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Abstract: For the bonding of the lightweight composite parts, it is desired to apply electrically
conductive adhesive to maintain the ability to shield electromagnetic interference. Among various
solvent-based adhesives, there is a new group of thermoplastic hot melt adhesives that are easy to use,
solidify quickly, and are environment-friendly. To make them electrically conductive, a copolyamide-
based hot melt adhesive was mixed with 5 and 10 wt% of carbon nanotubes using a melt-blending
process. Well-dispersed nanotubes, observed by a high-resolution scanning microscope, led to the
formation of a percolated network at both concentrations. It resulted in the electrical conductivity
of 3.38 S/m achieved for 10 wt% with a bonding strength of 4.8 MPa examined by a lap shear test.
Compared to neat copolyamide, Young’s modulus increased up to 0.6 GPa and tensile strength up
to 30.4 MPa. The carbon nanotubes improved the thermal stability of 20 ◦C and shifted the glass
transition of 10 ◦C to a higher value. The very low viscosity of the neat adhesive increased about
5–6 orders of magnitude at both concentrations, even at elevated temperatures. With a simultaneous
growth in storage and loss modulus this indicates the strong interactions between polymer and
carbon nanotubes.

Keywords: hot melt adhesive; carbon nanotubes; adhesion; rheology; microstructure

1. Introduction

Electrically conductive adhesives (EACs) are a group of materials developed to be
used as adhesives in electronics or the aviation and automotive industry as a bonding
medium of thermoplastic or thermosetting matrix composites. In the first application, the
ECAs can replace the traditional Pb-Sn solder used to assemble the components of printed
circuit boards. The high interest in ECAs in electronic packaging is due to easier processing
and higher resolution printing, lower processing temperature, and environmental friend-
liness compared to Pb-Sn soldiers [1]. In the second application area, ECAs can improve
electromagnetic shielding properties or lightning strike protection by forming the interlayer
between the joining lightweight composites used in automotive or aircraft sectors. Here,
the ECAs are a promising candidate for eliminating commonly used rivets resulting in
lower stress concentration and weight of the final parts [2].

The main components of ECAs are polymer and electrically conductive fillers. The
polymer matrix consists of both thermoplastics like polyimide and, mainly, thermosets
such as silicone, epoxy, or acrylate resins, and they are responsible for the mechanical
properties of the adhesive layer [3]. Because polymers (excluding conductive polymers)
are insulators, they need to be modified with electrically conductive fillers, which provide
a sufficient level of conductivity and do not decrease the overall mechanical performance.
Of the broad range of conductive fillers, micro silver is most commonly used in the form of
powder, flakes, spheres, nanowires, or dendrites [4]. However, to achieve a sufficient level
of conductivity, it is necessary to add a high amount of silver–between 25 wt% and even
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80 wt%. Such an amount causes difficulties during processing, high cost, and impairs the
adhesive layer’s mechanical properties. Moreover, the electrical conductivity diminishes
as an effect of corrosion and oxidation of the metallic filler and localization of the charge
carriers [5,6]. To overcome these weaknesses, the new approach focuses on applying
carbon-based fillers or nanofillers. The best-known examples include carbon nanotubes
(CNTs), graphene, carbon black, and graphite. Due to their high surface area, they form a
conductive network in the polymer at lower concentrations than metal fillers [7]. Moreover,
they are light and not corroding, and their price is decreasing yearly owing to increased
production. However, the critical challenge for the ECAs containing carbonaceous fillers is
to achieve the percolated network that allows transferring electrons through the contact
points between conductive fillers or by the tunneling effect. Carbon-based nanofillers
form agglomerates, which must be destroyed during processing to achieve homogenous
dispersion and distribution in the polymer matrix. Ideally, they will form the percolated
conductive network at a low concentration [8]. However, it should be noted that the main
parameter affecting the overall conductivity of the ECAs is the filler-filler contact resistance,
which disturbs the free flow of the electrons. Therefore, agglomerates or microparticles with
fewer contact points can positively affect the ECAs’ conductivity [1,9]. Hence, researchers
analyze the mutual impact of both types of fillers–metallic and carbonaceous because the
built network results in more effective conductance. For example, Luo et al. [10] proved
that adding 4.5 wt% CNTs together with 50 wt% of silver flakes improved the electrical
conductivity by about 255% compared to the sample without CNTs, and the values reached
were 2.56 × 105 S/m. The other tested possibility is to modify the surface of CNTs with
silver to obtain functionalized CNTs and then add them to the polymer. However, such a
solution resulted in a relatively low electrical conductivity of 2.83 × 10−6 S/m [11]. Instead
of using conductive fillers, the ECAs can also be produced by modifying the polymer
matrix with intrinsically conductive polymers such as polyaniline or polypyrrole [12].

Applying ECAs in electronics requires high electrical conductivity and good mechani-
cal performance, high thermal conductivity, long curing time, resistance to low and high
temperatures, and humidity [13]. For the other application of ECAs, such as adhesive bond-
ing of the lightweight composite structures, the essential property is electrical conductivity
needed for electromagnetic interference (EMI) shielding (0.1–10 S/m) or lightning strike
protection (min. 10 S/m). The other mentioned requirements are high strength, the ability
to withstand a wide temperature range, and a low coefficient of thermal expansion [14].
Furthermore, such ECAs should prevent delamination caused by insufficient adhesion
between the layers and be easy to apply. Among various polymers used as a matrix in
ECAs, the ones that have achieved the highest popularity are solvent-based epoxy, silicones,
or acrylates. However, in recent years, solvent-free and thermoplastic hot melt adhesives
have attracted great attraction. They are complex materials consisting of: (i) polymer
(polyamide, polyurethane, polyolefins, ethylene copolymers) responsible for strength and
hot tack; (ii) resin that improves contact with the substrate; (iii) tackifier that adjusts the
glass transition and dilutes polymer; (iv) wax that increases setting speed [15]. Hot melts
are available in the form of pellets, powder, sticks, and bars, which are solid at room
temperature. When the temperature rises, they become liquid and soft, but they solidify
during cooling. Depending on the formulation, hot melt adhesives offer a broad range of
properties, including adhesion strength, working temperatures, and viscosity level [16].
Hot melts are used primarily where the process speed matters, such as non-wovens in
sanitary products, construction, packaging, bottle labeling, bookbinding, or temporary
attachments [17]. Hot melt adhesives have also found a place in the composites industry
to improve the bonding strength of hybrid parts (different types of glass/carbon compos-
ites) [18]; improve the interlaminar toughness in lightweight composites [19]; increase the
adhesion between the nanofibrous mat and its supporting woven polyester fabric [20] or as
the conductive adhesive to provide an electrically conductive layer between bonding parts.
So far, there are only a few publications describing ECAs based on hot melt adhesives, such
as polyurethane [21], polyolefines [22], and our previous work on polyamide-based hot



Polymers 2022, 14, 4371 3 of 13

melts [23]. Compared to epoxy adhesives, the main advantages of the hot melts in adhesive
bonding are lack of solvent, no requirement of special surface treatment; shorter curing
time; lack of weight increase compared to rivets, and recyclability [18].

This study aimed to analyze the effect of the high loading of multi-walled carbon
nanotubes (MWCNTs) on the properties of commercial non-conductive hot melt polyamide.
For this research, a hot melt with very low viscosity was selected to examine how much
the electrical conductivity will be improved, but also considering the rheological, thermal,
and mechanical properties. Based on the achieved conductivity and the strength of the
adhesive bonds, they are a promising candidate to be applied as ECAs for the adhesive
bonding that requires EMI shielding.

2. Materials and Methods
2.1. Materials

As the hot melt adhesive, the copolyamide (coPA) hot melt in the form of granules
with the trade name Vestamelt®722 was supplied by Evonik (Essen, Germany). According
to the datasheet, the melting temperature is 107 ◦C and melt flow index = 310 g/10 min
(2.16 kg/160 ◦C) classified that polymer as being low viscous. MWCNTs with the trade
name NC7000 from Nanocyl (Sambreville, Belgium) synthesized by catalytic carbon de-
position from the gas phase were used as the electrically conductive filler. The average
diameter of that type of MWCNTs is 9.5 nm, length 1.5 µm, and purity > 95%.

2.2. Composites Fabrication

The selected coPA was mixed with 5% and 10% by weight (wt%) of MWCNTs using an
industrial twin-screw extruder by Nanocyl. The pellets of neat coPA and both masterbatches
were dried before each process in a vacuum oven at 60 ◦C for a minimum of 6 h. The
specimens for the rheological and mechanical tests were prepared directly from the pellets
using the laboratory injection moulding machine HAAKE Mini Jet Pro Piston Injection
Molding System (ThermoScientific, Karlsruhe, Germany). The parameters of the injection
moulding process are presented in Table 1.

Table 1. Injection moulding parameters for coPA and it’s masterbatches containing 5 wt% and
10 wt% MWCNT.

MWCNTs
Content

Barrel
Temperature

(◦C)

Mould
Temperature

(◦C)

Injection
Pressure

(bar)

Injection
Time

(s)

Post
Pressure

(bar)

Post
Time

(s)

0 110 35 650 3 400 6

5 wt% 150 35 800 5 700 10

10 wt% 150 35 800 5 700 10

2.3. Characterization Techniques

Firstly, the dispersion and distribution of MWCNTs in the masterbatches were exam-
ined using a Polarized Light Microscope (Bipolar-PL, PZO, Warsaw, Poland). Slides with
a thickness of 2–3 µm were cut directly from the masterbatch pellets using an ultramicro-
tome (EM UC6, Leica, Vienna, Austria). From the obtained images (7 for each material)
the number of MWCNT agglomerates was counted using image software (ImageJ). The
percentage ratio AA was calculated by dividing the area of all agglomerates by the total
area, excluding those agglomerates with a diameter lower than 1 µm. The second method
applied to analyze the dispersion of MWCNTs was a Transmission Scanning Electron
Microscope (HR STEM S5500, Hitachi, Tokyo, Japan) that allows the observations on a
nanometer scale. For the analysis, the slides with a thickness of 80–90 nm were cut with
diamond knives at −100 ◦C by an ultramicrotome (EM UC6, Leica, Vienna, Austria). The
observations were performed at 30 kV.
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An ARES rheometer (model 4400-0107, TA Instruments, New Castle, DE, USA) was
used to analyze the viscoelastic properties of the hot melt adhesives by oscillatory test in
the plate-to-plate mode. Firstly, a dynamic strain sweep test as a function of the variable
strain γ (0.07–100%) at a constant frequency of 1 Hz was performed to determine the strain
within the elastic range. Then a variable frequency test was performed with the determined
deformation, in this case, 0.1% and at three temperatures of 180 ◦C, 200 ◦C and 220 ◦C. The
specimens for the rheological analysis were produced by injection moulding in the form of
rounds 25 mm in diameter and with a thickness of 1 mm.

The thermal stability of the materials was determined by thermogravimetric analysis
(TGA). The examination was conducted on a TGA Q500 instrument (TA Instruments, New
Castle, DE, USA). For this, samples of 10 ± 0.5 mg were prepared, then transferred to tared
platinum pans and heated from 20 ◦C to 900 ◦C at a heating rate of 10 ◦C/min. Two flow
rates of nitrogen of 10 mL/min in the chamber and 90 mL/min in the oven were used
during the analysis. Thermal stability was determined by degradation temperatures of 5%
(T5%) and 10% (T10%) weight loss, as well as by the maximum degradation peak (Td).

The thermal properties of all materials were examined by Differential Scanning
Calorimetry (DSC) using the Q1000 Differential Scanning Calorimeter (TA Instruments,
New Castle, DE, USA). The 6.5 ± 0.5 mg samples were placed in an aluminum hermetic
crucible and analyzed under the heat-cool-heat program from −80 ◦C to 220 ◦C with a
heating/cooling rate of 10 ◦C/min under a nitrogen atmosphere. The curves obtained from
the test were analyzed using TA Universal Analysis 2000 software version 4.5A. The glass
transition temperature (Tg), melting temperature (Tm), and enthalpy of melting (∆Hm)
were determined from the heating curves, while the crystallization temperature (Tc) and
enthalpy of crystallization (∆Hc) were taken from the cooling curves. Due to the lack of
data about the enthalpy of melting of 100% crystalline coPA, the degree of crystallinity was
not calculated.

The electrical volume conductivity of unfilled and filled coPA was measured by
the Keithley 6221/2182A device equipped with copper electrodes. Test samples with di-
mensions of 10 cm × 10 cm were prepared by pressing the pellets on a hydraulic press
(Hydraulische Werkstattpresse WPP 50 E, Unicraft, Hallstadt, Deutschland) at the tempera-
ture of 115 ◦C and pressure of 30 MPa. Afterwards, small specimens of around 1 cm × 1 cm
were cut from different sections of the bigger sample, to determine the homogeneity of the
electrical conductivity. To maintain good contact between electrodes and the measured
sample silver paste was applied.

Mechanical properties of the studied materials were analyzed by uniaxial tensile tests
according to PN EN ISO527 using an MTS QTest 10 (MTS Systems, Eden Prairie, MN, USA)
testing machine. Five test specimens represented each material. Tensile experiments were
performed at a constant crosshead speed of 10 mm/min using an extensometer with a
gauge length of 50 mm for strain measurements. From the stress-strain curves, the tensile
modulus of elasticity, ultimate tensile strength (Ftu) and elongation at break (εb) were
determined. Tensile tests were carried out on small dog bone specimens.

The hardness was determined based on the Shore method according to PN-EN ISO
868:2005 standard. The hardness test was carried out using the WHS-180 hardness tester
by Wilson-Wolpert (ATM Qness, Mammelzen, Germany). All measurements were made
using the Shore D scale for testing hard plastics. For each material, 25 measurements were
made. The final result for coPA and its masterbatches containing MWCNT was obtained by
calculating the arithmetic mean of the values. A load of 50 N was applied during the test.

The wettability of the surfaces of coPA and its masterbatches was tested by measur-
ing the contact angle using an OCA15 (DataPhysics Instruments, Filderstadt, Germany)
goniometer equipped with OCA software. The contact angle hysteresis was determined
by calculating the difference between the advancing and receding contact angles. The test
was performed on the round specimens from the injection moulding using a 5 µL droplet.
The contact angle results are the averaged values of five different measuring points on
each surface.
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The effect of MWCNTs on adhesive efficiency was studied using a lap shear test. In
order to obtain test specimens, two aluminum plates were pressed together at 135 ◦C, with
neat coPA and coPA + MWCNTs between them. The thickness of the adhesive bond was
kept at 0.1mm, and the dimensions of the specimens are shown in Figure 1. The lap-shear
test was performed using an MTS810 servo-hydraulic testing machine in accordance with
ASTM D 1002. The crosshead speed was kept at 1.3 mm/min.
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3. Results
3.1. Microstructure

The dispersion and distribution of MWCNTs in the coPA matrix were analyzed in
terms of agglomerates (so-called macrodispersion) using a light optical microscope. Sample
images are presented in Figure 2a,c. At first glance, it can be seen that the coPA containing
5 wt% of MWCNTs (Figure 2a) has more agglomerates than the masterbatch with 10 wt% of
MWCNTs (Figure 2c). The higher MWCNT concentration causes a higher shear force during
extrusion and more effective destruction of the primary agglomerates. The quantitative
analysis confirms this because the percentage ratio of the MWCNT agglomerates in the
nanocomposites equals AA = 5.8 ± 1.1% and AA = 3.1 ± 1.0% for 5 wt% and 10 wt%
MWCNTs, respectively. The images obtained by TEM are shown in Figure 2b,d present a
more detailed analysis of the nanocomposite microstructure. Here, the MWCNTs are visible
as single long tubes, loosely connected at some places in the form of bundles. Moreover,
they are not arranged in any specific direction. Although MWCNTs are homogeneously
dispersed in the copolyamide matrix, there are some empty places where nanotubes do
not occur. Such sites are visible as white areas, and they are responsible for decreasing the
electrical conductivity of the materials. However, the overall state of MWCNTs dispersion
can be classified as good enough.
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3.2. Rheological Properties

Oscillatory rheology measurements were performed to examine the effect of the
addition of MWCNTs on the viscoelastic properties of coPA. As shown in Figure 3 the
complex viscosity of pure coPA increases by about 6 orders of magnitude in the presence of
5 and 10 wt% MWCNTs which is related to the restriction of the polymer chains’ movement.
It should be noted that there is a negligible difference between 5 and 10 wt% concentration,
because a stronger effect is usually visible at low concentrations of CNTs. Here, at 5 wt%
the network has already been percolated and further addition of MWCNTs does not change
that structure much and does not affect the chains’ movement. Such a high increase in
viscosity demonstrates the interaction between coPA and nanotubes. Looking into the
curves, it can be seen that since neat coPA is a non-Newtonian liquid, its viscosity is not
dependent on the frequency. In contrast, nanocomposites behave as Newtonian liquid with
the viscosity decreasing together with the frequency [24]. Interestingly, the viscosity of
the materials does not decrease at higher temperatures because the curves remain almost
unchaged at 180 ◦C, 200 ◦C and 220 ◦C.
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The formation of a percolated network in the coPA-based nanocomposites is also
demonstrated by an increase in storage and loss modulus, which describe the viscous and
elastic properties, respectively. As can be seen in Figure 4 both moduli increase after the
addition of 5 wt% and 10 wt% MWCNTs in comparison to neat coPA. Similarly to the
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viscosity, there is a negligible difference between 5 and 10 wt% MWCNTs and, what is
more, frequency has no effect on both moduli. It should be also noticed that for neat coPA
the loss modulus is higher than the storage modulus within the whole frequency range,
however for nanocomposites, this is reversed. This shows that nanocomposites behave
more like elastic than viscous material, which has been reported for many thermoplastic
nanocomposites modified with CNTs [25].

Polymers 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 

addition of 5 wt% and 10 wt% MWCNTs in comparison to neat coPA. Similarly to the 
viscosity, there is a negligible difference between 5 and 10 wt% MWCNTs and, what is 
more, frequency has no effect on both moduli. It should be also noticed that for neat coPA 
the loss modulus is higher than the storage modulus within the whole frequency range, 
however for nanocomposites, this is reversed. This shows that nanocomposites behave 
more like elastic than viscous material, which has been reported for many thermoplastic 
nanocomposites modified with CNTs [25]. 

 
Figure 4. The dependence between storage modulus (full symbols) and loss modulus (open sym-
bols) for neat coPA (black curves), coPA + 5 wt% MWCNTs (red curves) and coPA + 10 wt% 
MWCNTs (blue curves). Test temperature 180 °C, strain 0.1%. 

3.3. Thermal Properties 
The effect of the addition of MWCNTs on the thermal stability of coPA was studied 

by TGA. The obtained results are shown in Table 2, while the curves are shown in Figure 
5. It can be seen that for neat coPA the decomposition which corresponds to 5% weight 
loss (T5%) starts at 310 °C. In the presence of 5 wt% MWCNTs, T5% increases to 336 °C. This 
behaviour of the material indicates that the presence of CNTs delays the degradation of 
the polymer. Interestingly, the presence of 10 wt% MWCNTs causes a slight decrease in 
T5% compared to 5 wt% MWCNTs. The same trend can be observed for 10% weight loss 
of the material. The maximum degradation temperature for pure coPA occurs at about 
440 °C. For material with the addition of 5 wt% MWCNTs, this temperature is 465 °C. It 
can be concluded that a high MWCNTs content in the coPA structure has less effect on 
the thermal stability of the polymer than a lower concentration. In comparison, 
Mahmood.N et al. indicated that adding only 0.5 wt% MWCNTs to the PA6 matrix caused 
a shift in the temperature distribution by 70 °C [26]. 

Figure 4. The dependence between storage modulus (full symbols) and loss modulus (open symbols)
for neat coPA (black curves), coPA + 5 wt% MWCNTs (red curves) and coPA + 10 wt% MWCNTs
(blue curves). Test temperature 180 ◦C, strain 0.1%.

3.3. Thermal Properties

The effect of the addition of MWCNTs on the thermal stability of coPA was studied by
TGA. The obtained results are shown in Table 2, while the curves are shown in Figure 5. It
can be seen that for neat coPA the decomposition which corresponds to 5% weight loss (T5%)
starts at 310 ◦C. In the presence of 5 wt% MWCNTs, T5% increases to 336 ◦C. This behaviour
of the material indicates that the presence of CNTs delays the degradation of the polymer.
Interestingly, the presence of 10 wt% MWCNTs causes a slight decrease in T5% compared
to 5 wt% MWCNTs. The same trend can be observed for 10% weight loss of the material.
The maximum degradation temperature for pure coPA occurs at about 440 ◦C. For material
with the addition of 5 wt% MWCNTs, this temperature is 465 ◦C. It can be concluded
that a high MWCNTs content in the coPA structure has less effect on the thermal stability
of the polymer than a lower concentration. In comparison, Mahmood.N et al. indicated
that adding only 0.5 wt% MWCNTs to the PA6 matrix caused a shift in the temperature
distribution by 70 ◦C [26].

The heating and cooling curves of unfilled coPA and filled with 5 wt% and 10 wt%
MWCNT are displayed in Figure 6. From the obtained first heating curves (Figure 6a),
two characteristic points, the glass transition temperature and the melting temperature
was observed. The addition of MWCNTs does not change Tm relative to neat coPA; other
researchers have previously observed a similar relationship in polyurethane-based hot melt
adhesives [27]. Moreover, the presence of two glass transition peaks in neat coPA indicates
that studied adhesive consists of copolymer having segments of PA 6 and PA66 (also
confirmed by FTIR analysis). Most likely, the lower Tg value is related to the PA6 segment,
while the higher value is related to the presence of the PA66 segment [28]. The addition
of 5 wt% MWCNTs shifted the second Tg peak toward higher values of about 15 ◦C. This
confirms a good dispersion of nanotubes in the coPA matrix, which limits the polymer
chains’ mobility [29]. The second heating curve showed similar behaviour of all tested
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materials (Figure 6b). However, from cooling curves (Figure 6c), the formation of a more
marked crystallization peak is observed, shifted towards higher temperatures after the
addition of 5 wt% MWCNTs. Introducing MWCNTs in the polymer matrix induces a
nucleation process, which affects the crystalline phase formation. These observations were
confirmed by other researchers [30]. In the case of coPA with 10 wt% MWCNTs, no further
temperature changes were observed. The formation of a new crystalline phase can also
be noticed by the changing character of melting curves as well as decreasing the value of
enthalpy of melting.

Table 2. The results of thermal analysis.

TGA DSC

Material
T5%
(◦C)

T10%
(◦C)

Td
(◦C)

1st Heating 2nd Heating Cooling

Tg
(◦C)

Tm
(◦C)

∆Hm
(J/g)

Tg
(◦C)

Tm
(◦C)

Tc
(◦C)

∆Hm
(J/g)

Tc
(◦C)

coPA 310 346 437 17
48 101 18 17 103 76 27 -

coPA + 5 wt% MWCNT 336 378 465 18
63 101 13 28 103 - 17 74

coPA + 10 wt% MWCNT 330 373 456 19
66 100 10 30 101 - 15 74
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3.4. Electrical Properties

Electrical conductivity is the main property since the examined materials based on hot
melt coPA and MWCNTs are a candidate for use as ECA’s materials. Figure 7 shows the
maps of the conductivity of masterbatches measured on hot-pressed square plates divided
into small pieces. It can be seen that the conductivity is not the same at every point of the
plate, however, the deviation is not significant (except one value for 10 wt% MWCNTs). The
average electrical conductivity value for coPA with 5 wt% MWCNTs was 0.57 ± 0.09 S/m,
while introducing 10 wt% MWCNTs increased the conductivity to 3.38 ± 1.07 S/m. In
comparison to polyolefine hot melt adhesive containing the same type of MWCNTs, the
electrical conductivity at 5 wt% was 0.01 S/m, which is much lower than that obtained
for coPA nanocomposites [22]. Obviously, the achieved conductivity is much lower than
reported for typical ECAs containing silver as a conductive filler, but the manufacturing
process is much easier and faster. The electrical conductivity of neat coPA was below the
measuring range of the instrument and was <10−9. These results were correlated with the
microstructure presented in Section 3.1. The calculated value of AA affects the value of
electrical conductivity. Electrical conductivity increases while the average area of MWCNT
agglomerates decreases [4,31]. The higher electrical conductivity with lower agglomerate
size was the result of better dispersion of the filler in the polymer matrix, and thus more
conductive pathways present in the test material.
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3.5. Mechanical Properties

Figure 8 shows the characteristic stress-strain curves of neat coPA and its composites
with MWCNTs. The elastic modulus, tensile strength and elongation at break as a function
of the concentration of MWCNTs are presented in Table 3.

Young’s modulus increased with the addition of MWCNTs at a concentration of 5 wt%
by 205% and at a concentration of 10 wt% by 330%. Similarly, tensile strength improved
by 129% at 5 wt% concentration and by 171% with addition of 10 wt% MWCNTs. Only
elongation at break decreased, what was expected and reported already for polyolefine hot
melt adhesives containing 5 wt% of MWCNTs [22]. The addition of MWCNTs increases the
stiffness and strength of thermoplastic adhesive-based materials caused by the uniform
dispersion of nanotubes in coPA matrix. There is also a visible effect of MWCNTs on the
Shore D hardness, that grown from 54◦ ShD for neat coPA to 60 and 64◦ ShD for 5 wt%
and 10 wt% MWCNTs, respectively; such a reinforcing effect has also been reported for
single-walled carbon nanotubes mixed with rubber [32].
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Table 3. Mechanical properties of neat coPA and coPA/MWCNTs composites.

Tensile Test Hardness Test

Material
Elastic

Modulus
(GPa)

Ultimate
Tensile Strength

(MPa)

Elongation at
Break

(%)

Hardness
(◦ShD)

coPA 0.20 ± 0.02 17.7 ± 1.81 55.9 ± 21.8 54

coPA + 5 wt%
MWCNT 0.41 ± 0.02 22.9 ± 0.61 36.7 ± 11.2 60

coPA + 10 wt%
MWCNT 0.66 ± 0.03 30.4 ± 0.73 28.6 ± 4.28 65

3.6. Contact Angle Measurements

The main property of the ECAs is high adhesion to different substrates. Therefore,
the effect of MWCNTs inclusion into coPA hot melt was analyzed by the measurement of
the contact angle. The results (Figure 9) show that the average contact angle of neat coPA
was 92◦, but in the presence of 5 and 10 wt% MWCNTs (lack of differences between the
concentration) it was decreased to 80◦. This means that MWCNTs change the hydrophobic
character of coPA hot melt to a hydrophilic one. This is related to the modification of the
surface of coPA due to the incorporation of MWCNTs. Nevertheless, the contact angle
of 80◦ means that the nanocomposites have hydrophilic properties, so their wettability
should be improved. Similar results were reported for the other types of coPA hot melt
adhesives [23].
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3.7. Adhesive Properties

From the practical point of view, the main challenge is to keep the same or even
better adhesive properties of ECAs after the addition of any conductive fillers. To see how
MWCNTs affect the adhesive properties of coPA, a lap shear test was performed. The
calculated shear strength is presented in Table 4. For the neat coPA hot melt, the shear
strength was 8.4 MPa. Adding 5 wt% and 10 wt% MWCNTs decreased shear strength
to 5.4 MPa and 4.8 MPa, respectively. In other words, a high concentration of MWCNTs
reduces the adhesive properties of the coPA-based ECAs, due to too much carbon. The
literature indicates that up to 3 wt% of MWCNTs, the shear strength increases, but further
addition of the filler leads to decreasing the adhesive strength [22]. Similar decreasing
in the adhesive properties was found for PA6 hot melt adhesive mixed with lithium
bromide, which was explained by lack of the bond formation between the adhesive and the
aluminum substrate [33]. It is noteworthy, however, that the shear strength values obtained
for coPA hot melt modified by even 10 wt% MWCNTs are high and comparable with the
literature [34]. The specimens after lap shear test shown in Figure 10 indicate that in all cases,
there was adhesive failure between the adherent and the hot melt adhesive. Moreover, the
adhesion strength of the tested materials is influenced by many other properties, including
surface roughness of the adherent, wettability of the adherent by adhesive, layer thickness,
temperature applied during bonding and even concentration of the hot melt in the bonding
layers [35]. These factors will be studied in the future.

Table 4. The result of the lap-shear test.

Material Lap Shear Strength
(MPa)

coPA 8.4 ± 0.51

coPA + 5 wt%
MWCNT 5.4 ± 0.68

coPA + 10 wt%
MWCNT 4.8 ± 0.25Polymers 2022, 14, x FOR PEER REVIEW 12 of 14 
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Figure 10. Fracture pattern of joints bonded with MWCNTs modified hot melt at different concentrations.

4. Conclusions

This paper describes a group of electrically conductive adhesives fabricated by melt-
blending thermoplastic copolyamide hot melt containing 5 wt% and 10 wt% MWCNTs. The
neat coPA was characterized by low viscosity, which, together with the storage modulus and
loss modulus, was increased after MWCNTs additions by about 5-6 orders of magnitude due
to strong interactions between the coPA chains and nanotubes. At elevated temperatures,
the viscosity does not drop because the movement of the polymer chains is hindered
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due to the high content of MWCNTs. Such behavior is also confirmed by shifting the
glass transition temperature of neat coPA by about 15 ◦C towards higher values at both
MWCNT concentrations. However, the nanotubes have a negligible effect of on the melting
point, but as the melting curve changes, it was assumed that MWCNTs work as nucleation
agents leading to the formation of a new crystal phase. From microscopic images, the area
ratio of MWCNT agglomerates calculated by ImageJ was AA = 5.8% for coPA + 5 wt%
MWCNTs and AA = 3.1% for coPA + 10 wt% MWCNTs. Fewer agglomerates resulted in
higher electrical conductivity for 10 wt%–3.38 S/m, while for 5 wt%, it was 0.58 S/m. The
addition of MWCNTs improved thermal stability and temperature of decomposition by
about 25–30 ◦C compared to neat coPA indicates the homogenously dispersed nanotubes.
Elastic modulus, tensile strength, and hardness were improved in the presence of MWCNTs
by a maximum of 330%, 171%, and 20%, respectively. The addition of MWCNTs also
changed the hydrophobic character of coPA hot melt to a hydrophilic one, signifying higher
wettability. However, it did not affect the adhesion strength, which decreased from 8.5 MPa
to 4.8 MPa as the effect of MWCNT addition. Nevertheless, such adhesion can classify coPA
filled with MWCNTs as a good adhesive that, together with achieved electrical conductivity,
can be applied as ECAs for EMI shielding applications.
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