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Accurate segmentation of
neonatal brain MRI with deep
learning
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An important step toward delivering an accurate connectome of the human

brain is robust segmentation of 3D Magnetic Resonance Imaging (MRI)

scans, which is particularly challenging when carried out on perinatal data.

In this paper, we present an automated, deep learning-based pipeline for

accurate segmentation of tissues from neonatal brain MRI and extend it by

introducing an age prediction pathway. A major constraint to using deep

learning techniques on developing brain data is the need to collect large

numbers of ground truth labels. We therefore also investigate two practical

approaches that can help alleviate the problem of label scarcity without loss

of segmentation performance. First, we examine the e�ciency of di�erent

strategies of distributing a limited budget of annotated 2D slices over 3D

training images. In the second approach, we compare the segmentation

performance of pre-trained models with di�erent strategies of fine-tuning on

a small subset of preterm infants. Our results indicate that distributing labels

over a larger number of brain scans can improve segmentation performance.

We also show that even partial fine-tuning can be superior in performance to

a model trained from scratch, highlighting the relevance of transfer learning

strategies under conditions of label scarcity. We illustrate our findings on large,

publicly available T1- and T2-weighted MRI scans (n = 709, range of ages

at scan: 26–45 weeks) obtained retrospectively from the Developing Human

Connectome Project (dHCP) cohort.
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1. Introduction

How the human brain develops is a fundamental question in neuroscience

that motivated initiatives like the Developing Human Connectome Project (dHCP)

(Makropoulos et al., 2018b) and the Baby Connectome Project (Howell et al., 2019) to seek

out a blueprint of the developing brain. Mapping out neonatal brain development could

help accelerate early diagnosis and detection of diseases such as cerebral palsy, autism,

hypoxic ischemic encephalopathy, and congenital deformations, which are thought

to originate during the perinatal period of human development (Devi et al., 2015;

Makropoulos et al., 2018b). With the help of advanced imaging techniques, it is indeed

possible to observe the structural and functional development of the brain in the neonatal
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developmental phase (Devi et al., 2015). Magnetic Resonance

Imaging (MRI) in particular is an excellent source of data,

since data acquisition is carried out non-invasively and at high

resolution. When an image needs to be further processed, for

example to calculate the volume of different brain areas to

detect abnormalities (Van Leemput et al., 1999; Makropoulos

et al., 2014), the first step is often an image segmentation

task, and accurate structural processing of MRI data is also

an important step toward delivering an accurate connectome

of the developing brain. Automating the segmentation of

neonatal brain MRI would therefore be very beneficial for the

neuroimaging community.

In image segmentation tasks, deep learning-based

algorithms have been at the forefront of development in

recent years, including in the broad area of medical imaging

(Litjens et al., 2017; Makropoulos et al., 2018a). Common

applications include brain imaging [e.g., tumor (Menze et al.,

2014) and structure segmentation (Wu and Tang, 2021)], lung,

prostate (Litjens et al., 2017), and breast tissue segmentation

(Zhang et al., 2020). The U-Net architecture, a model developed

specifically for image segmentation which expands on the idea

of a fully convolutional network (Ronneberger et al., 2015), has

become one of the most widely-used architectures for semantic

segmentation applications in the field of biomedical imaging

(Litjens et al., 2017; Isensee et al., 2018). This can be seen, for

example, in the Kidney Tumor Segmentation Challenge (KiTS),

a large-scale challenge with over 100 participants (Isensee et al.,

2019), where all models in the top 15 were based on the U-Net

architecture. Common architectural modifications such as

residual connections or attention mechanisms have not shown

a consistent advantage (Isensee et al., 2019). Conversely, even

amongst the top 15 in the KiTS leaderboard rankings, there

were still unmodified versions of the U-Net architecture to be

found. Isensee et al. (2018) therefore argue that the effect of an

optimal combination of design choices and hyperparameters

is significant. Since finding these optimal hyperparameters can

become a challenge, Isensee et al. (2018) proposed a solution to

this problem by condensing domain knowledge into heuristics

that suggest a model with certain design choices, i.e., “pipeline

fingerprint” for a dataset with certain properties compiled in

a “data fingerprint,” calling it nnU-Net (“no-new-Net”). The

framework has been shown to perform competitively on the

Medical Segmentation Decathlon challenge, which consists of

10 different datasets with different modalities (CT, MRI, EM)

and mapped organs, e.g., heart, liver, brain, amongst others

(Isensee et al., 2019).

Nevertheless, obtaining sufficient ground truth labels for

data-driven methods based on deep learning can be expensive,

cumbersome, and time-consuming. For neonatal brain MRI,

there are further complications associated with the data; for

instance, the scans can be very heterogeneous in morphology

and texture, which is caused by the rapid brain development

taking place over narrow time-scales (Prayer, 2011). Other

factors include lower signal-to-noise ratio, lower contrast-to-

noise ratio, motion artifacts, and inverted signals. The biological

process of myelination, which occurs especially in the time span

between midgestation and the end of the second year of life

(Sampaio and Truwit, 2001; Branson, 2013), is also of particular

importance here. Myelination describes the process by which

oligodendrocytes in the central nervous system and Schwann

cells in the peripheral nervous system form a myelin sheath

around axons (Salzer and Zalc, 2016). This process has various

functions, including accelerating the electrical transmission of

information in the CNS and providing axonal support, and is

involved in learning and memory consolidation (Lazari and

Lipp, 2021). White matter, which appears bright in T1-weighted

adults due to myelination, appears inverted in infant brain scans

with incomplete myelination (Makropoulos et al., 2018b); this

difference in brightness can already be seen between preterm

and term infants. In this regard, addressing the ground truth

bottleneck is essential for deep learning to find its way in

neonatal image segmentation tasks.

1.1. Contributions

In this paper, we make three novel contributions to the area

of neonatal brain MRI segmentation:

(1) We present a fully automated, deep learning pipeline for

segmenting 3D neonatal brain MRI that achieves high

segmentation performance on subjects of a wide age

range. We developed and tested the method on a large,

publicly available dataset of infant brain scans and their

corresponding segmentation labels provided by the dHCP

initiative. Additionally, we extended the deep learning

pipeline’s functionality by introducing an age prediction

pathway. The code for the deep learning pipeline, as well as

all experiments presented in this paper, is publicly available

on Github1.

(2) A major constraint to using deep learning is the need to

collect large numbers of ground truth labels. Therefore, in

addition to the presented pipeline, we examined different

strategies for dealing with the ground truth bottleneck in

the context of neonatal MRI. We framed the problem of

insufficient ground truth as having a limited budget of labels

that needs to be distributed over an unlabeled training set.

In other words, given a large dataset of neonatal 3D scans,

what would be the most efficient way to generate labels

under a constrained budget? A key variable is therefore

the extent to which the labels are distributed over a large

portion of the subjects across the dataset. A second variable

concerns the question of how exactly the labels should be

distributed within a single subject. For example, does it

1 https://github.com/richterleo/Neonatal_Brain_Segmentation
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make a difference whether an expert annotates axial 2D

slices or sagittal slices? Does it make a difference if one of

the axes has a lower resolution than the others? To study

this, we made use of the publicly available dHCP labels in

place of ground truth labels in order to “simulate” different

labeling strategies.

(3) Lastly, we looked into the extent to which transfer learning

can remedy the problem of limited annotated training data.

Different strategies of transfer learning were compared to

explore how a model trained on a population of older

neonates can achieve good segmentation performance on

a group of preterm infants, both obtained from the public

dHCP release.

2. Related work

According to Makropoulos et al. (2018a), most of the

common segmentation methods for neonatal brain MRI can

be divided into five groups: unsupervised methods, parametric

methods, classification methods, atlas fusion methods, and

deformable models. Application of atlas fusion techniques on

their own are rare in the neonatal brain segmentation literature,

possibly because their performance is always constrained by

the availability of a suitable, age-dependent atlas, as well as

by the quality of the registration algorithm (Makropoulos

et al., 2018a). They are sometimes used in combination with

parametric techniques, e.g., Expectation Maximization (EM)

algorithms, which model the distribution of voxel intensities by

a posterior probability with a spatial prior term and an intensity

term. Parametric techniques are some of the most widely

used segmentation methods for neonatal brain MRI because

of their robustness to differences in anatomy (Makropoulos

et al., 2018a,b). The quality of the initial segmentation is not

essential, since it is iteratively improved upon as the algorithm

progresses. In classification techniques, the segmentation

problem is interpreted as a voxel-wise classification problem

and a classifier is trained using data consisting of pairs of MR

images and segmentation masks (i.e., atlases). These methods

have many advantages: they show high performance and

require comparatively less experience and expertise than, for

example, developing handcrafted features (Makropoulos et al.,

2018a). Classification techniques mentioned here include k-

NN, Naive Bayes, Decision Forests, Support Vector Machines

(SVMs), and Convolutional Neural Networks (CNNs). More

recent approaches include the one by Moeskops et al. (2016).

Their approach relied on a multi-scale CNN and voxel-wise

classification. To utilize spatial information more efficiently,

multiple patch sizes and kernel sizes were used. They tested

their method on three neonatal datasets in particular: a set

of coronal T2-weighted images of preterm infants acquired at

30 weeks post-conceptional age, a set of T2-weighted images

of preterm infants acquired at 40 weeks post-conceptional

age as well as axial T2-weighted images of preterm infants

acquired at 40 weeks post-conceptional age. The infant brains

were segmented into eight classes: Cerebellum, Myelinated

White Matter (mWM), Basal Ganglia and Thalami (BGT),

Ventricular Cerebrospinal Fluid (vCSF), Unmyelinated White

Matter (uWM), Brainstem (BS), Cortical Gray Matter (cGM),

and Extracerebral Cerebrospinal Fluid (eCSF). Moeskops et al.

(2016) report mean Dice Similarity Coefficient (DSC) values

of 0.87, 0.82, and 0.84 on these datasets, respectively. Beyond

the choice of segmentation algorithms, other parts of an MRI

processing pipeline have to be adapted to the neonatal data.

For example, motion artifacts can be prevented by fast scanning

techniques or correction algorithms can be applied afterwards

to reconstruct a coherent 3D image from misaligned 2D slices.

Furthermore, pre-processing steps such as brain extraction and

intensity inhomogeneity correction are often applied (Smith,

2002; Makropoulos et al., 2018a).

The standard assumption in machine learning is that

training and testing data are drawn from the same feature space

and from the same distribution; this assumption can be relaxed

in transfer learning (Pan and Yang, 2009). In settings where

the training data is scarce, which is often the case for complex

biomedical data, using previously generated knowledge in new

domains of interest can be beneficial. Additionally, data almost

never stems from the same distribution in practice; the modality,

the scanner that is used, the acquisition protocol, the hospital

and, of course, the underlying population that is investigated

all might differ from sample to sample (Van Opbroek et al.,

2014). Deep learning is particularly well-suited for transfer

learning, since deep convolutional networks are assumed to

learn a hierarchy of multiple levels of representation with

more abstract, domain-specific features in the higher levels

of the representation and more general features in the lower

levels (Bengio, 2012; Tajbakhsh et al., 2016). A lot of the early

transfer learning experiments used CNNs as off-the-shelf feature

generators and fed the CNN features to a separate classifier,

usually an SVM or a Decision Forest (Azizpour et al., 2015;

Kornblith et al., 2019). Azizpour et al. (2015) identified some of

the relevant factors when it comes to the question of how a deep

CNN representation should be learned and adjusted to facilitate

transfer between source and target task, including the nature of

the source task and its distance from the target task, network

parameters like width, depth, etc., whether the network is fine-

tuned using labeled data from the target task and which layer of

the network the representation should be extracted from. They

observed that the “optimal settings are clearly correlated with

the distance of the target task[...] from the source task” (p. 2). If

the target task is very distant from the source task they suggested

extracting the representation from earlier layers of the network.

This was also shown by Yosinski et al. (2014).

Tajbakhsh et al. (2016) shed light on the division between

feature-extraction and fine-tuning variants of transfer learning.

While in the first case features from a certain layer of a
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pre-trained network are extracted and fed to a new classifier,

e.g., an SVM, the second approach aims to adapt the pre-

trained network to the target task by updating all layers during

training. Tajbakhsh et al. (2016) investigated a hybrid approach

in which the weights of an AlexNet are initialized with those

of an ImageNet pre-trained network and then, starting from a

feature extraction approach, more layers are included in the fine-

tuning process, while the earlier ones remain fixed. Tajbakhsh

et al. (2016) coined the term “shallow fine-tuning” for conditions

where only late layers are updated. Conversely, the approach

that is usually simply called “fine-tuning” can be referred to

as “deep fine-tuning.” There is no consensus yet on whether

feature extraction or fine-tuning is generally better, but there is

much to suggest that it depends on a number of factors such

as the proximity of the source task to the target task and the

domain. Moreover, the choice also presents a trade-off where

feature extraction is usually associated with less computational

effort and a shorter training time (Mormont et al., 2018).

There are several examples of successful application of

deep transfer learning strategies to medical computer vision

problems. Particularly noteworthy here is the paper by

Tajbakhsh et al. (2016) in which the authors investigated four

applications (polyp detection in colonoscopy videos, image

quality assessment in colonoscopy videos, pulmonary embolism

detection, and intima-media boundary segmentation) as well

as three different medical imaging modalities (MRI, CT, and

ultrasound). In their experiments, they not only examined fine-

tuned and feature-extracting models, but also compared them

to another identical AlexNet model trained from scratch. They

analyzed how the availability of training samples influenced the

performance of the different models, lowering the amount of

training data to 70%, 50%, and 25% of the original training

data. They found that, with deeper fine-tuning, performances

comparable and even superior to AlexNets trained from scratch

could be achieved; and that the performance gap between

deeply fine-tuned networks and those trained from scratch

widened when the size of training sets was reduced, i.e., the

fine-tuned network was more robust against small training

dataset sizes. In most cases, even the (deeply-tuned) model

trained only on 25% of the training data still achieved good

performance metrics (Tajbakhsh et al., 2016). They also report

gains in the speed of convergence for fine-tuned models in

comparison to models trained from scratch and conclude

stating “fine-tuned CNNs should always be the preferred option

regardless of the size of training sets available” (p. 11). How

deeply one should fine-tune would then be dependent on

the difference between the source domain and the target

domain, with the transition from natural images to the medical

domain requiring deeper levels of fine-tuning. Mormont et al.

(2018) investigated deep transfer learning strategy for digital

pathology, comparing a variety of state-of-the-art network

architectures and a variety of feature extraction and fine-tuning

approaches, suchas extracting information from one specific

layer of the source network, or merging features from several

layers. They found that fine-tuning usually outperformed all

other methods regardless of the network which was used. When

feature extracting, they found that last layer features were

always outperformed by features taken from an inner layer of

the network (which was always located rather at the end of

the network).

Although there is a wealth of literature on the application

of transfer learning in medical imaging, the majority of these

applications relate to classification problems and architectures

typically used for that purpose, such as ResNets and DenseNets.

For these types of networks, it is easy to give a definition

of “shallow” and “deep” tuning, but this becomes more

complicated for deep learning based segmentation methods,

and especially when it comes to U-Net-like architectures. Amiri

et al. (2019) state: “It is important to note that U-Net is not

a simple feedforward architecture. The notion of deep and

shallow is ambiguous in a U-Net, because there are short and

long paths from the input to the output.” (p. 7). The work of

Amiri et al. (2019) is also one of the few studies available to

date that looked at different ways of fine-tuning the U-Net.

They investigated two target segmentation tasks, both inmedical

imaging: first, segmentation of ultrasound B-mode images of

the breast with either benign lesions or malignant tumors, and

second, segmentation of lung lobes from chest X-ray. Both

datasets consisted of a rather small number of 2D images (163

and 240, respectively). In both cases, the U-Net was first pre-

trained on the XPIE dataset with 10,000 natural images (as in

the case of the medical data, there was only one foreground

and one background class). In a first set of experiments, Amiri

et al. (2019) then examined two approaches: one where they only

fine-tuned the contracting path of the U-Net, and one where

they only fine-tuned the expanding path, leaving the weights of

the other part of the network frozen in each case. Here, they

found that fine-tuning (only) the contracting path led to better

segmentation performance in the case of the ultrasound image

dataset, while both approaches produced similar results for the

X-ray dataset. In a second part, they investigated the effect of

different degrees of shallow and deep fine-tuning. Assuming that

earlier layers of a CNN learn more general surface features and

that basic features of the natural and the biomedical images

are similar, it would be reasonable to start by training the

deeper (i.e., later) layers of the U-Net first, and then successively

add earlier layers to the training. However, Amiri et al. (2019)

argue that since medical imaging methods sometimes produce

characteristic, modality-specific artifacts (e.g., speckles caused

by wave-tissue interactions), the assumption of surface similarity

might be violated. They observed that performance improved

when starting with the shallow layers and then including deep

layers in the training than when, conversely, the deep layers were

fine-tuned first.
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3. Materials and methods

3.1. Dataset

In this paper, we made use of publicly available data

provided by the dHCP, an initiative that seeks to create “a

dynamic map of human brain connectivity from 20 to 44

weeks post-conceptional age (PMA) from healthy, term-born

neonates, infants born prematurely (prior to 36 weeks PMA)

and fetuses” (Makropoulos et al., 2018b, p. 3). The most

recent, publicy available Third Data Release includes 783 3D

neonatal MRI scans. For the purpose of this study, T1- and

T2-weighted MRI scans and minimal meta data were analyzed

retrospectively. Corresponding segmentation labels produced

by the dHCP structural pipeline served as a pseudo ground

truth for our purposes. The segmentation labels represented

the following classes: Cerebrospinal Fluid (CSF), Cortical Gray

Matter (cGM), White Matter (WM), Ventricles, Cerebellum,

Deep Gray Matter (dGM), Brainstem, Hippocampus, as well

as an inner background class representing regions bordering

brain tissues (Makropoulos et al., 2014). Additionally, there

was an outer background class representing regions of the

image surrounding the skull (pixel intensity values of 0). These

segmentation labels were based exclusively on the T2-weighted

data, since due to incomplete myelination, the contrast of the

T1-weighted scans is inverted (Makropoulos et al., 2018b).

The 3D scans and segmentation labels were available in

NIfTI file format, and all scans had a resolution of 217 ×

290 × 290. Not all four file types (T1-weighted, T2-weighted,

segmentation labels for all classes, and minimal meta data) were

available for all subjects, thus, we excluded incomplete data units

which left us with 709 subjects. Figure 1 depicts the negatively

skewed distribution of scan ages in the dataset. The median scan

age in the sample was 40.57 weeks, while the average scan age

was 39.56 weeks. Preterm born infants are usually defined as

infants born before 37 weeks of gestational age, which was the

case for 148 subjects in the dataset. The youngest subject was

scanned at 26.71 weeks post-conceptional age while the oldest

was 45.14 weeks post-conceptional age at time of scan.

3.2. Pipeline design

U-Net-like architectures represent the state-of-the-art in

medical image segmentation (Isensee et al., 2018; Cai et al., 2020)

and show excellent performance in a variety of tasks (Isensee

et al., 2019), making the use of U-Net a natural starting point.

As described by Isensee et al. (2018)), parameters of the pipeline

such as pre-processing steps, exact network topology, and the

selection of an appropriate loss function, among others, can

have significant effects on performance and must be determined

carefully. Isensee et al. (2019) analyzed the interdependencies

between the dataset fingerprint and the pipeline fingerprint and

FIGURE 1

Histogram of the distribution of scan ages in the full dHCP

dataset consisting of 709 samples. The added kernel density

estimate highlights the bimodal distribution of the data.

divided the pipeline parameters into fixed parameters, rule-

based parameters, and empirical parameters. In constructing

our pipeline, we followed their recommendations and rules to

a large extent.

3.2.1. Pre-processing

To increase information density and save computation

power, training, and validation images were first cropped to

the region of non-zero values (while still keeping a cuboid

shape) using a bounding box. Images were then cropped

into patches. In general, the patch size should be as large

as possible to allow the network to include as much context

information as possible (Isensee et al., 2018). However, GPU

memory also exerts constraints on patch size, especially if one

considers that a batch size of two should not be undercut

in training in order to avoid instabilities. Lastly, the network

architecture (see section 3.2.4) also made special demands on

the size of the input patches. In particular, the patch size

along each of the three dimensions must be divisible by 2nd ,

where nd is the number of downsampling operations. The

highest patch size compliant with all these constraints, 128

× 128 × 128, was chosen. Following Isensee et al. (2019)’s

recommendation, resampling was omitted. Subject scans were

individually intensity-normalized, on a channel-wise basis.

3.2.2. Data augmentation

Isensee et al. (2018) showed that omitting data augmentation

was the only pipeline parameter that consistently degraded

performance across all medical imaging datasets they examined.

Data augmentation is often a means of choice when training

data is scarce, as it allows for the constant generation of

“new” training data. It can also have a regularizing effect
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on the data and help prevent overfitting. We therefore

attempted to cover a wide range of spatial and intensity-based

transformations such as random spatial cropping, flipping,

3D elastic deformation, Gaussian noise, Gaussian smoothing,

intensity scaling, and intensity shifting. All transformations

were applied probabilistically, ensuring that the network

still encountered unaltered training images with sufficient

frequency. An example of an augmented patch can be seen in

Figure 2. Cirillo et al. (2021) showed that elastic deformation

augmentation in particular were very realistic and led to better

performance in tumor segmentation, probably because tumors

are subject to large degrees of spatial variation; this is also typical

of neonatal brains.

3.2.3. Training hyperparameters

Following Isensee et al. (2018), a combined loss of Dice Loss

and Cross Entropy Loss was chosen:

Ltotal = LDice + LCE (1)

The Dice Loss, which is derived from the Dice Similarity

Coefficient (DSC), was calculated according to the formula

(Isensee et al., 2018):

LDice = −
2

|K|

∑

k∈K

∑

i∈I u
k
i v

k
i

∑

i∈I u
k
i +

∑

i∈I v
k
i

(2)

Here, we assumed that for each voxel i of the image, a

softmax output vector ui ∈ R
K with K = # classes is output

by the model. Consequently, the ground truth label vi of the

voxel must be encoded as a one-hot vector. Thus, all but one

of the terms uki v
k
i in the numerator of Equation (2) evaluate

to zero for each voxel. The Dice Loss is particularly well-suited

for smaller structures, such as the Brainstem or Hippocampus,

since it is unaffected by correctly classified background voxels.

Other design choices related to the training procedure include

the use of stochastic gradient descent with an initial learning rate

of 1e−2, a Nesterovmomentum of 0.99 and weight decay and the

use of a scheduler which decays the learning rate via the scheme
(

1− epoch / epochmax

)0.9
.

3.2.4. Architecture of the segmentation model

The ideal network design to handle a patch size of 128 ×

128 × 128 is a 3D U-Net consisting of an input block, four

downsample blocks, a bottleneck block, five upsample layers,

and an output block. The number of convolutional blocks

per resolution step was kept fixed at two. Two convolutional

blocks were followed by an instance normalization and a

Leaky ReLU non-linear activation in a resolution step. Instance

normalization was preferred over batch normalization because

of the small batch sizes. In the bottleneck layer, the spatial size of

the 3D image was reduced to 4× 4× 4. The architecture largely

follows a “vanilla” variant of the original U-Net, with three main

modifications. Firstly, kernels and strides were adapted to 3D

images. Secondly, residual connections were used within the

convolution blocks of the U-Net. Lastly, deep supervision was

utilized (see Zhou et al., 2018). Here, the loss was calculated

not only from the final output of the segmentation network and

the ground truth label, but by taking outputs from deeper layers

with a lower resolution into account as well. To calculate a “deep

supervision loss,” these outputs from deeper layers are compared

with downsampled versions of the ground truth segmentations.

How many of the deeper layers of the U-Net are included

in this deep supervision process is a hyperparameter of the

network architecture; however, it is not reasonable to include

an undersampled output near the bottleneck layer (Isensee

et al., 2019). The loss function defined in Equation (3) must

be adjusted. Erroneous segmentations coming from the low-

resolution outputs of the deeper layers should be given less

weight than the final segmentation maps (Isensee et al., 2019):

Ltotal = ωfinal · Lfinal + ω−1 · L−1 + ω−2 · L−2 + . . . (3)

where ω−1 is the weight given to the loss based on the

penultimate layer of the U-Net, ω−2 is the weight given to the

loss based on the layer before that, and so on.

3.2.5. Inference

Performance evaluation on a held-out test set should not be

done on patches as in training and validation, but on realistic,

full resolution images. A sliding-window approach (Isensee

et al., 2018) was used to address the problem of the network

architecture being designed to handle inputs of a fixed patch size

only. Full resolution images were first divided into overlapping

patches of the size of the training data and fed to the model.

Output segmentations were then aggregated into a full size

segmentation mask by averaging predictions for each voxel. No

further processing was carried out on the segmentation output.

3.3. Extending the model to perform age
prediction

Subject age is an important source of variance in

neonatal brain MRI (e.g., Makropoulos et al., 2018a). This

is demonstrated by the fact that spatiotemporal probabilistic

atlases, which provide weekly or sub-weekly mean images and

continuous spatial transformations over time, are very popular

in the neonatal literature (Serag et al., 2012; Schuh et al., 2014).

It is also an often cited reason for the particular difficulty

of neonatal brain segmentation (Makropoulos et al., 2018a).

Since metadata that includes subject age is available in the

public dHCP release, an obvious way around this difficulty

would be to provide a model not just with an MR image,
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FIGURE 2

(A) Example of an axial slice from a T1-weighted scan in the dataset, and (B) the same image after data augmentation The size of the original

image was 217 × 290 × 290. The augmented image was first cropped to the size of the brain, then randomly cropped to 128 × 128 × 128,

mirrored, elastically deformed, Gaussian noise and Gaussian smoothing added, and then voxel intensity scaled and shifted.

but also with the corresponding subject age. However, this

would be of little use in practice as information about the

post-conceptional age of an infant may not always be available.

Instead, we propose extending the segmentation model by

introducing an age prediction pathway, terming this new model

AgeU-Net. In addition to potentially introducing a regularizing

effect to the model, accurate age prediction without much added

computational effort can be considered useful on its own.

3.3.1. Architecture of extended model

3D CNNs have been successfully used for accurate

prediction of brain age in adults based only on MRI scans

(Cole et al., 2017; Jónsson et al., 2019; Peng et al., 2021). The

encoder path of a 3D U-Net, on the other hand, represents

nothing other than a CNN. We therefore suggest using the

outputs of the encoder pathway of the U-Net (i.e., the bottleneck

layer) as a starting point for age prediction. In the bottleneck

layer of the U-Net, the spatial information of the image is

maximally condensed. The output of this layer has low spatial

resolution with a large number of channels (Ronneberger et al.,

2015; Isensee et al., 2019). This resolution could be reduced by

further convolutional layers until a resolution of # channels ×

1 × 1 × 1 is reached, which in turn can serve as input for a

fully-connected layer used for age regression. The result of this

additional pathway can be combined with the segmentationmap

to produce a model output. A schematic diagram of this model

can be found in Figure 3. In order for the network to be able

to learn the age of the infants from the scans, a second loss

ought to be defined. Since the final layer of the age pathway

performs a regression task, it is natural to use the mean squared

error (MSE). Leaving aside deep supervision, the total loss of a

combined prediction can then be defined as:

Ltotal = LDiceCE + αLMSE (4)

where α represents the weighting factor that determines

how much the network should prioritize producing accurate

segmentations over learning the subject’s age. A value of α =

10e−3 was determined empirically2. For evaluation, all patch-

based age predictions generated by the sliding-window approach

are accounted for. For each image, not only the segmentation is

now evaluated, using a sliding-window-approach, but also the

age prediction. For this purpose, the MSE as well as the mean

average error (MAE), which is defined as the average absolute

value the of deviation, were used.

3.4. Label budgeting

The problem of insufficient ground truth labels in medical

imaging, especially in relation to neonatal data, is mentioned

in the literature with striking frequency (Makropoulos et al.,

2014, 2018a; Menze et al., 2014; Devi et al., 2015; Amiri et al.,

2019 and others). Since manual labeling of scans by experts

is associated with time and financial costs, one can reframe

the problem as there being a certain limited label budget. This

label budget may contain, for example, a number of 2D scans

that ought to be annotated on certain modality and along a

certain axis. The question of how this budget can be allocated

as efficiently as possible, i.e., “which allocation would lead to the

2 It should be noted that MSE tends to reach values larger by powers of

ten than the combined dice/crossentropy loss.
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FIGURE 3

Schematic illustration of the proposed architecture of AgeU-Net.

best segmentation performance?” was investigated empirically.

We defined the baseline ideal condition as the labeling of whole

3D brain scans. This was compared to different strategies where

limited 2D slices to be annotated were distributed over several

subjects instead. The extent to which those 2D slices can be

distributed over different subjects is called “label dispersion”

in this paper and is the first parameter to be investigated. The

second one is the axis from which the slices are taken: sagittal,

coronal, axial, or at random.

3.4.1. Partially annotated training data

We made use of the segmentation labels available in the

public dHCP release as pseudo ground truth to investigate

different distribution strategies. This was done by hiding certain

existing labels depending on the factor to be investigated. If the

idea of a labeling budget is to be implemented as realistically

as possible, then the slices to be annotated must be determined

before any kind of transformation (e.g., data augmentation) is

applied to the images, and also before the images are cropped to

patches. Additionally, simply selecting 2D slices during training

and only evaluating on those would not be appropriate. We

also decided against training a 2D model on a limited budget of

pre-selected 2D labels as this approach would have two serious

drawbacks. First, it would be computationally and memory-

inefficient to first split the 3D volumes into 2D scans. Second,

spatial information would be lost because if a 3D volume is only

partially annotated, a segmentation method can at least gather

spatial information about voxel intensities from the 3D scans

when it also takes the non-annotated slices into account. Instead,

we dealt with a partially annotated 3D label, which went through

the same pre-processing steps as the corresponding training

image. In other words, if the selected 2D slices were individually

fed into our model, the model would not have access to spatial

connections that exist between the slices and hence may not

recognize which structures are nearby or that the slices belonged

to the same whole brain.We have therefore made use of partially

annotated 3D scans, but ensured that the loss was calculated on

the annotated slices only.

The two main factors whose influence on segmentation

performance was investigated are label dispersion and slicing

axis. Hypothesizing which method might lead to the best overall

performance was not trivial, since some of the mediating factors

have effects in opposing directions. Some of these effects are:

• Neglecting spatial information: If a model is trained solely

on selected 2D slices within partially annotated 3D scans,

valuable information about the 3D context of the tissues

may be lost. For example, the networkmight be encouraged

to learn where a particular structure is present just with

respect to one axis, rather than including information about

the voxel intensities in the adjacent slices. Additionally, if

several slices directly adjacent to each other are missing, the

model would not be capable of utilizing information about

the surrounding tissues, which is usually readily available

in fully annotated scans. Such effects may suggest a better

performance with fully annotated brain scans.

• More diversity in the training data: If the labels are

distributed over many brain scans, a greater diversity of

individual subjects can be covered. This could lead to better

generalizability and performance.

• Unnecessary information in marginal areas of the scans:

Even after foreground cropping, the marginal areas of the

scans often contain little information, as often only a few of

the tissues are represented here. If only selected 2D slices

are annotated by brain scan, one could ensure that the

marginal areas (e.g., the outermost 10% along each axis) are

left out and thus the information density is increased. This

effect suggests better performance with partially annotated

brain scans.

Additionally, with respect to the slicing method, one could

expect that if the slices are taken from an axis that has a

significantly lower resolution than the other axes, there may

be a small performance dip. In the dHCP dataset with images

of size 217 × 290 × 290, this would be the sagittal axis. The

loss was calculated on the basis of the labeled slices only, as

detailed below.

The labeled slices were fixed for each sample and were

defined prior to the training process; Figure 4 depicts the

selection of slices in the axial axis. Following this, a mask-like

structure was created for each image, which defined the exact

parts of the image that are not annotated. Given that there

were several data augmentation steps, this was not trivial since

the masks had to go through these exact steps. To illustrate

why this is important, say an image was mirrored during data

augmentation; if the mask does not go through this exact

mirroring step as well, the wrong side of the image would

ultimately be masked. Finally, during training, the loss for each
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FIGURE 4

This figure visualizes the extraction of annotated 2D slices from

a 3D volume, where colored slices correspond to labeled data.

The approach is referred to as axial following the terminology

used in radiology. The sizes of the cuboids are true to the real

training patches.

FIGURE 5

Axial slices of T2-weighted scans of: (A) the youngest subject,

26.71 weeks post-conceptional age, vs. (B) the oldest subject,

45.14 weeks post-conceptional age in the dataset. The head

circumference of the oldest infant on the left is 36 cm,

compared to 21 cm of the youngest infant on the right.

partially annotated 3D scan was calculated based on the parts

of the image that were labeled (i.e., unmasked). Other parts of

the images were simply ignored. If this was done differently, for

example by replacing the unlabeled regions of the image with

zeros, it would have most likely introduced an element of bias

into the model. Of course, the above only applies to the training

data, and all models were tested on fully annotated 3D scans3.

3.5. Transfer learning

Transfer learning can potentially be used to alleviate the

absence of sufficient ground truth.We investigated the efficiency

3 The authors would like to emphasize that complete sets of labels

were available for all training samples when developing the pipeline, and

that labels were only artificially removed when carrying out the label

budgeting experiments.

of this approach in a series of experiments using two datasets

constructed from the publicly available dHCP release.

3.5.1. Definition of source and target

In a typical supervised machine learning scenario, one can

define the domain D = {X ,P(X)} as a set of a feature space X

and the marginal probability distribution of the training samples

X, P(X). A task T = {Y , P(y|x)} can correspondingly be defined

as a set consisting of a label space Y and an objective function

which we want to predict, usually the conditional probability

of a certain training sample belonging to a particular class.

Transfer Learning “allows the domains, tasks, and distributions

used in training and testing to be different” (Pan and Yang,

2009, p. 2). Transfer learning techniques can be classified into

different settings. The inductive approach only assumes that

the target task is different from the source task (Pan and

Yang, 2009); no assumption is made about the two domains.

The dHCP dataset is particularly well-suited for constructing

two disjoint datasets for such an inductive approach, because

a broad age spectrum is represented in it. Visual inspection

of the two extremes of the dataset—an infant at 26.71 and

at 45.14 weeks—confirms that neurophysiological differences

are striking, (see Figure 5). On the one hand, this is due to

the different stages of brain development (Makropoulos et al.,

2018a). The fact that the younger subjects of the dataset are

necessarily preterm infants, whose brains are known to differ

from those of term infants, likely plays a role as well. A source

dataset was therefore constructed from the population of older

infants, whereas the target data was composed of the youngest

individuals. Distributions of voxel intensities were assumed to

differ between these two groups, solely based on differences in

head circumference. The same applies to the target predictive

functions. Different degrees of myelination in older vs. younger

individuals and their effect on T1 signaling mean that voxel

intensities in some regions have a different meaning, depending

on their group membership. In concrete terms, this means that

the probability of a bright voxel belonging to the tissue class

“White Matter” is higher for older subjects compared to younger

ones. Feature as well as label spaces do not vary between source

and target datasets.

3.5.2. Transfer learning strategies

Taking inspiration from Yosinski et al. (2014) and Amiri

et al. (2019), six strategies to adapt a baseline model pre-

trained on a source dataset of older infant brains to the task of

segmenting preterm infant brain MRI were investigated. These

strategies differed in the degree to which they incorporated

preterm infant training data. The most extreme case was the

“No Finetuning” condition; here the pre-trained network was

directly evaluated on the preterm test data but the training

dataset remained untouched. Four degrees of finetuning were
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then examined, starting with a condition where only the

bottleneck and directly adjacent convolutional layers of the

U-net were trained, while all parameters of the outer layers

in the expanding and contracting pathways remained fixed.

Then, successively in the “Medium” and “Deep” stages, more

of the outer layers were included in the training process. In the

“Finetuning” condition, all network parameters were updated

during training. An additional model was trained exclusively on

the 40 images of the preterm infant training dataset.

3.6. Technologies used

All experiments were conducted on Nvidia Tesla T4 (16GB

RAM) graphics cards and programmed in Python 3.8.10. For the

implementation of the pipeline features, we relied on PyTorch

and MONAI4, an open-source, PyTorch-based framework for

deep learning in medical imaging. For data handling, data

analysis, and evaluation of the experiments, pandas and scitkit-

learn were also used.

4. Results

4.1. Segmentation pipeline and age
prediction

4.1.1. Segmentation pipeline

A first set of experiments was conducted to investigate the

performance of the segmentation pipeline for neonatal brain

MRI and to establish a performance baseline in segmentation

across all age groups for all further experiments. For training,

an age-representative subset consisting of 20% of the available

709 complete data units of the dHCP dataset was used,

corresponding to 142 neonatal brain scans. These data units

each consisted of skull-stripped T1- and T2-weightedMRI scans

and accompanying (pseudo ground truth) segmentation masks.

The 142 data units were again divided into 114 training and

28 validation images. An independent test set was constructed

by selecting another 100 separate scans from the total dHCP

dataset. The training data went through the pre-processing and

data augmentation steps described above. The U-Net model

was trained on the data over 60 epochs, and experiments were

repeated over four runs. Training took an average of 18.6 h.

After each epoch, the mean DSC as well as the individual DSC

values related to each of the tissue classes on the validation data

were determined. It should be noted that the validation data was

cropped to the same patch size as the training data and model

evaluation was thus carried out directly on the whole patches.

In contrast, a sliding window approach was used to evaluate the

model on the held-out test set.

4 https://monai.io

TABLE 1 Mean DSC for all nine tissue regions, averaged over four

runs, computed on both the validation set and the held-out test set.

Validation set Test set

Mean Mean DSC Mean Mean DSC

DSC (no BG) DSC (no BG)

Mean DSC 0.934± 4e− 4 0.943± 4e− 4 0.913± 3e− 3 0.917± 3e− 3

The two types of background classes, Background (outer) and Background (inner), were

excluded fromMean Dice (no BG) which is highlighted.

Table 1 shows the mean DSC values averaged over all

10 segmentation classes and over all 4 runs, including two

background classes (“Background (outer)” and “Background

(inner)”) as well as a mean DSC that only includes the

physiologically relevant tissue classes. The table includes those

metrics both for the validation dataset and the held-out test

set. The best performance achieved by a model on the test set

was 0.913 averaged over all classes and 0.917 only based on

the physiologically relevant tissues. Table 2 breaks down these

results further for the individual tissue classes. Highly accurate

results were achieved both on average and in relation to the

individual tissues classes. The DSC was at least 0.9 for the

majority of the tissue classes and was only around 0.877 for the

ventricles in the worst case. The model achieved particularly

accurate results in the segmentation of White Matter, Dark

Gray Matter, and the Brainstem. Performance seemed to reach

a plateau after 30–40 epochs and significantly earlier for most

tissue classes. See Figure 6 for a plot of the validation DSC

values over epochs, separately for each of the tissue classes.

For all tissues, a performance drop compared to the validation

data was observed. With the data available, it cannot be clearly

disentangled whether this is due to overfitting (since, in each

run, the final model was chosen as the one which performed

best on the validation data) or due to the fact that the

validation data was evaluated in patches of the same size as the

training data, while the test data was evaluated with a sliding

window approach. Variations in the mean DSC were low, which

prompted us to keep the number of repeated runs lower in the

following sets of experiments. An example segmentation of an

infant brain with an age close to the center of the overall age

distribution is provided in Figure 7, next to the corresponding

pseudo ground truth label (Figure 8).

4.1.2. Age prediction

Two questions were of interest in this set of experiments,

the first being whether the segmentation performance on

the held-out test set could be improved by adding an age

prediction pathway. The second question concerns whether the

age prediction pathway could produce accurate results on its

own. The same datasets were used as training and test sets
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FIGURE 6

Changes in validation DSC for all physiologically relevant tissues. The figure shows one particular run. The plots illustrate how a large proportion

of the learning process took place within the first 20 epochs, and how some tissue classes can reach a plateau more quickly than others.

FIGURE 7

Segmentation outputs in (A) axial, (B) coronal, and (C) sagittal views produced by the baseline pipeline, visualized on the original T1-weighted

scan of a subject with a scan age close to the medium of the distribution (38.86 weeks PMA).

as for the baseline model. The choice of a suitable learning

rate turned out to be a difficult problem: if this was chosen

in a similar fashion compared to the baseline model, the MSE

loss of the age prediction approached infinity after just a few

epochs. Significantly smaller initial learning rates helped the

age prediction to achieve better results, but slowed down the

learning process of the segmentation or stopped it from learning

completely. A medium learning rate of 10e−3 was chosen

to accommodate both parts of the network. The experiment

was repeated twice, with the model being trained over 60

epochs per run. Figure 9 shows the validation DSC values on

all physiologically relevant tissue classes, plotted over epochs.

AgeU-Net still performs reasonably well on the test set, but

worse than the baseline. If background classes are excluded,

the model achieves a DSC of 0.866. The results concerning the

age prediction looked initially tempting: At the end of the 60

epochs, the MSE loss reached a value of 2.45, corresponding

to an average deviation of 1.57 weeks. With a range of 18.43

weeks in the total data set, such an accurate prediction of age

could be useful as a by-product of a still reasonably accurate

segmentation. Unfortunately, when recording the MSE as well

as the MAE on the test set, similar results could not be

achieved. Closer inspection of the outputs revealed that most

of the predictions were in the upper range, close to the average

of the age distribution. It can thus be assumed that the age

pathway primarily learned to estimate the mean value of the age

distribution. The desired regularizing effect on the segmentation

method did not occur.

4.2. Label budgeting

Five alternative ways of distributing a limited amount of

annotated labels over training data were investigated. Four of

these alternatives belong to the high-label-dispersion condition.

They differ from each other with respect to their slicing axis,

i.e., sagittal, coronal, axial, or random. In each of these four

conditions, the proportion of selected slices per brain was 33%.
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FIGURE 8

Corresponding labels used in place of ground truth in (A) axial, (B) coronal, and (C) sagittal views for the same subject as shown in Figure 7

(38.86 weeks PMA).

FIGURE 9

Changes in validation DSC of AgeU-Net on all physiologically relevant tissues. A large proportion of the learning process took place within the

first 20 epoch, similar to the initial model.

In other words, two-thirds of the slices along the respective

axis were hidden from the model during training. To enable

a fair comparison, the number of data units in the training

dataset was tripled compared to the first set of experiments. This

was done to ensure that the models trained in the high-label-

dispersion condition saw the same total number of annotated 2D

slices; thus eliminating a potentially confounding factor of the

results. Slices were not selected from the outermost regions of

the image, since these usually do not contain much information,

as many of the tissues are not yet visible. For each of the four

conditions, a new model was trained. The basic configuration

of the pipeline remained identical to the baseline model, except

for the functionalities that directly affected label hiding and the

selection of annotated slices. The number of training epochs was

reduced to 20.

Results of those four runs, as well as those of a baseline

model after 20 epochs, are compiled in Table 3. Performance

was consistently higher when annotated slices were distributed

over a larger number of scans, provided the number of training

epochs was kept constant. Compared to the baseline model,

the drop in performance between validation and test set

was less pronounced. The high-dispersion models (random,

sagittal, coronal, and axial) hardly showed any deterioration in

performance and generalized very well to unseen data, which

could be due to a higher diversity in the training data. Related

to this, the performance on the validation set was also found

to stabilize after a much shorter period of around 13 epochs.

Notably, the performance of the model trained in the sagittal

condition, where the slices were selected along the axis with the

lowest resolution, was the worst of all models except the baseline.
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TABLE 2 DSC values for each of the eight physiologically relevant

tissue classes, averaged over four runs, computed on the validation set

and the held-out test set.

CSF cGM WM Ventr. Cereb. dGM BS Hippoc.

VAL DSC 0.925 0.943 0.961 0.907 0.950 0.960 0.961 0.903

TEST DSC 0.919 0.926 0.932 0.903 0.895 0.940 0.940 0.877

TABLE 3 Mean DSC values of the four budgeting conditions.

Validation set Test set

Mean Mean DSC Mean Mean DSC

DSC (no BG) DSC (no BG)

Random 0.913 0.913 0.910 0.914

Sagittal 0.912 0.912 0.900 0.907

Coronal 0.911 0.910 0.913 0.917

Axial 0.913 0.912 0.905 0.908

Full (20 epochs) 0.908 0.909 0.852 0.849

In the last row, the scores of the model trained on fully annotated brains (baseline)

are shown. To facilitate comparison, the scores given in this table do not reflect the

performance of the baseline model after 60 epochs (as in Table 1). Instead, the best model

on the validation set after 20 epochs was selected and again evaluated on the test set. The

highlighted column indicates test set results on the tissues excluding the background.

Even though the DSC values of the models in the “high label

dispersion” conditions were better than those of the baseline

model in a comparable setting, the number of epochs and

segmentation metrics are not the only relevant metrics to take in

consideration when evaluating the performance of a pipeline. In

practice, a possibly decisive factor when choosing a framework

is training time. The average training time of the four runs in the

high-dispersion condition was 27 h and 42 min, with a standard

deviation of 4 h and 20 min. This represents a 49% increase in

training time compared to a baseline model trained over a total

of 60 epochs, while not producing better segmentation results.

4.3. Transfer learning on preterm and
term infants

The source dataset made up of term infants was constructed

by splitting the 100 oldest subjects from the full dHCP dataset.

The mean scan age in this group was 43.70 weeks post-

conceptional age, with a standard deviation of 0.47 weeks (i.e.,

about 3 days). The oldest subject in this dataset was 45.14 weeks

at scan age (see Figure 5); the youngest was 42 weeks. For the

construction of the target dataset, the 120 youngest subjects were

selected from the full dataset. The mean age in this group was

33.19 weeks with subjects ranging from 26.71 to 35.71 weeks

post-conceptional age. Of these 120 preterm subjects, another 40

were randomly selected as the target training set. The remaining

FIGURE 10

This figure depicts the age distributions of the source data Old

and the target data Young Train. Additionally, the age distribution

of the held-out test set for the young population Young Test is

shown. We carried out a t-test which determined that

di�erences in age between Young Train and Young Test were

unlikely to be significant (t = −0.351, p = 0.7267), so the

held-out test set can be assumed to be representative of the

population.

80 scans were used as an independent test set. The training data

set was kept small to simulate the problem of missing data in

the target domain. The age distributions of all three datasets

can be found in Figure 10. It is important to note that because

of the negatively skewed age distribution of the dHCP dataset,

the range of scan ages in the target dataset was larger, possibly

making the target task more difficult.

We started out by training a baseline model on 90 brain

scans of the source dataset, i.e., the dataset of term infants, for

a maximum of 20 epochs. A small number of 10 scans was

reserved for a validation step to carry out a rough quality control.

The mean DSC after those 20 epochs was 0.897, which is in line

with previous experiments, given the fact that the size of the

training set was reduced. In the next step, six transfer learning

strategies were examined. In the “no fine-tuning” condition, the

pre-trained model was directly evaluated on the held-out test set

of preterm infants. We decided to pivot from the fine-tuning

strategies described by Amiri et al. (2019). Since the bottleneck

layer of the U-Net contains the most condensed information

about an image, we successively included more and more layers

in the training, from the inside to the outside of the U-Net,

instead of restricting to the contracting/expanding path. In the

“only bottleneck” or “shallow” condition, all weights except

those of the bottleneck and the directly adjacent layers were

fixed. In the “medium” condition, one further U-Net block of

the encoder and the decoder path was added to the training. In

the “deep” condition, two more downsampling and upsampling

blocks were added, while in the “fine-tuning” condition, all

weights were updated during training. Another baseline U-Net
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TABLE 4 This table displays the DSC values of all transfer learning

strategies examined in the experiments, for each of the eight

physiologically relevant tissue classes.

CSF cGM WM Ventr. Cereb. dGM BS Hippoc.

No tuning 0.778 0.723 0.712 0.744 0.010 0.327 0.765 0.549

Shallow 0.780 0.712 0.617 0.733 0.012 0.361 0.758 0.553

Medium 0.791 0.718 0.604 0.693 0.065 0.604 0.781 0.632

Deep 0.808 0.757 0.446 0.689 0.201 0.801 0.794 0.680

FT 0.811 0.816 0.464 0.598 0.185 0.818 0.800 0.650

New 0.791 0.689 0.201 0.671 0.463 0.739 0.700 0.339

For each class, the best performing model was marked in green. Scores below 0.5 were

marked in orange.

was trained ‘from scratch’ for a total of 30 epochs on the preterm

infant training data. Results of these experiments are compiled

in Table 4 and Figure 11, and Bonferroni-corrected p-values are

shown in Tables 5, 6.

When comparing the overall performance of the different

transfer learning strategies, we observed two main patterns.

First, strategies that included more parameters in the training

(i.e., deeper fine-tuning) were superior. Fine-tuning only the

bottleneck and adjacent layer was clearly inferior to all other

strategies, but the performance did not seem to depend linearly

on the number of parameters included in the training. For

instance, the difference between the shallow and medium fine-

tuning conditions was only the addition of twomore blocks. Yet,

in the deep fine-tuning condition, four new blocks were included

in the training. Despite this, the performance gain between

the shallow and medium conditions was even higher than that

between medium and deep fine-tuning (Figure 11). The second

pattern we observed was that including more parameters in the

training resulted in greater variability in performance.

Despite the above, our results suggest that the models did

not benefit at all from transfer learning when segmenting the

Cerebellum. In fact, the baseline model trained from scratch on

preterm infant data outperformed all other strategies on this

tissue class. However, the opposite was true for White Matter,

where the pre-trained model showed the best performance

without any further adjustments. Despite showing remarkable

differences, none of the strategies we investigated appear to

be up to the difficult task of segmenting the scans of very

preterm infants, and some tissues such as the Cerebellum and

Hippocampus were particularly hard to segment in general (see

Table 4).

In summary, the transfer learning experiments yielded three

main findings on the data we used. First, if fine-tuning is

required, the effects of increasing the number of parameters

included in the training may not be linear, and medium fine-

tuning may be enough to achieve similar results to those

obtained when fine-tuning the entire model. Second, the higher

the number of parameters to be included in the training, the

higher the variance of the results. Finally, the question of

which strategy is most effective depends on the individual tissue

classes under consideration, possibly due to specific biological

differences between preterm and term infants.

5. Discussion and future work

The first goal of this paper was to present an accurate

deep learning-based segmentation pipeline for neonatal brain

MRI. For this purpose, publicly available data from the dHCP

was used, which contains a large number of infant brain scans

over a wide age range, as well as highly accurate segmentation

labels that we used as pseudo ground truth labels. A U-

Net-based architecture was specifically tailored to this data.

Pre-processing, data augmentation, training hyperparameters,

and network topology were optimized to achieve excellent

segmentation performance on physiologically relevant tissues.

As a final result of the pipeline, sample segmentations can be

found in Figure 7. In addition, we proposed an extension to

this baseline U-Net model that enables the network to predict

age. Although the regularization effect we had hoped for did

not manifest in our experiments, the idea of an age-predicting

U-Net is an interesting approach. The problem of different

optimal learning rates for the segmentation and regression task

could possibly be solved by layer-specific learning rates in future

experiments. Alternatively, it could be investigated whether an

increasing schedule of the MSE weighting parameter α leads to

better results, i.e., by taking the MSE loss into account more

strongly at the end of the training, or by separating training for

segmentation and regression entirely.

An important step was to identify reliable ground truth

annotations that can guide the development of the segmentation

pipeline. The gold standard in medical image segmentation is

manual delineation (Gousias et al., 2012), therefore, developing

a robust deep learning-based pipeline would conventionally

require large amounts of ground truth labels to be annotated

manually by experienced annotators. We avoided this by

utilizing labels that were generated by the dHCP initiative using

an automated software pipeline (not deep learning-based), and

are publicly available as part of the Third Data Release. The

software pipeline that had generated the labels was specifically

designed for neonatal brain MRI data based on the DrawEM

framework (Makropoulos et al., 2014) and was discussed by

Makropoulos et al. (2018b). Noteworthily, the dHCP structural

data and anatomical segmentation had undergone a quality

assurance process detailed in their release notes, which identified

small areas of common segmentation inaccuracies; however, we

did not carry out manual refinements on the labels we used.

The second goal of this paper was to investigate how to

deal with a lack of sufficient ground truth labels as efficiently

as possible. Two independent approaches were pursued. The

first was the question of whether better performance could be
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FIGURE 11

re contains two plots detailing the segmentation performance, averaged over four runs each, of the transfer learning strategies presented. (A)

shows the mean DSC across all classes, while in (B) background classes are excluded. Added error bars of length “standard deviation” mark the

variability of the scores. The condition No Tuning is marked in a di�erent color to emphasize that only one run was tested.

TABLE 5 Bonferroni-corrected p-values of independent t-tests for each pair of transfer learning strategies.

Only bottleneck Medium finetuning Deep finetuning Finetuning Training from scratch

Only bottleneck ∗ 1.67e−7 2.56e−4 4.40e−3 2.23e−1

Medium finetuning ∗ ∗ 2.26e−1 5.67e−1 1.30e−2

Deep fine-tuning ∗ ∗ ∗ 1.0 7.29e−3

Finetuning ∗ ∗ ∗ ∗ 8.84e−3

Training from scratch ∗ ∗ ∗ ∗ ∗

The two background classes were not taken into account in the calculations. All tests were two-sided, with an overall alpha level of α = 0.05. Mean differences where p < 0.05 are

highlighted in green.

TABLE 6 Bonferroni-corrected p-values of independent t-tests for each pair of transfer learning strategies.

Only bottleneck Medium finetuning Deep finetuning Finetuning Training from scratch

Only bottleneck ∗ 1.04e−7 1.06e−6 4.75e−4 1.0

Medium finetuning ∗ ∗ 1.27e−4 5.26e−2 5.21e−1

Deep fine-tuning ∗ ∗ ∗ 1.0 3.33e−2

Finetuning ∗ ∗ ∗ ∗ 6.76e−2

Training from scratch ∗ ∗ ∗ ∗ ∗

All classes were taken into account in the calculations. All tests were two-sided, with an overall alpha level of α = 0.05. Mean differences where p < 0.05 are highlighted in green.

achieved through more efficient label budgeting, and our results

suggest that this may well be the case. Models trained on a larger

variety of partially annotated brains outperformed a model

trained on a smaller variety of fully annotated brains, provided

other conditions (number of epochs, number of annotated

slices seen during training) were kept constant. At the same

time, significant increases in training time call the benefits into

question. Due to time and computational constraints, we had

to limit ourselves to two conditions of “label dispersion.” With

more resources, the effect of this factor could be investigated

more systematically in future work, for instance, by examining

even more extreme cases of dispersion, where only single 2D

slices are taken per subject. Although we covered all three

possible slicing axes in our experiments, it would be interesting

to see whether the effect of poorer performance when choosing

a lower-resolution axis can be replicated with other datasets,

especially datasets where differences in axis resolutions are

more pronounced. There may be other variables that influence
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optimal label budget distribution, e.g., whether labels are

extracted from the center of the brain or fromregions where

there is a high probability of a particular tissue being present.

Our second approach to address the problem of a ground

truth bottleneck was based on transfer learning. Using two

datasets constructed from the dHCP dataset, we investigated

how a model pre-trained on older term infants could be

optimally adapted to the task of segmenting preterm infant

brain MRI. Our results confirm Yosinski et al. (2014) and

Amiri et al. (2019)’s findings that a fine-tuned model is the best

choice overall. Especially if the target dataset is small, this model

cannot be outperformed by a model trained from scratch. At

the same time, it does not seem necessary to tune all layers of

a network to achieve similar results, since performance gains

do not depend linearly on the number of parameters included

in the training process. Most importantly, however, whether a

transfer of network knowledge can succeed seems to depend

on the tissue class and the specific relation between source

and target data and might be hard to predict for a layperson.

While pre-training and fine-tuning had clear positive effects

on segmentation performance for some tissue classes, in other

cases it seemed to prime the model in an unhelpful way. Future

work could investigate whether certain heuristics about the

relationship between source/target data and the best transfer

strategy might be established. In addition to this, investigating

the utility of models pre-trained on other types of medical

images (e.g., using RadImageNet, Mei et al., 2022) may spawn

interesting future research.

A limitation to our work is that quantitative evaluation

relied solely on DSC, which is considered the de facto

evaluation metric by the medical image computing community

for segmentation tasks. Despite its widespread use in research

studies, DSC does not take into account the spatial context

within an image and can therefore be of limited utility

in clinical settings. Complementary metrics ought to be

explored in the future, namely 95th Percentile Hausdorff

Distance (HD95), which can provide a relatively robust estimate

of how well the boundaries of the structures match the

model’s output.

Finally, we would like to draw the reader’s attention to an

inherent tension between the theoretical background and our

experiments. The work of Isensee et al. (2018) calls into question

whether transfer learning can be of use at all; even if domain

and task of two datasets are very similar, properties such as the

patch size of the dataset can change the dataset fingerprint. The

optimal network topology and other pipeline parameters might

change accordingly. The nnU-Net framework makes network

architecture decisions based primarily on surface properties of

the datasets. Whether the input consists of MRI scans, X-ray

scans, or even natural images is irrelevant for the proposed

network architecture. On the other hand, properties such as

image resolution play only a minor role in the mathematical

formulation of the transfer learning problem, since they could

be resized in principle. The transfer learning task we have

investigated here satisfies the conditions of similarity both

in terms of domain content (i.e., the distribution of voxel

intensities in both the domain of the older and the domain

of the younger subjects can be assumed to be similar) and

in terms of fingerprint-relevant surface properties. A question

arises as to how the benefit of transfer learning would be weighed

if the target dataset had a completely different fingerprint.

It is quite possible that the effect of a suboptimal network

architecture would cancel out the positive effect of transfer

learning, and that an optimally configured network trained

on a very small dataset would outperform such a fine-tuned

network. Investigating this offers exciting new possibilities for

future research.
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