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Abstract: The shearer positioning method with an inertial measurement unit and the odometer is
feasible in the longwall coal-mining process. However, the positioning accuracy will continue to
decrease, especially for the micro-electromechanical inertial measurement unit (MIMU). In order
to further improve the positioning accuracy of the shearer without adding other external sensors,
the positioning method of the Rauch-Tung-Striebel (RTS) smoother-aided MIMU and odometer is
proposed. A Kalman filter (KF) with the velocity and position measurements, which are provided by
the odometer and closing path optimal estimation model (CPOEM), respectively, is established. The
observability analysis is discussed to study the possible conditions under which the error states of KF
can be estimated. A RTS smoother with the above-mentioned KF as the forward filter is built. Finally,
the experiments of simulating the movement of the shearer through a mobile carrier were carried
out, with a longitudinal movement distance of 44.6 m and a lateral advance distance of 1.2 m. The
results show that the proposed method can effectively improve the positioning accuracy. In addition,
the odometer scale factor and mounting angles can be estimated in real time.

Keywords: shearer positioning; micro-electromechanical inertial measurement unit (MIMU); kalman
filter; Rauch-Tung-Striebel (RTS) smoother; closing path optimal estimation model (CPOEM)

1. Introduction

Automated mining based on a longwall face has shown significant potential to im-
prove mining productivity, increase personnel safety, and secure environmental sustain-
ability [1]. As shown in Figure 1, the longwall face equipment include a shearer, some
hydraulic supports, and an armored face conveyor (AFC). The shearer rides on the AFC
to cut coal back and forth. The AFC provides the running track for the shearer while
transporting the coal. The hydraulic supports not only support the roof but also push the
AFC towards the coal seam. The position of the shearer is directly related to the control
of the AFC and hydraulic supports [2]. Hence, the positioning of the shearer is the key
technology to realize automated mining. The inertial measurement unit, which contains a
3D inertial sensor, is widely used to estimate the position of the shearer due to its high reli-
ability and autonomy [3]. The micro-electromechanical inertial measurement unit (MIMU)
is especially favored by the mine engineers with the advantages of low cost and small size.
However, the free inertial position error can grow quickly over time due to the drifting of
the inertial devices [1], which includes repeatability biases, the slow-varying drifts, and
the fast-varying drifts [4,5], and thus the integrated navigation mode with MIMU as the
core component becomes a better choice. The MIMU/Global Positioning System (GPS)
integrated navigation system is widely used as a conventional and low-cost positioning
method. Unfortunately, GPS cannot be used in underground environments. The position-
ing system composed by ultra-wideband range measurements can be used in GPS-denied
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environments [6,7]. The susceptibility of the ultra-wideband system to occlusion will
affect the stability of the integrated system. The MIMU/Doppler radar sensor has been
successfully applied to the positioning of a continuous miner [8]. Unlike continuous coal
mining, the surrounding environment of a longwall shearer is more complicated, which is
detrimental to the accuracy of the Doppler radar sensor. The above-mentioned auxiliary
methods need to exchange information with the external environment, and the positioning
accuracy is inevitably affected by the environment. Exploring autonomous and robust
auxiliary technology has become the first problem to be solved.
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Zero-velocity update (ZUPT)-aided MIMU is a simple and robust integrated strat-
egy [9,10]. However, it requires short and frequent stops. The motion constraint-aided
MIMU ZUPT method can reduce the number of stops for simple ZUPT correction [11,12],
but its accuracy cannot meet the actual demand of shearer positioning. The odometer is
regarded as one of the most potentially useful autonomous speed sensors for land vehi-
cles, and the system with the MIMU and odometer has been proven to be autonomous,
robust, and feasible for shearer positioning [13–15]. The dead reckoning (DR) with Euler
angles provided by MIMU and velocity provided by the odometer is one of the methods to
estimate the position of the shearer. The inertial navigation attitude error, especially the
heading angle error, is the main error source precluding further improvement of DR [1].
The motion constraint [16] and closing path optimal estimation model (CPOEM) [1] are
used to improve the accuracy of DR. However, these two methods can only slow down the
divergence of the position error. The reason is that DR, as an open-loop structure, cannot
prevent the divergence of inertial navigation attitude errors. Establishing a Kalman filter
(KF) based on MIMU and the odometer is another information fusion method, which is
widely used in the field of conventional land navigation [17–20]. The advantages of this
method lie in the closed-loop correction of the MIMU attitude and the real-time estimation
of the inertial device parameters. The effect of correction and estimation has a lot to do
with the steering maneuver of the vehicle. In the case of only MIMU and the odometer, the
small and slow steering maneuver of the longwall shearer is difficult to achieve the ideal
positioning effect [20,21]. Therefore, we plan to build a KF based on MIMU, odometer,
motion constraint, and CPOEM to achieve better positioning.

The position error of the MIMU/odometer integrated system repeats “increase–
decrease” changes along with the reciprocating operation of the shearer [22], which fits the
typical case of the Rauch-Tung-Striebel (RTS) smoother. RTS smoothing is a technology
that uses all observation information in a certain time interval to re-estimate the state based
on the KF algorithm [23]. The RTS smoothing algorithm is one of the core technologies of
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the position and orientation system, which can enhance the ability of the position and ori-
entation system to be free from external disturbance [24–27]. Since the estimation accuracy
of the RTS smoothing algorithm is superior to that of filtering, it is often used as a reference
for post-analysis of the integrated navigation system [28,29]. In the above applications,
RTS smoothing works in off-line mode, which not only requires a large storage space, but
also limits its use in scenarios with real-time requirements. An on-line smoothing method
can overcome the above limitations and has been successfully used in the MIMU/GPS
integrated navigation system [30] and pedestrian navigation system [31]. The core idea of
on-line RTS smoothing can be summarized as smoothing is executed immediately after a
certain time window to achieve a near real-time application effect. Obviously, on-line RTS
smoothing technology is more suitable for the needs of longwall mining. Therefore, we
propose a positioning method based on MIMU, odometer, motion constraint, CPOEM, and
on-line RTS smoother, whose contributions and benefits can be summarized as follows:

(1) The RTS smoother is introduced into the MIMU and odometer integrated system,
which can improve the shearer positioning accuracy without additional external sensors.

(2) Observability analysis of position measurement is added to theoretically provide
the estimation conditions of the main error states on the basis of the previous work on
velocity measurement.

(3) The mounting angles between the MIMU frame and the odometer frame can be
estimated in real time, avoiding the tedious pre-calibration process.

2. Mathematical Models of Velocity and Position

The coordinate systems involved in this paper are shown in Figure 2, which are
defined as follows: b-frame, the MIMU frame, which originates at the sensitive center of
the MIMU, with the axes pointing to the AFC advance direction (right), shearer moving
direction (forward), and upward; m-frame, the odometer frame, whose axes point right,
forward, and upward; n-frame, the local-level east–north–up coordinate.
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The aim of the strapdown inertial navigation system (SINS) alignment process is
to determine the transition matrix from b-frame to n-frame, denoted by Cn

b . One of the
purposes of MIMU and odometer joint calibration is to determine the mounting angles
between m-frame and b-frame, which can be expressed by a vector, α. The direction cosine
matrix from b-frame to m-frame is denoted by Cm

b .

2.1. Measured Velocity Model

The moving speed of the shearer is denoted by vm
y , which can be measured by the

odometer. Taking into account the scale factor error, δkD, and measurement noise, wOD, of
the odometer, the actual output, ṽm

y , of the odometer can be expressed as [20,21,32]:

ṽm
y/OD = (1 + δkD)vm

y + wOD (1)
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According to the motion constraint, there is no sideslip along the AFC advance
direction and no motion normal to the AFC under ideal conditions, so the velocities along
the xm axis and zm axis are regarded as zero [11]. The ideal velocity of the shearer in
m-frame can be expressed as:

vm = [0 vm
y 0]T (2)

Integrating (1) and (2), the measured velocity model in m-frame is:

ṽm
OD/MC = (1 + δkD)vm + wOD/MC (3)

where wOD/MC is the noise vector, defined as:

wOD/MC = [wMC,x wOD wMC,z]
T (4)

where wMC,x and wMC,z are the motion constraint noise along the xm axis and the zm
axis, respectively.

2.2. Measured Position Model

A typical shearer operation process is to repeat “straight cutting–oblique cutting–
reverse straight cutting” to form a closed path, which is shown in Figure 3 [1]. The shearer
runs in the order of A–B–C–D–E–F–G–H–I–J. Assuming that the shearer moves from the
right to the left of Figure 3 during the first cutting cycle, we define the end corresponding
to A, F, and I as the near end of the longwall face, and the corresponding end of the B, E,
and J as the far end of the longwall face. The lengths of j − 1, j, and j + 1 cutting cycles,
corresponding to the lengths of AB, EF, and IJ, respectively, are the same. The advance
distance between two adjacent cutting cycles is also the same, denoted by d, which can be
measured by the displacement sensor fixed in the push arm of the hydraulic support. Some
points with ∆ interval in each cutting cycle are selected as optimal points for information
fusion of KF. The ideal advance displacement of an optimal point can be expressed as:

Dm
i,j−1|j = [d 0 0]T, (5)

where Dm
i,j−1|j represents the advance displacement of point i from the j − 1 cutting cycle to

the j cutting cycle.
According to the CPOEM principle and the longwall mining process [1], the positions

of the optimal points during the next cutting cycle can be predicted through the positions
of the current cutting cycle and the advance displacement. The position of point i in the
j + 1 cutting cycle is expressed as:

pi,j+1 = pi,j + CCn
b Cb

mDm
i,j|j+1 (6)

where pi,j and pi,j+1 denote the positions of point i in the j and j + 1 cutting cycles, re-
spectively, which are expressed in the form of longitude, λ, latitude, L, and height, h, and
matrix C, whose function is to convert the position increment in n-frame into the form of
longitude, latitude, and height, is:

C =

 sec L/(RN + h) 0 0
0 1/(RM + h) 0
0 0 1

 (7)

where RN and RM denote the transverse and meridian radius of curvature, respectively,
and they are the parameters used to describe the earth ellipsoid model, which are regarded
as constant values in this paper.
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The initial positions of the optimal points are provided in the first cutting cycle. The
specific process is as follows:

• The two optimal points corresponding to both ends of the longwall face can be
accurately measured in advance, as mentioned in [16,33].

• To avoid additional surveying and mapping, the initial positions of the remaining
optimal points can be obtained using the position estimates of the integrated system
in the first cutting cycle. This initial value assignment method is mentioned in [1].

Taking into account the existence of measurement noise, the measured position,
p̃i/CPOEM, of point i predicted by CPOEM can be approximated as:

p̃i/CPOEM ≈ pi + wi/CPOEM (8)

where wi/CPOEM is the CPOEM noise vector of point i.

3. Integrated Navigation and RTS Smoother Models
3.1. Error State Equation of Integrated Navigation System

The mounting angles between m-frame and b-frame are inevitable, even if the pre-
calibration process is carried out. The residual installation errors after calibration can be
regarded as random constants, denoted by δα = [δαx δαy δαz]

T. The scale factor error of
the odometer can also be regarded as a random constant. Thus, the following equation can
be obtained: {

δ
.
α = 03×1

δ
.
kD = 0

(9)

where 0a×b is a a× b zero matrix.
The direction cosine matrix, C̃

m
b , with the residual error δα satisfies:

C̃
m
b = Cm

b [I + (δα×)] (10)

where I is a third-order unit matrix and (δα×) denotes the skew symmetric matrix of δα
with 3 rows and 3 columns.

When the mounting angles, α, are controlled within a small range by a precise me-
chanical installation, the equation C̃m

b = I can be obtained directly without the need to
perform the pre-calibration process.

Some related error state vectors of the SINS satisfy the following equation:
ṽn

SINS = vn + δvn

C̃
b
n = Cb

n[I + (ϕn×)]
p̃SINS = p + δp

(11)

where vn, Cb
n, and p are the true velocity, attitude matrix, and position, respectively, and

ṽn
SINS, C̃

b
n, and p̃SINS are the error-contaminated velocity, attitude matrix, and position,

respectively, calculated by the SINS. δvn = [δvE δvN δvU ]
T and δp are the velocity errors
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and position errors of the SINS, respectively, ϕn = [ϕE ϕN ϕU ]
T is the misalignment angles

of C̃
b
n in n-frame, and the subscripts E, N, and U are the east, north, and up directions in

n-frame.
A 19-dimensional error state vector is defined as:

x(t) =
[
(δvn)T (ϕn)T (δp)T (εb)

T
(∇b)

T
(δα)T δkD

]T
(12)

where εb and ∇b are the gyro and accelerometer biases, respectively.
Taking into account the low-speed motion characteristics of the shearer, the velocity-

related terms in the SINS error equation can be ignored. Then, the SINS error equation can
be simplified to: 

δ
.
vn

= −2ωn
ie × δvn + fn ×ϕn + Cn

b∇
b

.
ϕ

n
= −ωn

ie ×ϕn − Cn
b εb

δ
.
p = Cδvn

.
ε

b
= 03×1

.
∇

b
= 03×1

(13)

where ωn
ie denotes the rotation rate vector of the earth and fn = Cn

b fb, in which fb is the
specific force measured by the accelerometers.

The error state equation of the integrated navigation system can be expressed as:

.
x(t) =

[
FSINS 015×4
04×15 04×4

]
︸ ︷︷ ︸

F(t)

x(t) + w(t) (14)

where w(t) is the noise vector of the integrated system and the 15 × 15 transition matrix
FSINS is denoted by:

FSINS =


−2(ωn

ie×) (fn×) 03×3 03×3 Cn
b

03×3 −(ωn
ie×) 03×3 −Cn

b 03×3
C 03×3 03×3 03×3 03×3

06×3 06×3 06×3 06×3 06×3

 (15)

The discretized error state equation corresponding to (14) is:

Xk = Φk,k−1Xk−1 + Wk−1, (16)

where Xk and Xk−1 are the discretized error state vectors at tk and tk−1, respectively, Wk−1
denotes the system noise matrix at tk−1, and Φk,k−1 is the discretized state transition matrix
that satisfies the following equation:

Φk,k−1= eTF(tk−1) (17)

where T denotes the filtering period.

3.2. Measurement Equations of Velocity and Position

The velocity, ṽm
SINS, in m-frame calculated by the SINS can be expressed as:

ṽm
SINS = C̃

m
b C̃

b
nṽn

SINS
≈ vm + Cm

b Cb
nδvn − Cm

b Cb
n(vn×)ϕn

−Cm
b (v

b×)δα

(18)

where vb = Cb
nvn.
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We find the difference between (3) and (18) to obtain the velocity measurement
equation as:

zv = ṽm
SINS − ṽm

OD/MC = Hvx(t) + wOD/MC (19)

where the measurement matrix, Hv, of velocity is expressed as:

Hv =
[

Cm
b Cb

n −Cm
b Cb

n(vn×) 03×9 −Cm
b (v

b×) −vm
]

(20)

Similarly, the position measurement equation can be expressed as:

zp =
~
pSINS −

~
pCPOEM = Hpx(t) + wCPOEM (21)

where the measurement matrix, Hp, of the position is given by:

Hp =
[

03×6 I 03×10
]

(22)

The update of the position measurement depends on the mileage calculated by the
odometer, which means that the update period of the position measurement is an integer
multiple of that of the velocity measurement. Therefore, the overall measurement model
includes two forms: simultaneous velocity and position measurement update and separate
velocity measurement update. The specific update conditions and model equations are
as follows.

If the shearer is not in the first cutting cycle and the position measurement is judged
to be valid by the mileage calculated by the odometer, then:

z =

[
zv
zp

]
H =

[
Hv
Hp

] (23)

where z and H, respectively, represent the overall measurement vector and measurement
matrix.

Otherwise: {
z = zv

H = Hv
(24)

The discretized measurement equation is:

Zk = HkXk + Vk (25)

where Zk, Hk, and Vk are the discretized measurement vector, the discretized measurement
matrix, and the measurement noise sequence at tk, respectively.

3.3. Observability Analysis of Integrated System

The main purpose of observability analysis is to study the observability and estimat-
able conditions of the error state. An observability analysis method directly relies on the
state and measurement equations to investigate the observability.

3.3.1. Observability Analysis Based on the Velocity Measurement

The observability analysis based on the velocity measurement has been discussed in de-
tail in our previous work [34], so here, we directly summarize the observability conclusions
about the velocity measurement with the motion characteristics of the longwall shearer.

• The velocity errors, δvn, are observable, and the estimation accuracy is related to the
estimation degree of other error states.

• The position errors, δp, are unobservable, but the estimation accuracy will still be
improved with the effective estimation of the velocity errors.
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• The acceleration and deceleration process of the shearer is the premise of exciting the
error states δαx, δαz, and δkD, which contribute to the positioning errors. The error
δαy is unobservable.

• The error ∇b
z is observable. The separation of ∇b

x and ∇b
y, and the distinction of εb

x

and εb
y, improving the estimation accuracy of ϕn, depend on the turning motion of the

shearer. The azimuth error, ϕU , is directly related to the lateral positioning error, thus,
restricting the estimation accuracy of error δαz.

It can be concluded that frequent turning of the shearer is necessary to improve the
estimation accuracy of the error states. However, limited by working conditions, the
longwall shearer has very few steering maneuvers. Therefore, it is difficult to achieve high
shearer positioning accuracy using only the integrated system of MIMU and the odometer.

3.3.2. Observability Analysis Based on the Position Measurement

In (21), the measurement values are constructed by the position errors. Therefore,
the position errors, δp, are observable. The estimation accuracy of δp depends on the
position accuracy of the optimal points predicted by CPOEM. The vectors that make up
the measurement values have the same initial position errors, so the initial position errors
cannot be estimated.

Taking the time derivative of (21) obtains:

.
zp ≈ Cδvn (26)

Equation (26) indicates that the velocity errors, δvn, are observable, and the estimation
accuracy is determined by the position errors.

The terms related to vn in the mathematical models can be ignored due to the
low-speed characteristics of the shearer. Therefore, the time derivative of (26) can be
simplified as:

(C−1)
..
zp ≈ (fn×)ϕn − 2(ωn

ie×)δvn +∇n

=

 − fU ϕN + fN ϕU + 2ωie sin LδvN − 2ωie cos LδvU +∇E
fU ϕE − fE ϕU − 2ωie sin LδvE +∇N
− fN ϕE + fE ϕN + 2ωie cos LδvE +∇U

 (27)

where fn = [ fE fN fU ]
T, ∇n = [∇E ∇N ∇U ]

T, and ωie is the rotation rate of the earth.
The acceleration and deceleration process of the shearer makes at least one of fE and

fN non-zero, which means that the coefficient of ϕU will not be 0 in (27). That is to say,
the acceleration and deceleration process can improve the observability of the azimuth
error, ϕU .

Let us assume a high-precision position predicted by CPOEM is obtained. Then, the
errors δp and δvn will be accurately estimated. The estimation accuracy of the azimuth
error, ϕU , depends on the separating degree from the errors ϕE, ϕN ,∇E, and∇N . Although
the state errors δkD, δαx, and δαz are not directly observable in (21), (26), and (27), their
accuracy will be improved with the estimation of error states δp and ϕn. Similarly, the
estimation accuracy of εb will also be improved with the estimation of other state errors.

3.4. RTS Smoothing

RTS smoothing uses all the measurement values obtained in a time interval to estimate
the error states at every epoch in this interval. A typical RTS smoothing process is divided
into two steps: forward filtering and backward smoothing.
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The forward filtering is obtained through standard KF, whose basic equation for
discretization can be expressed as:

Xk,k−1 = Φk,k−1Xk−1
Pk,k−1 = Φk,k−1Pk−1ΦT

k,k−1 + Qk−1
Kk = PkHT

k R−1
k

Xk = Xk,k−1 + Kk(Zk −HkXk,k−1)
Pk = (I−KkHk)Pk,k−1

(28)

where Xk,k−1 and Pk,k−1 are the one-step predicted states and covariance at tk, calculated
from the information at tk−1, Pk−1 and Pk denote the state estimate covariance at tk−1 and
tk, respectively, and Qk−1 is the variance matrix of the system noise sequence Wk−1 at tk−1.
Kk represents the filter gain matrix at tk, and Rk is the variance matrix of the measurement
noise sequence Vk at tk.

The forward filtering in this paper refers to the KF based on the velocity and position
measurements mentioned above. In the forward filtering process, it is required to save
Xk,k−1, Xk, Φk,k−1, Pk,k−1, and Pk at every epoch in the time interval. After completing the
forward filtering in the time interval, the backward smoothing is performed. The procedure
of the backward smoothing is broken down into the following steps:

1. Backward Smoothing Initialization

Define the time interval as [tj,tj+N], then the initialization equation is given as:{
Xrts,j+N = Xj+N
Prts,j+N = Pj+N

, (29)

where Xj+N and Pj+N are the error state vector and the mean square error matrix of the
forward filtering process at tj+N , and Xrts,j+N and Prts,j+N , which are the initial values
required for backward smoothing, denote the error state vector and the mean square error
matrix of the backward smoothing process at tj+N .

2. Backward Smoothing Update

The recursive equations of the backward smoothing update are given by:{
Xrts,k = Xk + Ak(Xrts,k+1 −Xk+1,k)

Prts,k = Pk + Ak(Prts,k+1 − Pk+1,k)AT
k

, (30)

where Ak is the smoother gain, determined as:

Ak = PkΦT
k+1,kP−1

k+1,k, (31)

Sorting out the process of KF and the RTS smoother, the flowchart is shown in Figure 4.
If mod(S, ∆) = = 0, where S denotes the mileage of the shearer calculated by the odometer,
the optimal point from the CPOEM data is valid and the position measurement update of
KF is performed. Backward smoothing is only executed when the shearer is at both ends of
the longwall face and not in the first cutting cycle. The positions of the optimal points of
the next cycle will be updated immediately after the end of backward smoothing.
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4. Experiments

To evaluate the performance of the proposed positioning method, experiments were
carried out, as shown in Figure 5. A mobile carrier equipped with the MIMU (Xsens
MTi-G-700) and the odometer simulated the movement of the shearer. The MIMU was
installed on the mobile carrier through an adapter plate and the odometer was connected to
its wheel. A GPS receiver with an antenna was also installed on the mobile carrier. The GPS
receiver can output centimeter-level positioning results through the network differential
technology. The positioning result of the GPS receiver only provides an evaluation basis
for tests. The specifications of the MIMU and the initial errors are listed in Table 1, which
are related to the initial parameter configuration of the Kalman filter. The specifications
and the initial attitude error refers to the MTI user manual [35]. The initial position error
refers to the network differential positioning accuracy [36]. The initial parameters of the
filter are set as Appendix A.

The mobile carrier simulated four cutting processes of the shearer with a recipro-
cating travel distance of 44.6 m and an advance distance of 1.2 m, as shown in Figure 6.
Figure 6 is drawn by the network differential results provided by the GPS receiver. The
symbols “*” and “o” denote the start and end of the trajectory, respectively.

In order to study the influence of the selection of optimal points on the estimation
of error states, we set the optimal points interval, ∆, as 2, 6, and 10 m, in turn. Figure 7
shows the positioning errors of the proposed integrated system without performing RTS
smoothing. A1–A4 corresponded to the time periods of the first to fourth cutting cycles,
respectively. The remaining time periods corresponded to the process of the shearer
processing the end coal seam. It can be seen that during the first cutting cycle, the curves of
different values of ∆ overlapped in the east, north, and height directions, respectively, since
position measurement filtering was not performed. During the second to fourth cutting
cycles, the curves of the east and north errors were smoother as ∆ decreased. Figure 8
shows the positioning errors of the proposed integrated system with performing RTS
smoothing. It was straightforward to see that the positioning accuracy of all three axes
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with performing RTS smoothing was higher than that of not performing, regardless of the
value of ∆. In addition, it can be seen that there were larger burrs in the east and north
directions as ∆ increased. Therefore, we can choose a smaller value of ∆ to obtain smoother
position estimations.
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Table 1. Specifications of the MIMU and initial errors.

Initial errors

Initial attitude errors (◦) [0.3;0.3;1]

Initial velocity errors (m/s) [0.01;0.01;0.01]

Initial position errors (m) [0.05;0.05;0.05]

Gyroscope
Bias repeatability (◦/h ) 720
Random walk

(
◦/
√

h ) 0.6

Accelerometer
Bias repeatability (mg ) 3

Random walk
(

mg/
√

Hz ) 0.08
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Figures 9 and 10, respectively, show the estimations of the accelerometer and gyro
biases with and without performing RTS smoothing, while we set ∆ as 2 m. It can be seen
that the estimations of MIMU biases were equivalent with and without performing RTS
smoothing when the estimators tended to be stable. Although the true values of MIMU
biases cannot be accurately obtained, the results of the pure navigation before and after
the bias compensation can reflect their estimation accuracy. We used the first 300 s of
data to perform the pure navigation calculations before and after the bias compensation,
and the results are shown in Figure 11. Compared with the results before compensation
of the MIMU biases, the positioning accuracy was greatly improved after compensation.
Therefore, the MIMU biases can be effectively estimated. The RTS smoothing technology
only reduced the error fluctuations in the estimation process, and did not affect the final
estimation accuracy.
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The estimation results of the odometer scale factor and mounting angles are shown in
Figure 12. We know that δαy is always unobservable from the observability analysis. There-
fore, its estimation curve is not drawn in this paper. The estimated scale factor and mount-
ing angles, whose record order was δkα = [δkD δαX δαz]

T, with and without performing
RTS smoothing, were δkα1 = [0.017 0.333◦ − 0.307◦]T and δkα2 = [0.029 0.352◦ 0.093◦]T,
respectively. The positioning accuracy of the DR algorithm is restricted by δkα. In other
words, the DR results can reflect the estimation effect of these three error states. The DR
navigation calculations were performed after the compensation of δkα1 and δkα2 using
the data that has been compensated for the MIMU biases, and the results are shown in
Figure 13. The horizontal positioning accuracy after compensation of δkα1 was better than
that after compensation of δkα2, which means that the estimation accuracy of the error
states δkD and δαz with performing RTS smoothing was improved. According to the theory
of observability analysis, the estimation accuracy of error states (such as δkD and δαz) can
be improved by feedback when the position errors of the optimal points were reduced.
Since the positioning accuracy with performing the RTS smoothing was better than that
without performing (shown in Figures 7 and 8), the position errors of the corresponding
optimal points were also smaller. Therefore, the results of Figure 13 are consistent with the
observability analysis.
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The shearer is a long and narrow machine with limited space for the installation of
external sensors. The small size of MEMS inertial sensors makes them a goal pursued by
researchers. However, small-sized and low-cost inertial sensors often have low measure-
ment accuracy. Therefore, we studied the impact of MIMU, which has a lower accuracy
than MTi-G-700, on positioning accuracy of the mobile carrier. The idea of MIMU data
generation is to superimpose errors on the original gyroscope and accelerometer data
corresponding to Figure 6 to simulate lower-precision MEMS inertial sensor data. The error
components of the gyroscope and accelerometer include repeatability biases, slow-varying
drifts, and fast-varying drifts [4,5]. The repeatability biases can be regarded as a random
constant. The slow-varying drift can be approximated as white noise due to the short
correlation time of MIMU. The fast-varying drift is often abstracted as a white noise process.
The white noise process is usually evaluated by random walk. In summary, the error model
of the gyroscope and accelerometer can be expressed as:{

εb
s = εb + εb

w
∇b

s = ∇b +∇b
w

(32)

where εb
s and ∇b

s represent the total gyroscope and accelerometer errors, respectively, εb

and∇b denote the constant biases of the gyroscope and accelerometer, respectively, and εb
w

and ∇b
w are the random walk noises of the gyroscope and accelerometer, respectively.

A series of MIMU errors were designed, as listed in Table 2. The errors in Table 2
were added to the original data corresponding to Figure 6. The position errors before
and after RTS smoothing are shown in Figures 14 and 15, respectively. Similar to the
phenomenon in Figures 7 and 8, even if the accuracy of the inertial sensors is reduced,
the positioning accuracy can still be improved after performing RTS smoothing. It can be
seen from Figure 15 that the east errors of Par 3 and Par 2 are much larger than those of
other parameters, and the east error of Par 3 is greater than that of Par 2. This is because
the constant biases of the gyroscope are not fully estimated, and the residual constant
component is larger as the constant biases increase. Correspondingly, the attitude and
position errors are bound to be greater. In summary, it can be concluded that the proposed
method can still improve the positioning accuracy even if the low-precision inertial sensors
are used, and the positioning accuracy is closely related to the sensor parameters, especially
the gyroscope.

Table 2. Error parameters to be accumulated.

Gyroscope Accelerometer

Constant Bias (◦/h) Random Walk (◦/
√

h) Constant Bias (mg) Random Walk (mg/
√

Hz)

Par 1 100 0 0 0
Par 2 200 0 0 0
Par 3 300 0 0 0
Par 4 0 1 0 0
Par 5 0 2 0 0
Par 6 0 3 0 0
Par 7 0 0 1 0
Par 8 0 0 2 0
Par 9 0 0 3 0
Par 10 0 0 0 1
Par 11 0 0 0 2
Par 12 0 0 0 3
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In order to further verify the performance of the method proposed in this paper,
it is compared with the traditional method. The method mentioned in [1] is state-of-
the-art based on the SINS and the odometer. However, this method does not have the
ability to autonomously estimate the biases of inertial sensors, mounting angles between
MIMU and the odometer, and the scale factor error of the odometer. Considering that the
above parameters have a great influence on the traditional method, it was compensated
with the parameter values obtained by the proposed method. The positioning results of
the traditional method before and after the estimated parameter compensation and the
method proposed in this paper are shown in Figure 16. It can be seen from Figure 16 that
after the parameters are compensated, the positioning errors of the traditional method
are significantly reduced. It can also be seen that the accuracy of the method proposed
in this paper is better than the traditional method. In order to visually describe the
accuracy improvement range of the proposed method, the spherical error probable (SEP) is
calculated. The SEP is a universal evaluation method of 3D positioning accuracy [37], which
is listed in Table 3. A1–A4 correspond to the first to fourth cutting cycles, respectively. It
can be seen from Table 3 that compared with the traditional method without compensation,
the positioning accuracy of the proposed method increases by 71.43%, 83.92%, 94.30% and



Micromachines 2021, 12, 1527 17 of 19

92.64% in turn from A1 to A4. Since the position measurement is not performed in A1, and
the optimal point position of A2 is related to that of A1, the SEP of the proposed method is
larger in A1 and A2. It is significantly reduced after A3. Compared with the traditional
method with compensation, the positioning accuracy of the proposed method increases
by 60.61% in A3 and is equivalent in A4. The above phenomenon not only proves the
superiority of the proposed method in positioning accuracy, but also further shows that the
method proposed in this paper can effectively estimate some parameters, such as biases of
the MIMU, odometer scale factor, etc.
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Table 3. SEP in each cutting cycle.

Cutting Cycle SEP (m)

Traditional method without compensation

A1 1.75
A2 1.99
A3 2.28
A4 2.31

Traditional method with compensation

A1 0.21
A2 0.29
A3 0.33
A4 0.17

Proposed method

A1 0.50
A2 0.32
A3 0.13
A4 0.17

5. Conclusions

This paper proposed a positioning method of the shearer based on an integrated
system and RTS smoothing technology. Performing RTS smoothing on the basis of the
Kalman filter is a major feature of this paper. An experiment was carried out to verify
the performance of the proposed positioning method. The experimental results showed
that the positioning accuracy after performing RTS smoothing was significantly improved,
which was closely related to the sensor parameters, and the estimatable ability of some
error states was improved. In addition, a comparison with traditional methods was also
carried out. The result shows that the positioning accuracy of the proposed method can be
improved by at least 60.61%.

According to the existing theories and the experimental results in this paper, it can
be seen that RTS smoothing technology has a significant improvement effect on the jump
phenomenon of the error states. Therefore, not only the position measurement, but other
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excellent measurement information that can be captured may also cause the error state
to jump. At this time, RTS smoothing can still play an important role, which can be
further studied.
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Appendix A

The settings of the initial state, x0, initial covariance matrix, P0, and system noise
variance matrix, Qk, are the key to Kalman filter recursion. Referring to Table 1, these can
be set as:

x0 = 019×1 (A1)

P0 = diag
(

[0.01 m/s; 0.01 m/s; 0.01 m/s; 0.3◦; 0.3◦; 1◦; 0.05 m; 0.05 m; 0.05 m;
720◦/h; 720◦/h; 720◦/h; 3 mg; 3 mg; 3 mg; 3◦; 3◦; 3◦; 0.05]× 3

)2

(A2)

Qk = diag

(
[0.08 mg/

√
Hz; 0.08 mg/

√
Hz; 0.08 mg/

√
Hz;

0.6◦/
√

h; 0.6◦/
√

h; 0.6◦/
√

h; 013×1]× 5

)2

ts (A3)

where ts is equal to the SINS solution cycle and set as 0.01 s. The units presented above are
for easy interpretation, and should be changed to SI in practical application.

Note: After a period of use, MIMU is affected by many factors, and its system noise
may not meet the specifications in the manual. At this time, the value of Qk can be
appropriately amplified.
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