10297982) had the highest percentage proportion (67%), whereas
the remaining seven showed less than 50%. For SS, 31 QTNs were identified, in which 13
had superior alleles >50%, whereas 18 of the identified QTNs had <50% allele ratio. Lastly,
for TSW, among 34 identified QTNs, 14 QTNs showed superior alleles for more than 50%,
whereas 20 QTNs showed fewer superior alleles, about 50%. Remarkably, the single QTNs
for both TSW (Bn-A03-p24823015) and SS (Bn-A03-p403559) had the highest proportion
of superior alleles, 82.34% and 85.41%, respectively. Therefore, the authors argued that
these identified superior alleles showed an effective role in the above-aforementioned
yield-determining traits. We strongly believe that the obtained high percentage of superior
alleles will be convenient for high yield production in the revolution of rapeseed breeding.
Until now, there is no significant study organized to find the superior alleles in rapeseed.
In the marker-assisted selection (MAS) method, the highest percentage of superior alleles
is very accessible. This strategy also showed significant insights into seed yield and other
useful economic traits in many plant species.

5. Comparative Overview of Single-Locus and Multi-Locus GWAS Methodologies

To improve yield-determining traits (YDTs), contributing to a better understanding
of their genetic basis and diversity, recently, genome-wide association studies (GWAS)
approaches have been extensively used to dissect the complex traits in crops. Before this,
most of the findings have been reported to have utilized single-locus GWAS, such as the
mixed linear model (MLM) ([162,163]), while, recently, various new MLM-based models
have been introduced [164]. More comprehensively, these novel strategies have various
applications in the genetic integration of novel and omics-related traits, facilitating the
recent breakthrough in the generation of bioinformatics and sequencing strategies. Addi-
tionally, single-locus models have some pitfalls, including the GLM principally showing
high false-positive rates (FPR). In contrast, MLM used Bonferroni corrections for the iden-
tification of loci to mitigate the chances of FPR, though this process is very rigorous and
the outcomes for some important loci data are still missing. To overcome these limita-
tions, Zhang et al. [165] utilized different multi-locus GWAS approaches, including multi-
locus random-SNP-effect mixed linear model (mrMLM) [166], iterative Modified-Sure
Independence Screening EM-Bayesian LASSO (ISIS EM-BLASSO) [167], fast multi-locus
random-SNP-effect EMMA (FASTmrEMMA) [168] and pLARmEB [169]. In a previous
study, Li et al. [170] demonstrated that the comprehensive approach of GWAS is very ef-
fective in identifying the number of QTNs, more specifically in B. napus, by utilizing the
ML-GWAS and SL-GWAS methods.

The mrMLM method enhances the identification of loci by more than 55% throughout
the covered region. For instance, Misra et al. [171] determined the significant rice variants
in determining rice grain by employing ML-GWS and SL-GWAS methods. Therefore,
the combined utilization of the ML-GWAS and SL-GWAS methodologies was useful to
detect the genetic locus of GWi7.1, GWi7.2 and to identify novel genes. Moreover, Xu
et al. [172] utilized multi-locus and single-locus GWAS methods to quantify the significance
of novel QTNs in the pasting traits of maize starch. In contrast to the ML and SL-GWAS
methods, it was confirmed that ML-GWAS FASTmrEMMA had novel QTNs (29), whereas
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SL-GWAS (GEMMA) showed a much lower number of novel QTNs (7) [172]. More recently,
Peng et al. [121] utilized six ML-GWAS methods to determine the genetic dissection of
20 amino acid levels in Triticum aestivum L. As a result, they achieved that ML-GWAS
models are very authentic and dynamic [121]. Correspondingly, Cui et al. [112] confirmed
that, via this multi-locus GWAS approach, most of the QTNs were discovered by following
ISIS EM-BLASSO [112]. Additionally, Su et al. [173] showed research findings in the genetic
dissection of upland cotton, in which 70 QTNs were identified. They concluded that the
ML-GWAS methods are much more powerful and authentic than the single-locus GWAS
(MLM) methods in TASSEL v5.0 [173]. Finally, the results mentioned above confirm the
strengths of ML-GWAS strategies as compared to SL-GWAS methods, although, more
recently, the outcomes of some studies recommend that the co-interaction of single-locus
and multi-locus GWAS methods significantly enhances the identification of rationality and
robustness of GWAS [97,115,165,172].

6. Conclusions, Future Trends, and Perspectives

This review presented the robustness and power of QTL/GWAS analyses, candidate
gene association studies and superior allele identification in Brassica napus. Follow-up work
can be carried out on the following aspects:

1. The genetic analysis of phenotypic traits has found novel and significant QTNs/QTLs/
candidate genes, giving research a chance to progress, more specifically, in the identifi-
cation of the activity of these genes and further recognize the mechanism of the genetic
constitution of the traits of thousand seed weight, ovule number per ovary and seed
number per silique through crosswise adverse geographical and climatic conditions.

2. The information collected from previous studies enriches the knowledge of variations
in populations in the three above-mentioned yield-related traits; therefore, this war-
rants the need for supplementary authentication that will deliver markers through
the integration into the host plant improvement.

3. The association analysis of the candidate gene method and the development of near-
isogenic, transgenic, or mutant plants may be efficiently utilized to identify novel and
significant alleles and how they interact with the above-mentioned yield-related traits.

4. Genomic regions reviewed in the present study merit attention for their further
utilization in breeding programs that use marker-assisted selection (or genomics-
assisted breeding) on Brassica napus.
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