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Risk Stratification in Hypertrophic
Cardiomyopathy
Leveraging Artificial Intelligence to Provide Guidance
in the Future
Monica Ahluwalia, MD,a Jacques Kpodonu, MD,b Emmanuel Agu, PHDc
H ypertrophic cardiomyopathy (HCM) is the
most common inherited cardiovascular dis-
ease occurring in 1:200 to 1:500 patients.1

HCM is characterized by increased left ventricular
(LV) wall thickness in the absence of abnormal
loading conditions and infiltrative or storage disease
processes, which can result in heart failure (HF), ar-
rhythmias, and sudden cardiac death (SCD).1,2

Although the overall risk of SCD is w0.5%/y in the
current era, there is at least more than a 2-fold in-
crease of SCD in pediatric population compared to
adults with HCM.3,4 There is also a significant
geographic variation of SCD events reflective of dif-
ferential access to genetic testing, imaging used to
guide diagnosis and risk stratification, and costly
treatments such as device implants.3 Timely HCM
diagnosis and risk stratification assessment are key
to prevent adverse outcomes including life-
threatening arrhythmias. However, identification of
patients who would derive the most benefit from
implantable cardioverter-defibrillator (ICD) implant
can be challenging and more enhanced risk stratifica-
tion algorithms are needed.

CURRENT GUIDELINES

Current risk stratification models have evolved over
time reflecting the challenges in capturing an
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individual’s overall risk and increasing understand-
ing of disease. Current 2020 American College of
Cardiology (ACC)/American Heart Association (AHA)
HCM Guidelines2 and updated 2022 European Society
of Cardiology (ESC) guidelines5 for ventricular ar-
rhythmias help guide risk stratification for SCD. Ac-
cording to guidelines, ICD is a Class I indication for
patients with sustained ventricular arrhythmias,
ventricular fibrillation, or cardiac arrest. Other indi-
vidual factors are also used in the assessment of SCD
risk in the 2020 ACC/AHA guidelines include family
history of SCD in first-degree family members, unex-
plained syncope, nonsustained ventricular tachy-
cardia, maximal wall thickness of $30 mm, LV end-
stage remodeling with left ventricular ejection
fraction <50%, left atrial size, left ventricular outflow
tract obstruction, apical aneurysm, and significant
late gadolinium enhancement (LGE) on cardiac mag-
netic resonance (CMR) imaging. In contrast, ESC risk
assessment uses quantitative ESC 5-year SCD indi-
vidual risk score with enhanced features such as
apical aneurysm, significant LGE, ejection
fraction <50% with abnormal blood pressure
response with exercise and sarcomere status as key
differentiating factors.

KNOWLEDGE GAPS IN OUR CURRENT MODELS:

THE NEED FOR MORE ENHANCED PREDICTORS

Current models are limited and may underestimate
risk among patients who have undergone septal
reduction therapies, pediatric patients and under-
represented minorities. Genotype status may also
confer risk of SCD based on observational studies;
however, this association has not been well estab-
lished. These tools also rely heavily on accurate
https://doi.org/10.1016/j.jacadv.2023.100562
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assessment of maximal wall thickness, a continuous
measure in the risk stratification models; however,
expert interpretation has high inter-reader vari-
ability, and can be imprecise including the assess-
ment of maximal wall thickness using transthoracic
echocardiogram owing to erroneous inclusion of right
ventricular myocardium, LV trabeculations, or papil-
lary muscles. This has the potential to impact critical
decisions on therapeutic interventions In one anal-
ysis, imprecise measurements, can contribute to
inappropriate implantation of ICDs in approximately
1 in 7 patients leading to unintentional complications
and costs6 with a device complication rate of up to
2.1%/y.7 In addition, degree of left ventricular outflow
tract obstruction (continuous variable) is a risk pre-
dictor however this may not be necessarily reflective
of one’s overall risk as Black patients are more likely
to be nonobstructive and have high degree of fibrosis
on CMR (categorial variable).8

Validation studies have been performed to deter-
mine how well current models perform in prediction
of SCD events which have previously shown variable
sensitivity and specificity. An evaluation of 2,094
patients with primary prevention ICD incorporating
2020 ACC/AHA guideline risk factors including LGE
and apical aneurysm had a sensitivity of 95% and
specificity of 78% in comparison to sensitivity of 58%
and specificity of 81% using the 2014 ESC criteria.
Also, the C-statistics for discriminating patients with
and without SCD was 0.81 for using ACC/AHA risk
assessment vs 0.74 using 2014 ESC risk assessment
with a more significant gap in refining risk in the in-
termediate risk cohort. Although the updated 2020
ACC/AHA algorithm is more sensitive in identifying
very high risk patients, we need to better discriminate
among lower risk patients evidenced by the fact that
patients in the United States are implanted more
frequently than patients at non-U.S. sites with less
appropriate ICD therapies among patients managed in
the United States.9 More recently, 2022 ESC guide-
lines attempt to bridge some gaps by providing
additional risk factors to be considered among inter-
mediate and low risk groups including abnormal
blood pressure response during exercise and sarco-
mere status beyond apical aneurysm, LGE and left
ventricular ejection fraction <50%. However, use of
abnormal blood pressure response, which was previ-
ously removed from 2020 ACC/AHA guidelines, and
sarcomere status do not have strong evidence to
support their use. Further studies are required to
validate the current 2022 ESC model and optimize
allocation of ICDs.
MACHINE LEARNING AND ENHANCING RISK

STRATIFICATION ALGORITHMS

Machine learning (ML) is a type of artificial intelli-
gence that learns from example data, and deep
learning (DL) is a subtype of ML that utilizes neural
networks to mimic the human brain. ML and DL ap-
proaches can automate echocardiographic analyses,
interpretation and HCM detection. In a heteroge-
neous, progressive disease state such as HCM, ML
may be a tool to: 1) accurately and precisely measure
maximal wall thickness and quantify LGE on CMR
that can be used for diagnosis and risk stratification;
2) identify additional ‘high-risk’ or ‘low-risk’ vari-
ables based on disease phenotypes; and 3) better
enhance risk assessment using multiple variables
reflecting different aspects of the disease to provide
an accurate estimate of prognosis. In fact, ML can
accurately measure maximal wall thickness and
quantify scar quantification from CMR images with
high correlation with expert analysis.10,11 Prior
studies have evaluated ML based risk stratification for
ventricular arrhythmias and HF progression using
clinical characteristics and echocardiographic fea-
tures with sensitivity of 80% and specificity of 72%
and C-statistic of 81%12; however, limitations include
lack of well-represented population13 and unexpected
high event rates.14 Sarcomeric status has also not
been used in these models. Moreover, the ML model’s
performance in non-White patients who exhibit
different phenotypes and factors such as social de-
terminants of health is unknown. Regarding statisti-
cal approach, prior work has also found DL-based
survival models to outperform regression approaches
used for survival analysis in current risk stratification
models which often assumes simplistic linear re-
lationships between HCM and patient data.

INCREASING REPRESENTATION OF

DIVERSE POPULATIONS

It is well known that Blacks with HCM have worse
cardiovascular outcomes with higher risk of incident
HF, HCM-related SCD and lower survival after out of
hospital arrest comparative to their White counter-
parts.15,16 Although recent studies attempt to bridge
gaps in understanding disparities in diverse pop-
ulations, studies are limited by significant referral
bias highlighting differential access to care evidenced
by lower genetic testing rates and lower referrals for
septal reduction therapies among Black patients.15

Large registry data from centers with community-



FIGURE 1 Phenotyping and Risk Stratification Using Machine Learning in HCM

Large registries including well-represented diverse populations can provide insight on various phenotypes and genotypes. Machine learning clustering on patients can

be performed to categorize patient in phenogroups based on their risk profiles. This information can be used to guide development of risk stratification models to help

identify patients who are highest risk for developing incident atrial fibrillation, heart failure, and sudden cardiac death so that timely treatment plans can be

implemented. HCM ¼ hypertrophic cardiomyopathy; P ¼ phenogroup.
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based networks with well-represented diverse pop-
ulations is needed to determine the natural history of
sarcomeric HCM including social determinants of
health and ancestral data. This information can be
used in addition to a priori risk factors to help inform
us about a patient’s overall risk beyond self-reported
race. Further, as the cumulative burden of disease is
primarily driven by incident HF and atrial fibrilla-
tion,17 risk stratification tools in addition to SCD are
also needed to identify patients at highest risk. Cur-
rent registries and expanded registries representing
diverse populations can provide more understanding
of risk profiles and heterogenous HCM phenotypes. In
turn, this information can then be used to help
develop and advance risk stratification models for
atrial fibrillation, HF, and SCD (Figure 1).

CONCLUSIONS

Decision of implantation of device therapy is complex
and multifaceted, involving interplay of clinical
reasoning, physician expertise, patient-centered
shared decision-making model in management of a
heterogenous disease process such as HCM. This is
evidenced by the fact of varying clinical practices in
ICD implantation rates in U.S. centers vs non-U.S.
centers.9 Current risk stratification tools have limi-
tations and may not be widely applicable to all.
Further, ML and DL have the potential to provide
insight into individual’s risk for susceptibility to
malignant rhythms, and improve the precision of
echocardiographic interpretation, early detection,
and risk stratification in patients with HCM.18-21
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