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Visible-light photoredox-catalyzed C–O bond
cleavage of diaryl ethers by acridinium
photocatalysts at room temperature
Fang-Fang Tan1, Xiao-Ya He1, Wan-Fa Tian1 & Yang Li 1,2✉

Cleavage of C–O bonds in lignin can afford the renewable aryl sources for fine chemicals.

However, the high bond energies of these C–O bonds, especially the 4-O-5-type diaryl ether

C–O bonds (~314 kJ/mol) make the cleavage very challenging. Here, we report visible-light

photoredox-catalyzed C–O bond cleavage of diaryl ethers by an acidolysis with an aryl car-

boxylic acid and a following one-pot hydrolysis. Two molecules of phenols are obtained from

one molecule of diaryl ether at room temperature. The aryl carboxylic acid used for the

acidolysis can be recovered. The key to success of the acidolysis is merging visible-light

photoredox catalysis using an acridinium photocatalyst and Lewis acid catalysis using Cu

(TMHD)2. Preliminary mechanistic studies indicate that the catalytic cycle occurs via a rare

selective electrophilic attack of the generated aryl carboxylic radical on the electron-rich aryl

ring of the diphenyl ether. This transformation is applied to a gram-scale reaction and the

model of 4-O-5 lignin linkages.
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Lignin is one of the major components of available biomass in
nature1–3. In lignin, there are three major types of aryl ether
bonds of α-O-4 (~218 kJ/mol), β-O-4 (~289 kJ/mol), and 4-

O-5 (~314 kJ/mol)1–3. Cleavage of C–O bonds in lignin can
afford renewable aryl sources for fine chemicals. However, the
high bond energies of these C–O bonds, especially the 4-O-5-type
diary ether C–O bonds, make the cleavage very challenging1–10.
Therefore, in fundamental research, the cleavage of aryl C–O
bonds has attracted much attention11–18.

Cleavage of the α-O-4 and β-O-4 types C–O bonds has been
studied, even under mild conditions by visible-light photoredox
catalysis19–23. For cleavage of the 4-O-5-type diary ether C–O
bonds, classical studies focused on the hydrolysis by supercritical
water, and the hydrogenolysis using the model of 4-O-5 lignin
linkages with poor selectivity2,4,5,10. Many aryl skeletons were
destroyed. In selective cleavage methods, the use of stoichiometric
alkali metals24–26 or electrocatalytic hydrogenolysis27–29 limited
the large-scale applications because of the associated high costs.

In recent years, selective hydrogenolysis under comparatively
milder conditions was developed by Hartwig, Grubbs, Wang et al.
(Fig. 1a)30–41. The hydrogenolysis was accomplished by using
[Ni], [Fe], or [Co] as catalyst, with H2 (1–6 bar) or LiAlH4 (2.5
equiv.) as reductant at 120–180 °C30–36. A higher than the stoi-
chiometric strong base, such as NaOtBu/KOtBu/KHMDS (2.5
equiv.), is important for the selectivity (Fig. 1a, conditions A).
Without using a transition-metal catalyst, a combination of
Et3SiH/NaH (≥2.5 equiv.) and KHMDS (2.5 equiv.) at
140–165 °C achieved the selective hydrogenolysis (Fig. 1a,

conditions B)37,38. More importantly, by MOF or Pd/C as catalyst
without a base, the selective hydrogenolysis with H2 (10–30 bar)
at 120–200 °C resulted in no more than 55% yields (Fig. 1a,
conditions C)39–41. In these studies, a large amount of reductant,
strong base, and/or the low yield are/is still the limiting factor(s)
for the applications.

Thus, there exists a strong incentive to develop more practical
methods for diaryl ether C–O bonds cleavage, toward the utili-
zation of lignin as renewable aryl sources.

We developed the C–O bond cleavage of diaryl ethers con-
taining a carboxylic acid group on the ortho position by a visible-
light photoredox-catalyzed intramolecular aryl migration from an
aryl ether to the ortho carboxylic acid group at room temperature
(rt), and a following one-pot hydrolysis42. Thus, we envisioned
the possibility of C–O bond cleavage of general diaryl ethers by an
aryl acidolysis with an aryl carboxylic acid followed by hydrolysis,
which would expand the scope of the special diaryl ethers largely,
even to the model of 4-O-5 lignin linkages.

Specifically, in the aryl acidolysis, photoredox catalysis affords
an aryl carboxylic radical A, then followed by its electrophilic
attack on the diphenyl ether, and a single electron transfer (SET)
with a proton and an electron (Fig. 2). However, the two issues
make the transformation more challenging. First, although some
intramolecular electrophilic attack reactions of aryl carboxylic
acid radicals to arenes have been reported42–47, the inter-
molecular electrophilic attack reaction of aryl carboxylic acid
radicals to arenes has not been successfully explored. The inter-
molecular electrophilic attack of aryl carboxylic acid radicals to
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arenes was proposed in the thermal decomposition of substituted
dibenzoyl peroxides in diphenyl ether, in which the corre-
sponding aryl benzoates were obtained in less than 39% yields
with low selectivity. In addition, in comparison with the sub-
stituted dibenzoyl peroxides, the amount of arenes was huge
because diphenyl ether was used as solvent48. Second, similarly to
the intramolecular reaction, the formation of the more stable ester
C–O bond should be the driving force of the diaryl ether C–O
cleavage, as the C–O bond energies of an aryl ether and an ester
are about 78.8 and 87–93 kcal/mol, respectively49,50. However,
the possible intermediate B may lack a stronger driving force of
C–O bond cleavage, compared with the six-membered ring
intermediates in the intramolecular reactions42–47. As mentioned
below, less than 10% yields of the product were obtained with the
remaining starting material under the optimized reaction condi-
tions for intramolecular reactions (Table 1, entries 1, 2). Perhaps
a Lewis acid could activate the aryl ether by coordination of the
oxygen atom.

Herein, we report visible-light photoredox-catalyzed C–O bond
cleavage of diaryl ethers by an acidolysis with an aryl carboxylic
acid and a following one-pot hydrolysis at rt (Fig. 1b). Phenols
with some advantages than arenes in transformations such as
aminations, the functionalization, cross-coupling reactions51,52,
are obtained. The aryl carboxylic acid used for the acidolysis can
be recovered. The key to the success of the acidolysis is merging
visible-light photoredox catalysis using an acridinium photo-
catalyst (PC) and Lewis acid catalysis using Cu(TMHD)2
(Fig. 1b). Inspired by the significant contributions of Fuku-
zumi53–55, Nicewicz56–58, Sparr59,60 et al.61–63. on acridinium
PCs, we investigated the use of an acridinium catalyst, in which
an aryl ring with electron-withdrawing groups, instead of mesi-
tylene, typically used in other acridinium catalysts53–63, on the 9-
position to give higher efficiency. Furthermore, with this method,
the model of 4-O-5 lignin linkages afforded phenol and 2-
methoxyphenol in high efficiency. Compared with the developed
selective hydrogenolysis in recent years, using H2O instead of a
large amount of reductant afforded two molecules of more
valuable phenols at rt.

Results
Optimization study. With these considerations in mind, diphe-
nyl ether (1a) and 4-methylbenzoic acid (2a) were studied as
model substrates. Under our developed conditions for the intra-
molecular C–O bond cleavage42, using PDI64 or Acr+-Mes ClO4

–

(PC 1)53–55 as PC, with 10mol% K2HPO4 as a base, under
450–455 nm blue LEDs irradiation, only <10% yields of phenyl 4-
methylbenzoate (3a) and phenol (4a) were obtained (Table 1,
entries 1, 2). Thereafter, a series of Lewis acids such as Cu(OAc)2,
Cu(acac)2, Cu(OTf)2, Ni(acac)2, Fe(acac)2, Zn(acac)2, and Cu
(TMHD)2 were studied (Supplementary Table 1, entries 1–6 and
Table 1, entry 3). Cu(TMHD)2 slightly promoted the

transformation. Adjustment of the wavelength of the blue LEDs
to the maximum absorption of PC 1 (425–430 nm) induced a
slightly increased reactivity (Table 1, entry 4). Other solvents such
as MeOH, DCE, EtOAc, and acetone did not give any better
results (Supplementary Table 1, entries 7–10). As Acr+-Mes
ClO4

− is susceptible to degradation in the presence of oxygen-
centered radicals57, and de-N-methylation is also possible56, it is
deduced that the generated carboxylic acid radical may induce the
degradation of Acr+-Mes ClO4

−.
Subsequently, PC 2 and PC 3 were tried57, in which the N-

phenyl were used instead of the N-methyl, and also with the tert-
butyl on the 3- and 6-positions of the acridinium in the latter
case. Both factors induced distinct higher efficiencies (Table 1,
entries 5 and 6, 3a in 29 and 55% yields, with 4a in 22 and 49%
yields).

Furthermore, the influence of substitutes on the 9-aryl ring was
investigated. Since the complex procedure for the synthesis of PC
357, PC 4–PC 9, with a similar skeleton to that of PC 3 but with
different substituents on the 9-aryl ring, by a two-step synthetic
procedure61, were investigated (Table 1, entries 7–12). Notably,
the aryl rings with electron-withdrawing groups instead of
mesitylene, typically used in other acridinium catalysts53–63,
resulted in noticeably high efficiencies. To our delight, PC 9 with
2′-Cl and 4′-F on the 9-aryl ring resulted in 80% of 3a with 71%
of 4a (entry 12). Although the smaller group of 2′-Cl compared
with the methyl groups in mesitylene was used, X-ray crystal-
lography of PC 9 unambiguously confirmed the angle of torsion
between the 9-aryl ring and the acridinium ring (Fig. 1b), which is
closely related with a longer fluorescence lifetime53,56. In
addition, a variation of the tert-butyl groups from the 2,7-
positions to the 3,6-positions resulted in decreased efficiency
(entry 13). A further variation of the substituents on the 10-aryl
ring revealed that the unsubstituted phenyl gave a slightly higher
yield (entry 15). Decreasing the amount of Cu(TMHD)2 to 5 mol
% resulted in obviously lower efficiency (entry 16, 3a in 47% yield
with 4a in 45% yield). Without Cu(TMHD)2, the transformation
only gave 12% of 3a with 7% of 4a (entry 17). These results
indicate the transformation is promoted by Cu(TMHD)2. The
amount of base did not influence the reaction efficiency, even
without base (entries 18, 19). Other Lewis acids, such as Cu
(OAc)2, Cu(acac)2, and Fe(acac)2 instead of Cu(TMHD)2, were
investigated once again (entries 20–23), as slight differences
during the initial investigation. The distinct promotion of Cu
(TMHD)2 (entry 18) was further confirmed in comparison with
the results of other Lewis acids (entries 20–23). Without base and
Cu(TMHD)2, no reactivity was observed (entry 24). Control
experiments indicate that a PC and visible-light irradiation are
essential (entries 25, 26). The fluorescence lifetime and the redox
potentials of PC 1–PC 12 were determined (Supplementary
Table 2). The data do not provide clear insight regarding the
higher efficiency achieved using PC 9.
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Fig. 2 Designed pathway of visible-light photoredox-catalyzed acidolysis of diaryl ethers with an aryl carboxylic acid. Photoredox catalysis affords an
aryl carboxylic radical (A), then followed by its electrophilic attack on the diphenyl ether to afford B, and a single electron transfer (SET) with a proton and
an electron.
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Evaluation of substrate scope. With the optimized reaction
conditions, the substrate scope was investigated (Fig. 3). First, the
influence of various substituents on the benzoic acid was inves-
tigated. 4-Methoxyl, 4-tert-butyl gave decreased reaction effi-
ciencies (3ab, 3ac in 61–65% yields with 4a in 56–60% yields).
The benzoic acid afforded 3ad in 55% yield with 4a in 50% yield.
4-Fluoro, 4-chloro, and 4-bromo induced excellent yields (3ae–
3ag in 87–91% yields with 4a in 82–84% yields). 4-Nitro, 4-
aldehyde also resulted in high efficiencies (3ah, 3ai in 71–77%
yields with 4a in 65–70% yields). The substituents on the 3-
position were also studied. Similar to the substituents on the 4-
position, fluoro and chloro resulted in high yields (3ak, 3al in
81–86% yields with 4a in 74–76% yields). Methyl gave a
decreased yield (3aj in 61% yield). When the methyl was installed
on the 2-position, no product was observed. 2-Fluoro resulted in
lower efficiency (3ap in 63% yield). The phenomenon should be
influenced by the steric factor. A series of aromatic heterocycles
carboxylic acids containing pyridinyl, furyl, and thienyl were
tested. Only thienyl carboxylic acids resulted in moderate effi-
ciencies (3aq, 3ar in 49–54% yields with 4a in 40–45% yields).

Next, the substituents on the aryl ring of the diphenyl ethers
were investigated (Fig. 4). With electron-withdrawing groups
such as methyl ester, trifluoromethyl, nitro, cyan, or acetyl on the
4-position of the aryl ring, 3a (65–74%) and the corresponding
phenols with these electron-withdrawing groups (4b-4f, 62–72%)
were selectively obtained in high yields. The results agree with the
designed pathway of the electrophilic attack of the generated
carboxylic acid radical, including the selective attack on the
electron-rich aryl ring of the diphenyl ethers. 4-Bromo afforded
two esters 3a (22%) and 3as (64%), and two phenols 4g (21%)
and 4a (54%). The reason for the result may be the synergic effect
of induction and conjugation of the bromo. For the 4-phenyl
group, 3at and 4a were selectively obtained in 84% yields. The

reason for the selectivity may be the 4-phenyl group stabilizing
the generated radical intermediate after the electrophilic attack.
Under standard conditions, 4-methyl and 4-methoxyl resulted in
very low efficiency (<10%). When the reactions were conducted
by a stop-flow reactor, 4-methyl resulted in 3au in 64% yield with
4a in 54% yield. And 4-methoxyl still resulted in low efficiency
with 3av in 24% yield, which should be caused by the lower
oxidation potential of 4-methoxyl-diphenyl ether (+1.39 V vs
SCE) than that of the anion of 2a (+1.45 V vs SCE) to inhibit the
aryl carboxylic radical generation (Supplementary Table 3).
Methyl, methoxyl, dimethyl substituents on other positions
afforded 3aw–3ay in 68–80% yields with comparable yields of
4a. Symmetric dimethyl, dimethoxyl, dibromo, and dichloro, and
asymmetric dichloro on the 3- or 4-positions resulted in good to
high efficiencies (3az, 3ay, 3as, 3aA, 52–90%, 4h–4k, 50–86%).
When the methyl and methoxyl on 2- or 3-position, with 4′-ester,
4′-cynao or 4′-trifluoro, were investigated, the esters with methyl
or methoxyl, as well as phenols with these electron-withdrawing
groups, were obtained selectively in high yields (3aw, 3az, 3aB,
72–82%, 4b, 4e, 4c, 70–82%).

Synthetic application. To demonstrate the potential application,
a gram-scale reaction of 1a with 2e in a flow reactor and following
one-pot hydrolysis was conducted. 4a was obtained in 80% yield,
with 2e in 88% recovery rate (Fig. 5a). Meanwhile, the model of 4-
O-5 lignin linkage (1v)30 afforded 4a (71%) and 4l (75%) in high
efficiency, with 2e in 82% recovery rate (Fig. 5b). A comparatively
complex model of 4-O-5 lignin linkage, 2-methoxyl-4-ethyl-2′-
methoxyl-5′-methyl diphenyl ether33, was tested. The transfor-
mation was totally inhibited, which should also be caused by its
lower oxidation potential (+1.22 V vs SCE) than that of the anion
of 2a (+1.45 V vs SCE) to inhibit the aryl carboxylic radical
generation (Supplementary Table 3).
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Fig. 4 Substrate scope of diaryl ethers. Reaction conditions: 1 (0.5 mmol), 2a (0.6 mmol), PC 9 (3 mol%), Cu(TMHD)2 (10mol%), CH3CN (5mL),
irradiation with blue LEDs (425–430 nm, 10W) for 30 h. Isolated yields were reported. a60 h. bCH3CN (5mL) and PhCF3 (2.5 mL), 60 h. c1 (0.2 mmol),
2a (0.24mmol), PC 9 (3 mol%), Cu(TMHD)2 (10mol%), CH3CN (2mL) with PhCF3 (1 mL), stop-flow reactor was used with blue LEDs (420–430 nm,
25W) irradiation for 60 h.

a

b

Fig. 5 Gram-scale reaction and its application. a Gram-scale reaction. b Application. Due to the difficult purification for the isolated yields of 4a and
4l, after the acidolysis, the reaction was worked-up to afford 3et and 4a in 81% and 71% yields, respectively.
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Mechanism studies. To gain insight into the reaction mechanism,
a series of experiments were conducted. First, UV–vis absorption
spectra of each component and the reaction mixture confirmed
that PC 9 acts as a PC (Fig. 6a). Second, luminescent quenching
experiments were conducted (Fig. 6b). The anion of 2a (4-
MePhCO2

–nBu4N+), 2a, 1a, Cu(TMHD)2, and the anion of 2a
with Cu(TMHD)2 quenched the excited-state PC 9*. The anion
of 2a displayed an obviously larger quenching rate. 1a, Cu
(TMHD)2 displayed lower quenching rates. The anion of 2a with
Cu(TMHD)2 displayed a lower quenching rate in comparison
with that of the anion of 2a. These results suggest there is little
possibility for Cu(TMHD)2 to participate in the catalytic cycle of
acridinium catalyst. Third, the pH value of the reaction mixture
was determined as 3.61 or 4.30, with or without 10 mol% Cu
(TMHD)2. Based on these pH values, Cu(TMHD)2 should pro-
mote the ionization of 2a by the salt effect65. As mentioned above,
the transformation is promoted by Cu(TMHD)2 under base
conditions. In addition, under base free conditions, 80% ester 3a
with Cu(TMHD)2 (entry 19), and 13–56% ester 3a with Cu
(OAc)2, Cu(acac)2, Ni(acac)2, Fe(acac)2 (entries 20–23) in com-
parison with no production of 3a without any these metal salts
and base (entry 23), these results suggest that Cu(TMHD)2 also
acts as a Lewis acid to promote the transformation.

Furthermore, with the addition of 2 equiv. of TEMPO as
oxidant, compounds 5a and 5b, instead of 3 and 4, were obtained
(Fig. 7). This result and the standard reaction suggest that the
reaction of 1a with 2a generates possible intermediates B′, C, and
C′ in a reversible manner under the optimized conditions. Under
the standard conditions without TEMPO, the diaryl ether bond of
B′ is activated by the Cu2+ to promote the equilibrium shifting to
give 3a and 4a in high efficiency. With TEMPO as oxidant, the
equilibrium shifting is promoted by TEMPO to give 5a and 5b via
C and C′57.

The thermodynamic feasibility of the photo-induced SET was
analyzed based on the oxidation–reduction potentials. The
oxidation potential of E4-CH3PhCO2•/4-CH3PhCO2–, E1a+•/1a, and
the reduction potential of EPC 9/PC 9−• in CH3CN were
determined as +1.45 V vs. SCE, +1.86 V vs. SCE66, and −0.47
V vs. SCE (Supplementary Figs. 11, 12, and 36), respectively. The
excited-state energy E0,0 of PC 9 was determined as 2.63 eV
(Supplementary Fig. 24). Therefore, the reduction potential of
EPC 9*/PC 9−• was calculated as +2.16 V vs. SCE (EPC*/PC–•=

EPC/PC–•+ E0,0) (Supplementary Fig. 36). These reduction
potentials indicate the prior formation of PC–• and the carboxylic
acid radical42–47 by a SET between PC* and the carboxylic acid
anion. Based on the electrochemical potentials of phenolic
products66 and PC 9, phenolic products can be readily oxidized
by PC 9. The stability of phenolic products under the reaction
conditions may be attribute to the back electron transfer67,68.
Furthermore, a quantum yield value of φ= 0.20 was determined.
Thus, at this stage, whether the reaction proceeds via a
photoredox catalytic pathway or a radical chain pathway could
not be reached69.

Based on these results, the reaction mechanism is proposed as
shown in Fig. 8. First, Cu(TMHD)2 promotes the ionization of 2a
to afford 2a– and a proton. Meanwhile, irradiation of PC with
blue LEDs leads to the excited-state PC*. A SET occurs between
PC* and 2a− to generate the carboxylic acid radical A′ and PC–•.
An electrophilic attack of A′ occurs on the electron-rich aryl ring
of diphenyl ethers to form intermediate B′. A SET between B′ and
PC–• in the presence of a proton with the promotion of
Cu(TMHD)2 as a Lewis acid affords 3a, 4a, with the regeneration
of PC.

In summary, we have developed visible-light photoredox-
catalyzed C–O bond cleavage of diaryl ethers by an acidolysis and
a following one-pot hydrolysis at rt. Two molecules of phenols are
obtained from one molecule of diaryl ether in high efficiency. The
aryl carboxylic acid used for the acidolysis can be recovered. The
transformation is applied to a gram-scale reaction and the model
of 4-O-5 lignin linkages. The applications of this approach to
more complex models of 4-O-5 lignin linkages and the linkages in
native biomass for utilization of lignin as renewable aryl sources
are in progress.

Methods
General procedure for the C–O bond cleavage of diaryl ethers. To a quartz tube
equipped with a magnetic stirring bar, PC 9 (0.015 mmol, 3.0 mol%, 9.60 mg),
compound 1 (0.50 mmol) compound 2 (0.60 mmol), and Cu(TMHD)2 (0.05 mmol,
10 mol%, 21.5 mg) were added. The tube was evacuated and filled with argon three
times with each cycle in 15 min. The freshly distilled solvent was then added into
the tube via a syringe under an argon atmosphere, then stirred and irradiated with
425–430 nm blue LEDs at ambient temperature (19–21 °C) in a Wattecs Parallel
Reactor (Supplementary Fig. 1) for 30–60 h. After the reaction, the solvent was
removed in vacuo and the residue was purified by column chromatography (pet-
roleum ether/EtOAc = 200/1–5/1) to afford compounds 3 and 4.

Full experimental procedures are provided in the Supplementary Information.
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Data availability
Experimental data, as well as 1H and 13C NMR spectra for all new compounds prepared
in the course of these studies, are provided in the Supplementary Information file. The X-
ray crystallography reported in this study has been deposited at the Cambridge
Crystallographic Data Centre (CCDC), under deposition number 2004336. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre via
https://www.ccdc.cam.ac.uk/. The data that support the findings of this study are
available within the article and its Supplementary Information files. Any further relevant
data are available from the corresponding author upon reasonable request. Source data
are provided with this paper.
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