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A B S T R A C T

Polymerase cycling assembly (PCA) stands out as the predominant method in the synthesis of kilobase-length 
DNA fragments. The design of overlapping regions is the core factor affecting the success rate of synthesis. 
However, there still exists DNA sequences that are challenging to design and construct in the genome synthesis. 
Here we proposed a deep learning model based on extensive synthesis data to discern latent sequence repre-
sentations in overlapping regions with an AUPR of 0.805. Utilizing the model, we developed the SmartCut al-
gorithm aimed at designing oligonucleotides and enhancing the success rate of PCA experiments. This algorithm 
was successfully applied to sequences with diverse synthesis constraints, 80.4 % of which were synthesized in a 
single round. We further discovered structure differences represented by major groove width, stagger, slide, and 
centroid distance between overlapping and non-overlapping regions, which elucidated the model’s reason-
ableness through the lens of physical chemistry. This comprehensive approach facilitates streamlined and effi-
cient investigations into the genome synthesis.

1. Introduction

The de novo synthesis of DNA sequences serves as a cornerstone in 
biology. Rapid DNA synthesis is a fundamental technique empowering 
scientists and engineers to discover and direct the basic activities of cells 
and organisms, thus driving advancements in biology across diverse 
fields [1].

Polymerase cycling assembly (PCA) stands out as the predominant 
method for the de novo synthesis of DNA fragments [2]. It was employed 
in the chemical synthesis from genes [2], gene clusters [3] to even 
designer chromosomes and genomes [3–5]. Over the past two decades, 
PCA has demonstrated its simplicity and efficacy in the construction of 
synthetic genomes spanning from small viral genomes in kilobases [6] to 
larger eukaryotic chromosomes in megabases [7]. It has been widely 
used in the first synthetic eukaryote genome, Sc2.0 (the Synthetic Yeast 
Genome Project) [8–10]. These achievements in synthetic biology have 
ushered in new opportunities for research in directed evolution [11], 

disease modeling [12], and the DNA storage of extensive data [13,14]. 
The international Genome Project-write (GP-write) consortium envi-
sions the synthetic genomes of higher animals and plants, which will 
challenge longer and more intricate DNA sequences [15,16].

However, since the process of designing these oligos in PCA is 
tedious and confusing [17], and the detailed mechanism in this process 
remains unclear, there still exists genome sequences that are challenging 
to design and synthesize with PCA. In the synthesis of the Saccharomyces 
cerevisiae chromosome synV [18], certain building blocks necessitated 
multiple iterations involving trial-and-error adjustments of PCA exper-
iments (Supplementary Information Table S1, Supplementary Informa-
tion Section 1 and Supplementary Information Fig. S1). Similar 
difficulties arose during attempts to synthesize building blocks of Cau-
lobacter ethensis-1.0. To overcome these challenges, large-scale sequence 
rewriting was implemented to facilitate the synthesis process, involving 
the substitutions of 10,172 bases and the removal of 5668 synthesis 
constraints [19]. While synonymous substitution could reduce synthesis 
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difficulty, its applicability is limited since the perfect matching of the 
assembled sequences to the design is crucial to verify design principles. 
As exploration extends into more intricate sequences, challenging se-
quences exerts a tangible impact on synthesis efficiency [20,21].

The precise pairing of overlapping regions assumes a pivotal role in 
the synthesis efficiency of PCA [22]. In the PCA process, the initial step 
involves the design and chemical synthesis of multiple oligonucleotides 
(oligos), typically ranging from 60 to 80 nucleotides in length. Over-
lapping regions, usually 15–25 nucleotides in length, are designed at the 
termini of adjacent oligos [22]. Thermodynamic collisions of over-
lapping regions lead to the pairing of complementary DNA molecules, a 
critical aspect for the uniqueness and correct hybridization of oligos. 
Following the formation of complementary base pairs in overlapping 
regions, DNA polymerase leverages the non-overlapping regions as a 
template to follow [23]. In this way, oligos are annealed and recursively 
elongated to generate the full-length DNA sequence (Supplementary 
Information Fig. S2). Despite the significance of overlapping regions, 
previous investigations have merely relied on empirical biological pa-
rameters [17,24] to design, avoiding extreme GC content and repetitive 
sequences. Thus, comprehensive research is expected to examine the 
sequence characteristics of overlapping regions through a data-driven 
approach instead of empirical parameters.

In this interdisciplinary study, we present a pioneering approach that 
integrates deep learning with the design of overlapping regions in PCA, 
aimed at optimizing DNA assembly (Fig. 1). We established a large 
synthesis dataset consisting of 32,714 PCA synthesized sequences and 
the corresponding design of overlapping regions. Based on the dataset, 
we then trained a deep learning model to discover the latent charac-
teristics of overlapping regions. Utilizing this model, the SmartCut al-
gorithm was developed to facilitate the rapid and accurate assembly of 

target constructs. The algorithm successfully designed and synthesized 
challenging sequences with diverse synthesis constraints in a single 
attempt. Furthermore, we extend our investigation into the structural 
aspects of overlapping regions through incorporating molecular dy-
namics (MD) simulations. By identifying subtle structure differences 
presented by parameters major groove width, stagger, slide, and 
centroid distance, our simulations contributed to a deeper understand-
ing of the potential structural dynamics in the synthesis process, and 
examined the reasonableness of the model through a physical chemistry 
aspect.

2. Results

2.1. Modeling overlapping regions via deep learning

To discover the latent characteristics of overlapping regions, we 
collaborated with a gene synthesis company, Tsingke Biotech Co., Ltd. 
(www.tsingke.com) and collected a total of 32,714 DNA sequences. All 
of these sequences were successfully synthesized through PCA experi-
ments, wherein designed overlapping regions were annotated. This 
strategy based on the fact that key design principles have been sum-
marized in literature for overlapping regions, such as avoiding extreme 
GC content, secondary structures, repeats, etc. Thus, these characteris-
tics will lead overlapping regions to be different from other sequences. 
This dataset encompassed sequences deriving from diverse species and 
featuring variations in both GC content and length (Methods). The di-
versity aimed to ensure its representativeness of sequences encountered 
during the synthesis process.

Systematic organization of oligo designs yielded 376,782 validated 
overlapping regions and 344,068 non-overlapping regions. Since 

Fig. 1. Overview of design for DNA synthesis. (a) Non-clonal DNA synthesis. The synthesis initiates with the computational design of oligonucleotides, commonly 
taking into account various biological parameters. Subsequently, these oligonucleotides are assembled into the target DNA through PCA experiments. (b) Oligo-
nucleotide design. Here we develop a new design algorithm, SmartCut. It differs from conventional approaches by utilizing a deep learning model to discern sequence 
representations of overlapping regions instead of relying on biological parameters. (c) Model overview. The deep learning model employed in SmartCut captures 
multi-scale DNA information, facilitating the evaluation of overlapping regions.
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synthesis failures cannot always be attributed solely to specific over-
lapping regions, we used non-overlapping regions as decoy samples to 
help the model learn the distinguishing features of effective overlapping 
regions. This approach aligns with established practices in the literature, 
where negative decoy sequences are generated by random shuffling of 
subsequences from UniProt or positive sequences [25,26]. After exclu-
sion criteria was used to eliminate sequences with high similarity, the 
final dataset comprised 41,334 overlapping and 40,207 non-overlapping 
sequences, randomly shuffled and partitioned into training, validation, 
and testing sets at a ratio of 3:1:1.

The proposed model architecture, the SmartCut model, integrates 
multiple convolutional blocks with distinct kernel sizes to capture in-
formation across diverse scales within overlapping regions. The model 
takes as input the One-hot encoding of DNA and it is trained to distin-
guish overlapping from non-overlapping regions. Grid search was per-
formed to determine the optimal configuration of convolutional layers, 

activation functions, and other relevant layers. (Supplementary Infor-
mation Section 2). Kernel sizes of convolutional layers, set as 3, 4, and 5, 
were selected to encompass both local base pair geometry parameters 
and a broader spectrum of structural information. Especially, the model 
aims at the distinctive energy signatures characterizing base pairs within 
the major groove, a region spanning 5 nucleobases. After convolutional 
blocks, the resulting latent space is subsequently concatenated for the 
classification of overlapping and non-overlapping regions using a pre-
diction head, a linear layer used for classification.

The assessment of the efficacy of the SmartCut model involved a 
comparison with four architectures (Fig. 3a). A conventional two-layer 
convolutional neural network was first employed to align with the 
convolutional blocks in our model. Subsequently, we performed stan-
dard fine-tuning for DNABERT-2-117 M [27], a state-of-the-art large 
language model pre-trained on multi-species genomes. Further, we 
considered a two-layer Bidirectional Long Short-Term Memory 

Fig. 2. Workflow and validation of the SmartCut algorithm. The SmartCut algorithm leverages a deep learning model to design oligos for synthesis (a). The input 
sequences undergo segmentation into sections and the model is employed to predict the optimal sequence for overlapping regions in each section. Following a global 
optimization process, the algorithm outputs the final set of oligos. The algorithm was successfully applied to challenging sequences with high GC (b, index 1–12), low 
GC (c, index 13–22), high S-index (d, index 23–36) and >1 kb length (e, index 37–51). See Github for detailed sequences. All the ladders were DL5,000 DNA Marker.
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(BiLSTM) model and a self-attention-based model, both widely utilized 
in sequence data [28,29]. All comparison models underwent training (or 
finetuning for DNABERT-2-117 M) on the training dataset and subse-
quent hyperparameter-tuning on the validation dataset, alongside our 
SmartCut model. Ultimately, our SmartCut model demonstrated supe-
rior performance on the test dataset, achieving the highest Area Under 
the Curve (AUROC) in comparison to the other five models (Fig. 3a). The 
Area under the Precision-Recall Curve (AUPR), 0.849, suggests that the 
model could capture the latent characteristics of overlapping regions 
from the dataset (Supplementary Information Section 2).

The investigation of sequence motifs in overlapping regions was 
conducted utilizing the standard MEME protocol [30] (Fig. 3b and c). 
Although the model exhibits a propensity towards specific sequence 
configurations in the overlapping regions, discernible motifs were 
conspicuously absent in non-overlapping regions. It is challenging to 
comprehend the model’s underlying rationale solely through motif 
analysis. A comprehensive analysis is required with the incorporation of 
structure and energy to delve into how the model assesses the stability 
and viability of diverse sequences in the PCA design.

2.2. Developing SmartCut algorithm for PCA design

Here we develop SmartCut, an algorithm tailored for the design of 
oligos in PCA experiments. The output of this algorithm comprises a set 
of oligos directly applicable in the synthesis of a specified target DNA 
sequence (Fig. 2a).

Primarily, the algorithm initiates by segmenting the input DNA 
sequence into an odd number of contiguous sections, where each sec-
tion’s length is determined by the expected length of the oligos minus 
the expected length of the overlapping regions. Subsequently, potential 
overlap candidates are excised from each section, and the algorithm’s 
flexibility is utilized to define the model’s input range, which is a user- 
customizable parameter that controls how many sequences need to be 
input into the model to determine an overlapping region. In contrast to 
previous PCA algorithms, SmartCut exhibits a simplified consideration 
of biological parameters, placing substantial emphasis on the capabil-
ities of the deep learning model in the design. A higher algorithm flex-
ibility affords the model greater latitude to function on larger regions. 
For each section, all candidates are inputted into the model and scored 
their probabilities of being suitable overlapping regions. The candidate 
with the highest score is retained as the preliminary overlapping region. 
Subsequently, an optimization process is applied to all selected pre-
liminary regions, modifying these overlapping regions to achieve similar 
melting temperatures and uniform GC content. The sequence is then 
divided according to these overlapping regions to output the requisite 
oligos.

To evaluate the effectiveness of the algorithm, a collection of DNA 
sequences was reviewed for their challenging synthesis using PCA ex-
periments. Sequences characterized by either excessively high or low GC 
content, as well as those exceeding 1 kb in length, have been deemed 
unsuitable for PCA synthesis [31]. The assessment of synthesis 

difficulties was further refined through the application of the S-index, a 
comprehensive metric that integrates both sequence and structural 
properties with an XGBoost model [21]. Sequences with an S-index 
surpassing 0.5 were considered as challenging. As delineated in Table 1, 
the collection comprised 12 sequences with GC content exceeding 0.65, 
10 sequences with GC content below 0.30, 14 sequences with an S-index 
surpassing 0.5, and 15 sequences with lengths ranging from 1.0 kb to 
1.9 kb (Supplementary Information Table S2).

These sequences were subjected to the SmartCut algorithm using a 
consistent configuration. The expected length of overlapping regions 
and oligos were set as 18 nt and 80 nt respectively. All the test sequences 
and corresponding design results of oligos were uploaded to the GitHub 
repository. Subsequently, all designed oligos underwent standardized 
synthesis procedures (Methods), enabling a rigorous assessment of the 
algorithm’s performance across diverse synthesis constraints.

All the DNA sequences exhibiting high GC content were successfully 
assembled in a single round with distinct and clear bands in the agarose 
gel electrophoresis (Fig. 2b). For sequences with low GC content, merely 
three sequences failed with shallow target bands (Fig. 2c). And these 
problematic sequences were successfully synthesized after a second 
attempt with segmental amplification. 64.3 % sequences with an S-index 
greater than 0.5 were successfully synthesized (Fig. 2d), and 13 out of 15 
longer sequences spanning 1.0 kb–1.9 kb were successfully assembled in 
the first attempt (Fig. 2e). All sequences that initially failed were also 
eventually synthesized by synthesizing partial fragments before final 
assembly or altering experimental conditions (Supplementary Informa-
tion Table S3). Remarkably, these sequences included those that Tsingke 
Biotech Co., Ltd. failed to synthesize (13, 19, 21–23, 27–38) and 15 of 
them were successfully assembled in the first attempt after re-designed 
by SmartCut. Through Sanger sequencing, we confirmed that the 41 
DNA sequences with bright bands were successfully synthesized. The 
sequencing data has been uploaded to GitHub. SmartCut algorithm 
adeptly designed oligos for sequences that were historically considered 
challenging to synthesize using PCA. The high success rate of 80.4 % 
underscored the superior performance of the SmartCut algorithm in 
addressing various synthesis challenges associated with PCA synthesis.

We have also run these experimental validation sequences with 
DNAWorks, a widely used and accessible oligo design algorithm [17]. 
DNAWorks is extremely time-consuming and it takes over 1000 min to 

Fig. 3. Model comparison and motif discovery. (a) Model comparison with various widely-used models on the test dataset, as assessed through Area under the 
Accuracy, Area under Receiver Operator Curve (AUROC), and Area under the Precision-Recall Curve (AUPR). Motif of overlapped regions was calculated by MEME 
with the discriminative mode (b) and differential Enrichment mode (c), respectively.

Table 1 
Challenging DNA sequences for SmartCut validation.

Synthesis 
constraint

Number of 
Samples

Detail Rate of Successful 
Assembly

High GC 12 GC content 
>0.65

12/12

Low GC 10 GC content 
<0.30

7/10

High S-index 14 S-index >0.5 9/14
Length 15 1.0 kb–1.9 kb 13/15
Total 41/51
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handle 1700 bp target sequence, while SmartCut takes ~1 min for each 
sequence (Methods, Supplementary Information Fig. S4a). Furthermore, 
we performed a comparative analysis of Tm and GC content between 
design results of DNAWorks and SmartCut. We calculated the Tm of the 
deigned oligos using the primer3 package [32,33] and determined the 
difference between the highest Tm and lowest Tm for each target se-
quences (Supplementary Information Table S4). The average Tm dif-
ference of DNAWork is 15.34 ◦C, while it is only 9.30 ◦C for SmartCut, 
representing 0.61 times the variation observed with DNAWorks. The 
average GC content difference of DNAWork is 29 %, compared to 21 % 
for SmartCut, an 8 % reduction. These results demonstrate that Smart-
Cut could design oligos with more uniform melting temperatures and GC 
content, thereby enhancing the success rate of PCA experiments.

To further demonstrate the practicality of SmartCut algorithm, we 
employed it to design building blocks for the synthetic yeast chromo-
some V and synthetic yeast chromosome X, the Mycoplasma mycoides 
JCVI-syn1.0 genome (GenBank: CP002027.1), and the Escherichia coli 
genome (NCBI Reference Sequence: NC_000913.3). Initially, we 
segmented the chromosomes and genomes into building blocks of 1 kb in 
length, appropriate for PCA experiments. Each building block was then 
processed with the SmartCut algorithm to design oligonucleotides and 
we recorded the time required to design all blocks for each chromosome 
or genome. The synthetic yeast chromosomes V and X, both under 1 Mb 
in length, were be completed within 3 min (Supplementary Information 
Fig. S4b). For the approximately 4 Mb Escherichia coli genome, the al-
gorithm completed the design within 20 min. These results highlight the 
high computational efficiency of the SmartCut algorithm, confirming its 
suitability for genome synthesis projects.

2.3. Model interpretation based on dynamic simulation structures

To further explore the potential molecular mechanisms learned by 
the model, we subsequently investigated the differences in structure and 
energy between overlapping and non-overlapping regions utilizing 
model scores. We first designed a dataset consisting of representative 
sequences in the PCA experiments. Overlapping sequences were gener-
ated with a broad range of GC content percentages. Non-overlapping 
sequences, typically avoided in the overlapping region, were manually 
designed (Methods) and further refined through the previous experi-
mental results and the expertise of frontline experimental personnel 
(Supplementary Information Table S5).

Next, we employed molecular dynamics simulations to investigate 
these DNA structures in solution environments under PCA experimental 
conditions (Supplementary Information Table S6) and examined the 
correlation between DNA structural characteristics and the model 
scores. We quantitatively characterized the structural parameters to 
conduct a comparative analysis between overlapping and non- 
overlapping molecules. Widely used base pair geometry parameters 
including shear, stretch, stagger, buckle, propeller, opening, shift, slide, 
rise, tilt, roll, and twist were examined, along with the widths of the 
minor and major grooves, and the centroid distance between bases 
(Supplementary Information Table S7 and Supplementary Information 
Fig. S6). To elucidate the factors influencing the success rates of PCA 
experiments, the Pearson correlation coefficient analysis was performed 
between the average values of parameters and SmartCut scores 
(Supplementary Information Table S8). Four parameters exhibiting 
relatively strong correlations (|r| > 0.6), major groove width, stagger 
(the translational parameter around the Z-axis of the dinucleotide intra- 
base pair), slide (the translational parameter around the Y-axis of the 
dinucleotide inter-base pair), and centroid distance (the Euclidean dis-
tance between the centroids of adjacent base pair planes), as depicted in 
Fig. 4a, were selected for further investigation.

The major groove width and centroid distance displayed negative 
correlations (Fig. 4b, major groove width r = − 0.650, p-value <0.0001; 
Fig. 4e, centroid distance r = − 0.688, p-value <0.0001), whereas the 
stagger and slide exhibited positive correlations (Fig. 4c, stagger r =

0.694, p-value <0.0001; Fig. 4d, slide r = 0.700, p-value <0.0001). As 
model scores increased, the averages of major groove width decreased to 
~19.3 Å, stagger increased to ~0.12 Å, slide increased to ~ − 0.7 Å, and 
centroid distance decreased to ~3.40 Å. Specifically, the centroid dis-
tance changed by 0.15 Å, the parameter slide changed by ~0.2 Å, and 
both major groove width and stagger changed by ~1 Å.

Kolmogorov-Smirnov tests revealed significant differences in all four 
parameter distributions between the two types of DNA molecules 
(Fig. 4f–i, p-value <0.0001). Furthermore, Kruskal-Wallis tests were 
performed to examine the differences in parameter distribution among 
pairwise molecules, and all four parameters exhibited statistically sig-
nificant differences in pairs (p < 0.0001, Supplementary Information 
Table S9).

The post-hoc Dunn test with Benjamini/Hochberg correction 
generated p-value heat maps, which displayed the statistically signifi-
cant differences in the distribution of these four parameters among all 
pairwise molecules (Fig. 4f–m). The intersection area (the rectangular 
area in the middle) exhibited significantly more pronounced differences 
than the individual areas of overlapping and non-overlapping molecules 
(the triangular area in the bottom right and bottom left), implying that 
major groove width, stagger, slide, and centroid distance are likely the 
discriminating factors between the two types of molecules. Notably, as 
the SmartCut scores increased, the average values of these four param-
eters of the molecules gradually approached the values of the parame-
ters of standard B-form DNA molecules (The parameter slide is − 0.33 Å, 
stagger is 0.01 Å, major groove width is 16.9 Å, and centroid distance is 
3.38 Å in standard B-form DNA molecules, respectively).

To further investigate the biochemical nature behind the statistically 
differences and correlations, the centroid distance was selected as it is a 
key parameter that correlates with base stacking energy [34–36], which 
has been considered as one of the most important factors impacting the 
stability of DNA molecules [37–39]. We conducted rigid potential en-
ergy surface (PES) scans on the dinucleotides dimer by displacing a base 
along the stacking direction (Fig. 5a). Regardless of the scanning di-
rection, the energy consistently increased compared to that of the 
standard B-form geometry. This indicates that standard B-form DNA 
molecule reached a minimum on the PES, which is usually the most 
stable structure in aqueous solutions. As mentioned earlier, the centroid 
distance decreased from ~3.55 Å to ~3.40 Å, gradually approaching the 
values of the parameters of the standard B-form DNA molecule. Corre-
spondingly, the energy also dropped by ~14.12 kcal, suggesting that 
higher SmartCut scores lead to more stable DNA double strands, thereby 
enhancing the stability of the overlap binding section in the PCA pro-
cess. To exclude the influence of other interactions, we conducted 
intermolecular interaction and energy decomposition analysis on the 
two bases extracted from the aforementioned structure, with the sugar 
backbone removed. The results also indicated an increase regardless of 
the scanning direction, with the intermolecular interaction decreasing 
by ~0.39 kcal. The decomposition analysis highlighted the contribution 
of pi-pi stacking interaction. The electrostatic interaction changed from 
stabilization to destabilization effect, while the sum of exchange, in-
duction, and dispersion interaction changed from destabilization to 
stabilization effect. This led to the minimum of the intermolecular 
interaction at 3.38 Å, gradually diminishing as the centroid distance 
increased (Fig. 5b).

The analysis revealed that inherent physical chemistry features of 
functional overlapping sequences were extracted and underscored the 
reasonableness of the model from the perspective of structure and en-
ergy. Evaluated by actual PCA experiments, the model’s proficiency in 
discerning stability characteristics serves as a reliable guide for the 
strategic design of oligos in the PCA process.

3. Discussion

In this study, we simplify the multi-variable problem of PCA design 
by focusing on the pivotal overlapping regions. A deep learning model 
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was first established to discern latent sequence characteristics dis-
tinguishing between overlapping and non-overlapping regions with 
multi-scale convolutional blocks. Subsequently, the predictive capa-
bility of this model was assimilated into the SmartCut algorithm, which 
designs oligos for the synthesis of target sequences. The algorithm’s 
efficacy is substantiated through synthesizing sequences of heightened 
complexity, including extremely high and low GC content, high S-index 
and length exceeding 1 kb. To further explore the intrinsic mechanisms 
of the model, a series of MD experiments were devised to scrutinize the 
variations from both structural and energetic perspectives among 
diverse sequences.

Various oligo design methods emphasizing overlapping regions have 
been developed, including DNAWorks [17], GeneDesign [24,40], 
TmPrime [41], GeneGenie [42], and DropSynth [43,44]. These methods 
incorporate biological parameters of overlapping sequences such as GC 
content, repetitive regions, and melting temperature, which were 
derived from experiential summaries. While these design methods have 
contributed to improved efficiency in previous experiments, the intri-
cate DNA interactions still introduce a propensity for errors in over-
lapping regions. It is challenging to rely on experiential parameters to 
elucidate complexities in structure and energy of overlapping regions. 
Mispairing, insertions, or deletions still lead to PCA failures [19,23]. 
These challenges underscore the requirement for a more comprehensive 
exploration of the intricate interplay within overlapping regions. While 
modifying experimental conditions can sometimes facilitate the syn-
thesis of sequences involving difficult overlaps, the SmartCut algorithm 
offers a more systematic optimization approach. By addressing design 
issues from the outset, SmartCut minismizes the need for manual in-
terventions and condition adjustments, which is particularly advanta-
geous in high-throughput synthesis.

By deploying the data-driven deep learning model instead of bio-
logical parameters, our research not only augments the success rate of 
PCA experiments but also highlights the model’s understanding of 
synthesis mechanics. The correlation between structural stability and 

the model score elucidates the rationale behind model predictions. Re-
searches have previously explored the sequence-dependence of DNA 
structural stability [45–47]. However, the solution environments in 
these studies have not yet matched those in the actual PCA experiments. 
Our simulations set solution environments more closely resembling 
actual PCA experiments, thereby enhancing the credibility of the 
comparative analysis. Additionally, previous studies often explore 
combinations of relatively short DNA molecules with exhaustive 
computation, which is impractical since overlapping regions typically 
consist of at least 15 bp. The utilization of the SmartCut model allows for 
exploring representative sequences of overlapping regions in the PCA, 
facilitating a targeted investigation of sequence-dependent stability in 
longer DNA molecules. Notably, an increase in model scores correlates 
with a tendency for the DNA structure to approach the B-form. This 
finding aligns with previous studies that B-form DNA is more stable in 
low-salt solutions [48–50].

Despite these successes, certain limitations persist in our work. The 
algorithm overlooks the interactions among distinct overlapping regions 
in a sequence, and the influence of non-overlapping regions is not duly 
acknowledged on the assembly process. These deficiencies underscore 
opportunities for optimization in subsequent research endeavors. Due to 
the limitations on the length of synthesized polynucleotides, assembling 
oligos through overlapping regions is the main practical option for 
making large DNA sequences. Addressing these limitations will 
contribute to the continued advancement of the algorithm’s efficacy and 
its applicability in the broader context of DNA sequence assembly 
methodologies.

4. Materials and methods

4.1. SmartCut dataset

The dataset encompassed both artificially designed and naturally 
derived sequences from diverse species, including Escherichia coli, 

Fig. 4. Comparison and analysis of MD average structures of overlapping and non-overlapping regions. Comprehensive analysis of 129 molecules was conducted, 
including 69 non-overlapping regions and 60 overlapping regions. (a). Schematic plot of the four selected parameters with relatively strong correlations. The stagger 
parameter refers to the translational displacement along the Z-axis within the dinucleotide intra-base pair, while the slide parameter refers to the translational 
displacement along the Y-axis within the dinucleotide inter-base pair. The major groove width is depicted by a chain-dotted line in a flattened representation of eight 
base-pairs and seven phosphate groups on each DNA strand. Centroid distance refers to the Euclidean distance between the centroids of neighboring base pair planes. 
(b–e). Pearson correlation analysis between the average values of parameters and the SmartCut model scores. The dotted orange line refers to the 3.38 Å of parameter 
centroid distance. (f–i). The parameter distributions differences between two types of molecules performed by Kolmogorov-Smirnov test, the density scatter plot 
illustrates the kernel-density estimate with the colormap indicating the respective values. (j–m). The parameter distributions differences among pairwise molecules 
performed by Kruskal-Wallis test, the heat map plot displays the Benjamini/Hochberg corrected p-values of molecules in pairs.

Fig. 5. Potential energy surface scan and interaction energy surface scan with energy decomposition analysis. Spacing scan between two dinucleotides at the 
ωB97X–V/def2-QZVPP level (a) and interaction energy scan and interaction components between base monomers in the dimer structure calculated at the scaled 
SAPT0/jun-cc-pVDZ level (b).
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Saccharomyces cerevisiae, and Homo sapiens. The GC content of the se-
quences varied from 0.176 to 0.773, with a mean of 0.515, and the 
length ranged from 159 to 4600 base pairs (bp), with a mean of 865 bp. 
All of the synthesized sequences were designed using a modified version 
of DNAworks, with the melting temperature recommendations provided 
by the modified software. The synthesis was performed under identical 
experimental conditions at the company, following standard PCA pro-
cedures. From the oligo designs for all synthesized sequences, we 
collected 376,782 overlapping regions validated in the PCA experi-
ments, which have contributed to the synthesis of sequences. Then we 
identified 344,068 non-overlapping regions which were positioned in 
the center of two overlapping regions, each sharing the average length of 
two adjacent overlapping regions. Consequently, the dataset consisted 
of 376,782 overlapping and 344,068 non-overlapping sequences. CD- 
HIT was used at the 80 % identity level to remove sequences bearing 
high similarity to others within the dataset.

4.2. Synthesis validation

For all the challenging sequences, we executed the SmartCut algo-
rithm using the same configuration. The expected length of overlapping 
regions and oligos were set as 18 nt and 80 nt, respectively. The algo-
rithm flexibility was 9. The oligos designed by the algorithm were sent to 
Synbio Technologies (https://synbio-tech.com/) for standard PCA syn-
thesis. Experiments were carried out in 25 μL reaction mixtures con-
taining 20 μL 1.25 × HiFi GS PCR Mix. Thermal cycling began with a 2- 
min denaturing step at 95 ◦C, and continued with 18 cycles at 95 ◦C for 
15 s, 58 ◦C for 15 s, and 72 ◦C for 15 s, and finishing at 72 ◦C for 2 min.

4.3. Algorithm comparison

The performance of SmartCut was evaluated in comparison with 
popular oligo design programs. Due to the inaccessibility of the source 
codes for GeneDesign and TmPrime, this study focuses on comparing 
SmartCut with DNAWorks v3.2.4, a widely used and accessible oligo 
design algorithm for PCA experiments (https://github.com/davidh 
oover/DNAWorks). The DNAWorks program, which was last updated 
in 2017, was configured with specific parameters: a melting temperature 
lower bound of 62 ◦C using the "tolerance" argument, an oligonucleotide 
length lower bound of 75 nucleotides using the "random" argument, a 
frequency threshold of 10, sodium concentration set to 0.05 M, mag-
nesium concentration set to 0.002 M, and the number of solutions set to 
1. All other parameters were left at their default settings. The program 
was executed on a CentOS 7.5 system with 4 Intel Xeon 6348H pro-
cessors (2.3 GHz, 24 cores).

4.4. MD simulations

In this study, we designed the non-overlapping sequences according 
to the following principles: (1) Extreme GC content (GC content <22 % 
or GC content >67 %); (2) High repeat density; (3) Formation of hair-
pins, loops, i-motifs, and G quadruplexes. A total of 129 DNA sequences 
were subjected to the SmartCut model, resulting in the categorization of 
60 sequences as overlapping molecules and 69 as non-overlapping 
molecules.

The construction of initial B-form DNA duplexes with overlapping 
regions was carried out utilizing the University of California San Fran-
cisco Chimera program [51]. Subsequently, these initial structures were 
placed within rectangular boxes containing explicit water molecules and 
ions. To achieve system neutralization and alignment with practical PCA 
conditions, K+ counterions and KCl salt concentration of 0.264 mol/L 
were introduced. Following energy minimization and pre-equilibration 
of the systems, MD simulations lasting 20 ns were performed at a con-
stant temperature of 313.15 K and pressure of 1 atm. These simulations 
employed periodic boundary conditions and the particle mesh Ewald 
method to manage long-range interactions, using a time step of 1 fs and 

the leap-frog algorithm. The DNA duplexes were allowed complete 
freedom of movement within the solution during these simulations. All 
Molecular Dynamics simulations, trajectory analyses, and time-average 
structure calculations were conducted using the GROMACS 2022.1 
software package [52], employing the parmbsc1 force fields [53] and 
TIP3P water model [54] to account for molecular interactions. Param-
eters such as base-pair and base-pair step geometries, as well as mea-
surements of minor and major groove widths, were determined using the 
x3dna package [55].

We extracted the time-averaged structure of the overlapping DNA 
duplex under simulated PCA experiment conditions by computing the 
root-mean-square deviations (RMSD) of trajectories. MD simulations of 
the initial B-form overlapping DNA duplex quickly reached equilibrium 
(Supplementary Information Fig. S5), indicating that 20 ns simulations 
were adequate due to the inherent stability of B-form DNA duplexes in 
aqueous environments (RMSD stabilized at ~3 Å).

4.5. QM calculations

The generation of initial structure of dinucleotides was conducted 
using the University of California San Francisco Chimera program, while 
the OpenBabel program [56] was utilized to neutralize the negative 
charges on the phosphate group through the addition of protons. Sub-
sequently, the positions of the hydrogen atoms were optimized using the 
ORCA 5.0.3 program [57] employing the ωB97XD exchange-correlation 
functional [58] in conjunction with the def2-TZVP basis set [59], which 
has demonstrated satisfactory capabilities in describing various types of 
intermolecular interactions [60,61]. To obtain accurate single-point 
energy calculations for the molecular dimer, the ωB97X–V functional 
[62] in combination with a very large def2-QZVPP basis set [59] was 
employed. This combination has been demonstrated to provide excellent 
energy estimations for weakly interacting systems [63]. The RIJCOSX 
technique [64] was employed to expedite the computational calcula-
tions. Furthermore, Symmetry-Adapted Perturbation Theory (SAPT) 
analysis at the SAPT0 level, utilizing the jun-cc-pVDZ basis set, was 
conducted using the PSI4 1.9 code [65] to gain deeper insights into the 
binding energy. The SAPT input files for PSI4 and ORCA input files were 
generated with the assistance of the Multiwfn program [61]. The visu-
alization of the molecular structures was achieved using the Visual 
Molecular Dynamics (VMD) software [66].

4.6. Statistics indicator

To examine potential differences between overlap and non-overlap 
structural parameters, and to evaluate correlations between these pa-
rameters and model scores, a thorough statistical analysis was per-
formed. This analysis included the utilization of the Kolmogorov- 
Smirnov test, Kruskal-Wallis test, post hoc pairwise comparison test 
for multiple mean rank sum comparisons (Dunn’s test) with Benjamini/ 
Hochberg correction, and Pearson correlation coefficient calculations. 
These statistical procedures were executed using the scipy.stats package 
[67], following established analytical protocols. The selection of these 
statistical tests was based on well-established analytical guidelines. The 
Kolmogorov-Smirnov test statistic is expressed as follows: 

Dn = supx |F1n(x) − F2n(x)|

Where Fn1 and Fn2 are the empirical CDFs of the two samples and x is a 
point in the support of the data. The test statistic Dn is a measure of the 
maximum difference between the two CDFs. The empirical distribution 
function Fn for n independent and identically distributed ordered ob-
servations Xi is defined as 

Fn(x)=
1
n
∑n

i=1
1(− ∞,x](Xi)

Where 1(− ∞,x](Xi) is the indicator function, equal to 1 if Xi ≤ x and equal 
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to 0 otherwise.
The Kruskal-Wallis test statistic is given by 

H=(N − 1)
∑g

i=1 ni(ri − r)2

∑g
i=1

∑ni
j=1

(
rij − r

)2 

Where N is the total number of observations across all groups, g is the 
number of groups, ni is the number of observations in group i, rij is the 
rank (among all observations) of observation j from group i, ri is the 
average rank of all observations in group i, r is the average of all the rij.

The Pearson correlation coefficient is given by 

rxy =

∑n
i=1 (xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1 (xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1 (yi − y)2

√

Where n is sample size, xi, yi are the individual sample points indexed 
with i, x and y are the sample means. The t-score of a correlation coef-
ficient is given by 

t= rij
n − 2
1 − r2 
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