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Amelogenesis imperfecta (AI) represents rare tooth anomalies that affect the quality and/or quantity of the enamel. Clinical
phenotypes display a wide spectrum, ranging frommild color changes to severe structural alterations with daily pain. However, all
affect the quality of life because of mechanical, psychological, esthetic, and/or social repercussions. Several gene mutations have
been linked to AI as a nonsyndromic (isolated) phenotype or a wider syndrome. )is case report aimed to present a family with
dental structure anomalies followed up in the dental department of the Louis Mourier Hospital (APHP, France) for their
extremely poor dental condition. )e proband and his mother were clinically diagnosed with AI, and genetic analysis revealed an
already described variant in DLX3. )en, the family was further examined for tricho-dento-osseous syndrome. )is report
illustrates the challenge of diagnosing dental structure anomalies, specifically AI, in adults and highlights the need for an accurate
and accessible molecular diagnosis for those anomalies to discriminate between isolated and syndromic pathologies.

1. Introduction

Amelogenesis imperfecta (AI) is a rare dental disease af-
fecting the enamel structure, with an estimated prevalence of
1/700 to 1/14000 (ORPHA disorder 88661), a large range due
to a mis- or underevaluation of tooth structure anomalies
and lack of large clinical studies on this topic. AI has been
described for years following the Witkop classification [1],
aiming to specify the different aspects, forms, and colors of
enamel anomalies.)e bedrock of this classification is the AI
“macro” pathophysiology, namely, impairment of enamel
secretion or maturation stages during amelogenesis. How-
ever, presently, it is recognized that (1) clinical evaluation of
the dysmorphic enamel is biased as soon as a tooth erupts,
due to attrition, erosion, and other intraoral phenomena and
(2) phenotypes are heterogeneous and can overlap [2, 3].

Another crucial aspect when considering AI is that this
anomaly can be inherited alone or with other anomalies
within a wider syndrome, such as enamel renal syndrome
associated with FAM20A mutations [4] and AI associated
with vitamin D-resistant rickets linked to VDR or CYP27BA
mutations [5]. Since 1998, DLX3 mutations have been as-
sociated with tricho-dento-osseous syndrome (TDO,
OMIM#190320) [6, 7]. TDO is described as a dominant
inherited syndrome combining hypoplastic AI with taur-
odontism, head and neck skeletal anomalies (increased
thickness, higher bone density, and obliteration of facial
sinuses), and curly or kinky hair. Nail and skin anomalies are
often associated with TDO [8–10]. Other dental defects, such
as pulp obliteration, shorter and dysmorphic roots, and
dental eruption disorders (early or delayed), have sometimes
been reported [11]. Recent publications have highlighted the
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possibility of “attenuated” TDO [12–14], relaunching the
debate on a common or distinct diagnosis between TDO and
the hypoplastic-hypomature type with the taurodontism
form of AI (OMIM #104510), both linked to DLX3 muta-
tions [15].

In direct line with this debate, here, we describe the
unexpected diagnosis of the known DLX3 c.398G>C, p.
Arg133 Pro, variant in a family followed for global dental
rehabilitation by the dental department of Louis Mourier
Hospital (Paris, France).

2. Case Presentation

A 10-year-oldmale African child presented at the emergency
department of Louis Mourier Hospital with cellulitis related
to necrosis of the maxillary first right permanent incisor.
After 1 year, he returned for general consultation. He had no
history of medical conditions, and no hair, skin, or nail
defects had been noted by the clinicians or reported by the
parents. Oral examination revealed a healthy mucosa
without bone abnormalities. However, the teeth showed
significant structural and eruption abnormalities. )e
enamel was dark yellow, streaked, and severely worn
(Figure 1(a)). It appeared translucent in the areas of wear.
)e enamel radio-opacity was similar to that of dentin
(Figure 1(b)). On orthopantomography (Figure 1(b)),
taurodontism was observed on the first permanent molars.
)e tooth eruption was severely disturbed. )e first per-
manent molars and mandibulary first left deciduous molar
were impacted. Roots appeared shorter than normal. After
several dental infections, dental extractions and complete
denture removal were performed (Figure 1(c)).

)e proband’s mother had a reported diagnosis of
“dentinogenesis imperfecta” associated with painless
mandibular bone exostosis from a previous visit. Clinically,
the enamel was orange-brown and appeared severely worn
out (Figure 2(a)). Panoramic radiography confirmed
multifocal areas of high density in the mandibular bone
(Figure 2(b)). )is clinical picture suggested osseous
dysplasia. More specifically, the multifocal fibro-osseous
dysplastic areas characterized by radio-opaque cementum-
like masses allowed the clinician to make a diagnosis of
florid cemento-osseous dysplasia [16]. Dental examination
revealed teeth with thin or absent enamel, numerous
endodontic treatments and restorations, and missing teeth
(Figure 2(b)). Whole-body scintigraphy performed to
further explore the bone status revealed only one point of
hyperossification on the right ankle. Radiographic exam-
ination of the left hand performed after a single painful
episode revealed only a faint modification of the fifth
phalanx. Furthermore, there were no hair, skin, or nail
defects, so no formal diagnosis of TDO was established
[16]. Residual teeth (except for two mandibular molars, left
and right) were extracted, and rehabilitation was per-
formed using a complete maxillary and partial mandibulary
removable denture. )ese oral conditions were not re-
ported for the patient’s brothers, aged 2 and 5 years
(considering the limitation of the clinical examination
regarding their ages), or father (Figure 3(a)).

A clinical diagnosis of AI, hypoplastic/hypocalcified, was
established for the proband according to the criteria defined
by Witkop [17]. Because of the proband’s teeth features,
along with the mother’s contradictory former diagnosis of
dentinogenesis imperfecta, genetic exploration was
indicated.

2.1. Genetic Material and Methods. DNA from patients I.1
and II.1 were analyzed at the Department of Molecular
Biology and Genetics of Cochin Hospital (APHP, Paris)
(Figure 3(a)). High-throughput targeted sequencing was
performed on an ion PGMTM system from amplicon li-
braries ()ermo Fisher Scientific) (Table 1). Bioinformatics
analysis relied on )ermo Fisher Scientific tools and the
homemade pipeline Polydiag of the Paris Descartes Uni-
versity, Imagine Institute bioinformatics platform. A path-
ogenic variant in DLX3, exon 2, c.398G>C, p. Arg133Pro,
was identified in both patients I.1 and II.1, but not in I.2
(DNAs for II.2 and II.3 were not available) (Figure 3(b)),
neither in a positive control cohort of patients with AI nor in
the database of the Department of Molecular Biology and
Genetics [15].

)e substitution c.398G>C was reported by Nieminen
et al. in 2011 but, then, associated with a typical TDO family.
It encodes for a missense at the protein level, replacing the
arginine in position 133 with a proline at the beginning of
the homeodomain of the DLX3 protein. Predictors related to
consensus sequence conservation interspecies (Polyphen2)
and 3D structure/missense disruption (SIFT, Mutation
Taster) annotate this substitution as deleterious or patho-
genic. Hence, this variant was considered a class V variant
(pathogenic), following the American College of Medical
Genetics and Genomics recommendations [18]. Considering
all these clinical, radiographic, and molecular elements, a
diagnosis of “attenuated” TDO was proposed for the pro-
band and his mother.

3. Discussion

AI is a highly variable tooth disorder that involves the
enamel structure. Its management requires a multidisci-
plinary team; specialists in medical genetics, mainly in rare
dental diseases; and restorative and prosthodontics experts.
Presently, the diagnosis of AI still appears difficult for
dentists. Clinical descriptions and the classification estab-
lished by Witkop are complicated and not well applicable
because of the great variability of the AI phenotype [17].

Classically, clinicians use hypocalcified, hypomature, or
hypoplastic terms to describe AI. Hypoplastic forms are used
when the enamel shows reduced thickness. )e tooth sur-
faces can be smooth or rough. )e hypoplastic form is
mainly associated with an anomaly of enamel matrix se-
cretion [3]. A hypomature enamel is described as opaque,
white to yellow-brown, hard, and easily detachable from the
dentin and has a normal thickness. )ese signs are linked to
a lack of protein elimination in the extracellular matrix
during the enamel maturation phase. Less mechanical
strength is observed. )e hypocalcified form is characterized
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by impaired mineralization of enamel crystallites during the
secretion phase. It results in a creamy-white to yellow-brown
rough enamel surface. )e enamel is generally normal in
thickness on newly erupted teeth but rapidly tends to be
chipped away or scraped from the dentin. Radiographically,
enamel radio-opacity appears similar to that of the dentin
[17].

Over the years, all associations of clinical AI forms have
been reported. Recent studies have highlighted the cellular
and molecular levels of pathophysiology knowledge, and the
common and global term of AI is proposed for all clinical

forms [19, 20]. )e modern approach to AI tends to regroup
causative proteins depending on their function and pathway.
Different protein groups can be mentioned, even though all
the AI causative genes have not yet been discovered.)e first
described were the enamel matrix proteins (AMELX,
ENAM), enamel matrix proteases (MMP20, KLK4), and
proteins involved in cell-cell and cell-matrix adhesion
(AMTN, COL17A1, LAMA3, LAMB3, ITGB6, and
FAM83H), transport (WDR72, SLC24A4), and control (even
if not yet well defined) of amelogenesis (GPR68, ODAPH,
ACPT, FAM20A, and DLX3) [3].

(a) (b)

(c)

Figure 1: Clinical and radiological views of the proband. (a) Intraoral photograph of the patient showing hypocalcified enamel and eruption
anomalies. )e enamel is dark yellow, streaked, and severely worn out. )e proband’s teeth are in the transitional dentition phase, with
major diastemas. (b) Panoramic radiograph of the proband showing retained, impacted, and missing teeth; generally thin or absent enamel;
taurodontism on first permanent molars; one temporary molar restored with a preformed metallic crown; and the central right incisor
endodontically treated. (c) Intraoral photograph immediately after prosthetic rehabilitation of the patient with a complete removable
denture. An anterior disastema is preserved for esthetics.

(a) (b)

Figure 2: (a) Clinical view of the proband’s mother during the first examination. On the upper jaw, all teeth are covered by prosthetic
elements. On the lower jaw, the remaining teeth present severe wear with >50% loss of tooth structure. )e enamel is orange-brown. (b)
Panoramic radiograph of the proband’s mother showing mandibular high bone density, missing teeth, absent enamel, and many restored
and endodontically treated teeth.
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)erefore, this new AI approach is no longer only clinical
but also biological. )is requires a strong network between
geneticists and specialists of rare dental diseases to improve the
correlation between genotype and phenotype and close col-
laboration with restorative treatment experts. )is network
could enhance treatment options, notably an individual ther-
apeutic approach, such as an adaptive adhesive technique, in
case ofMMP20mutation [21] or newprotocols to systematically
and preventively recover all cuspid teeth with LAMA3 or
FAM83Hmutation because of the rapid and widespread loss of
enamel associated with malfunction of these proteins.

Another important aspect is to consider the isolated
character or not of AI. In the described family, dental
problems, even though the first proposed diagnosis based on
the clinical observation of the proband’s mother was inac-
curate, were very well known by all family members. )e
proband had been supported and accompanied by his
parents since his early childhood, and dental care, even if not
fully appropriate, had been provided. However, a complete
and definite diagnosis without a molecular approach re-
mains difficult. When dental structure anomalies are ob-
served for the first time in adulthood, diagnosis is almost
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Figure 3: (a) Family pedigree. (b) DLX3 NM_005220 alignment on the Integrative Genomics Viewer (IGV, Broad Institute), reference
genome hg19, after next-generation sequencing on a targeted panel for amelogenesis imperfecta. Upper tracks, patient I.1; middle tracks,
patient II.1; and bottom tracks, patient I.2. Visualization of misalignments in orange versus pink are due to the heterozygous frameshift
G>C at position 398 (direct lecture C>G on reverse strand).
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impossible because of posteruptive modifications and se-
quelae. )e second aspect agrees with recent studies on AI
topics, highlighting that the frontier between syndromic and
nonsyndromic forms of AI is not so watertight. In this
report, except for the osseous mandibular densities in the
proband’s mother (which, when observed in middle-aged
African women, could be diagnosed as florid cemento-os-
seous dysplasia), only remarkably faint signs usually linked
to TDO had been noted by the family or pediatricians or
were even noticeable by dental surgeon specialists of rare
diseases. When the DLX3mutation diagnosis was made, the
whole family had received a complete explanation on TDO
and had been advised to undergo extensive testing for DLX3
mutation holders and their offspring.

Specifically, the clinical diagnosis of patient II.2 should
be reassessed over time. Indeed, when comparing our family
with the Finnish family first described as carrying the
c.398G>C frameshift [11], the clinical features of the
Finnish patients were stronger for a TDO diagnosis (asso-
ciation of dental, facial bone, and hair phenotypes). How-
ever, one cannot ignore the mandibular ossification in
patient I.1 and the severely disturbed eruption associated
with shortened roots and taurodontism in patient II.2 that
resembled those of Finnish patients and supported an “at-
tenuated” TDO diagnosis.

4. Conclusions

Our report illustrates the challenge of diagnosing dental
structure anomalies and, specifically, AI in adults and
highlights the need for an accurate and accessible molecular
diagnosis for these anomalies to (1) ameliorate the patient’s
course and provide appropriate care and (2) provide a better
understanding of the underlying pathophysiology. It is es-
sential to obtain this knowledge to assure the patient that he
or she will not pass on a syndromic trait to the offspring. In
France, this process also helps patients receive financial

support for dental or medical care. Alongside the molecular
aspect, self-esteem, wellness, and social aspects of the pa-
thology should be better considered.

Consent

Written informed consent was obtained from the patient’s
parents for publication of this case report, and any poten-
tially identifying information was removed. Gene se-
quencing was performed after written informed consent was
provided by the patient’s parents for themselves and their
child.
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