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Abstract. [Purpose] Fatigue alters lower extremity landing strategies and decreases the ability to attenuate im-
pact during landing. The purpose of this study was to reveal the influence of fatigue on dynamic alignment and
joint angular velocities in the lower extremities during a single leg landing. [Subjects and Methods] The 34 female
college students were randomly assigned to either the fatigue or control group. The fatigue group performed single-
leg drop vertical jumps before, and after, the fatigue protocol, which was performed using a bike ergometer. Lower
extremity kinematic data were acquired using a three-dimensional motion analysis system. The ratio of each vari-
able (%), for the pre-fatigue to post-fatigue protocols, were calculated to compare differences between each group.
[Results] Peak hip and knee flexion angular velocities increased significantly in the fatigue group compared with
the control group. Furthermore, hip flexion angular velocity increased significantly between each group at 40 mil-
liseconds after initial ground contact. [Conclusion] Fatigue reduced the ability to attenuate impact by increasing
angular velocities in the direction of hip and knee flexion during landings. These findings indicate a requirement
to evaluate movement quality over time by measuring hip and knee flexion angular velocities in landings during
fatigue conditions.
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INTRODUCTION

In sports like basketball and soccer, fatigue inevitably occurs during a game or practice session. Certain lower extremity
injuries, such as non-contact anterior cruciate ligament (ACL) injuries, have a higher risk of occurrence in the final phase
of games, e.g., between 76 and 90 min of a soccer game!™3). Altered movement patterns caused by fatigue may explain
non-contact ACL injuries, as well as other injuries that occur during sporting activities. Indeed, fatigue is one of the main
causative factors of sports injuries* 9.

In contrast, to explain its effect on the lower extremities, evidence indicates that fatigue induces malalignment of the
lower extremities and knee joints stability during sporting activities’ ). Furthermore, while athletes run in fatigue conditions,
fatigue causes an increase in impact acceleration, which is regarded as the rapid deceleration of the tibia, during landings'?).
Moreover, lower extremity angles and the ground reaction force during landings are affected by fatigue!!> 1), These findings
indicate that fatigue alters lower extremity landing strategies and the ability to attenuate impact during landing. Thus, the
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influence of fatigue during landing, an important movement, requires appropriate evaluation to consider measures to prevent
lower extremity injuries.

Researchers are interested in lower extremity kinematics during landings. Therefore, most clinicians use video analysis to
evaluate lower extremity angles and alignments at specific times!>!%). However, lower extremity injuries may cause changes
to angles and velocities over time, such as the direction change phase in sidestepping movements or the landing phase of a
jump!'® 17, 1t is also known that knee joint angular velocity variation during the landing phase is higher in females than in
males'829 and some studies have measured knee angular velocity to evaluate capacity to attenuate impact, which may be
associated with knee injury risk® %19, Accordingly, lower extremity angular velocity during landing reflects the ability to
attenuate impact because it results from rapid angular variations in the lower extremities during landing. Therefore, lower
extremity angles and angular velocities should be evaluated to identify biomechanical factors associated with lower extrem-
ity injuries.

Evidence indicates that fatigue causes changes in lower extremity kinematics, including angles and alignments during
landing® 7-®. Fatigue may also alter lower extremity angular velocities and the ability to attenuate impact during landing. In
our previous study, it has reported that fatigue might decrease the ability to attenuate impact by increasing the peak angular
velocity in the direction of knee flexion during a single-leg jump landing?"). However, no studies to date have addressed the
angular velocity variables of lower extremities, including hip and ankle joints, during fatigue conditions. Thus, the purpose
of this study was to evaluate the influence of fatigue on the lower extremity alignments and angular velocities during landing
from a single-leg drop vertical jump. The research hypothesis was that landings during fatigue condition decrease the ability
to attenuate impact in the lower extremity, i.e., angular velocities in the lower extremity would increase significantly in
landings during fatigue condition compared with non-fatigue condition.

SUBJECTS AND METHODS

Thirty-four females (age: 20.7 = 1.8 years old; height: 159.9 = 5.6 cm; weight: 52.7 £ 5.9 kg) without a history of or-
thopedic hip, knee and ankle surgery participated in this study. The dominant foot was right in 30 subjects and left in 4
subjects; dominance was determined as preferred side to kick a ball>?. All participants granted written informed consent for
participation before testing and were randomly assigned to either the fatigue group (N=17; age: 21.2 £ 2.1 years old; height:
160.5 £ 5.0 cm; weight: 52.9 = 7.1 kg) or control group (N=17; age: 20.2 + 1.4 years old; height: 159.3 £ 6.3 cm; weight:
52.6 £ 4.5 kg). This study followed the Declaration of Helsinki and was approved by the Ethics Committee at the Saitama
Medical University, Saitama, Japan (M-54).

A three-dimensional motion analysis system employing eight cameras (Vicon MX system, Vicon Motion Systems, Ox-
ford, UK) was used to record lower extremity kinematic data and the center of mass during single-leg drop vertical jumps.
Kinematic data were sampled at 240 Hz with a 16 Hz low-pass filter and a fourth-order zero lag Butterworth filter. Thirty-five
reflective markers were placed on specific anatomical landmarks according to the Plug-in-Gait full body model, whisch is
widely employed by researchers who use VICON?). Two force plates (MSA-6 Mini Amp, AMTI, MA, USA) recorded
ground reaction forces during landing, from each single-leg drop vertical jump, at a 1,200 Hz sampling rate.

All participants wore closely fitted, dark shorts to aid data collection. They performed a single-leg drop vertical jump on
their dominant foot (referred to as the “pre-trial”), which involves a first landing after dropping from a 40 cm. A single-leg
drop vertical jump consists of 1st landing after dropping down from a 40 cm box and then a second landing after a maximum
vertical jump rebounding from the drop. All participants were shown the testing sequence by assistant researchers, and
several practice trials were conducted to enable them to correctly perform the required task. Subsequent trials were repeated
until data from five successful trials were achieved; these were excluded if the person lost their balance during the landing.
After the pre-trial, all participants were required to use a bike ergometer (COMBI, Japan), with participants in the fatigue
group pedaling at 100 W per minute for 5 minutes or until they exceeded 17 (very hard) on the Borg scale?* 2. A poster
showing the Borg scale was placed in front of the bike ergometer, and level of fatigue was recorded at 30 second intervals. In
contrast, all participants in the control group pedaled a bike ergometer without load (less than 10 W per minute) for 5 minutes,
with fatigue level was verified in the same way. After using the bike ergometer, all participants repeated the second single-leg
drop vertical jump trial (referred to as the “post-trial”’) according to the pre-trial procedure.

Landing from a single-leg drop vertical jump was defined as the period from initial ground contact to takeoff during
the first landing. Two force plates were used to determine initial ground contact and takeoff, with the sampling rate set at
1,200 Hz. Initial ground contact was defined as the moment when the force plate data indicated that vertical ground reaction
force exceeded 10 N, whereas takeoff was defined as the moment when the force plate data indicated that vertical ground
reaction force was <10 N. All outcome measures were analyzed and computed as the average of three pre-trials and post-
trials. The angles and angular velocities of hip flexion, knee flexion, and ankle dorsiflexion analyzed during all first landings.
Hip flexion, knee flexion, and ankle dorsiflexion angles were calculated as positive values from filtered three-dimensional
coordinate data; these parameters were defined as angular displacements from static anatomical positions. To decrease data
fluctuation, hip flexion, as well as knee flexion, and ankle dorsiflexion angular velocities, were calculated by differentiating
respective mean angles over five frames using a moving average. Peak hip flexion, knee flexion, and ankle dorsiflexion
angles as well as angular velocities were determined from each maximum value during the first landings of the pre-trials and
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Table 1. Peak angles and angular velocities of lower extremity, and ratios of each variable in the post-trials to
those in the pre-trials

Fatigue group (N=17) Control group (N=17)
Pre-trial ® Pre-trial ®
Post-trial ® The ratio (%) ? Post-trial ® The ratio (%)?
Hip flexion
Peak angle 41.1£12.6 41.8+9.3
41.2+13.3 100.1 6.7 40.6+10.3 96.6 = 8.6
Peak angular velocity 216.7 +44.6 238.9 + 51.8
231.6+42.5 107.8 £ 9.7 * 238.4 +56.1 99.6+£9.2
Knee flexion
Peak angle 60.8£8.2 60.0+9.9
60.6 = 8.1 99.8+4.9 60.1 +£8.7 100.7 £6.2
Peak angular velocity 4192 +53.4 450.6 £ 57.6
4435+524 106.2+7.3 * 452.2+49.9 100.8 £ 6.6
Ankle dorsiflexion
Peak angle 30.1+£6.9 29.2+49
30.5+7.2 101.2+5.9 31.0+47 107.0 £ 13.5
Peak angular velocity 674.6 £22.3 7153 +£42.0
655.8 + 88.8 98.0+7.6 692.0 +142.2 97.2+9.8

aThe ratios (%) of each kinematic variable in the post-trials to those in the pre-trials were presented alongside.
bAngles and angular velocities of hip, knee flexion, and ankle dorsiflexion are shown in each (deg) and (deg/s).
*Significant difference between the ratios of fatigue and control groups (p<0.05).

post-trial. The vertical position of the center of mass was calculated from filtered 3D coordinate data during all first landings;
to decrease data fluctuation, vertical position of the center of mass was calculated by differentiating mean vertical position
of the center of mass over five frames using a moving average. Minimum vertical position and vertical velocity, which were
defined as the lowest position and peak velocity in the direction of the ground, were determined from each minimum value
during all first landings. The ratios (%) of all kinematic variables in the post-trials to those in the pre-trials were calculated.

Hip flexion, knee flexion, ankle dorsiflexion angle, and angular velocity at specific times were analyzed the moment of
the initial ground contact, 40 milliseconds after the initial ground contact, and the peak vertical ground reaction. The moment
of 40 milliseconds after the initial ground contact was chosen because some reports had shown ACL strain reached its peak
value within approximately 40 milliseconds after initial ground contact?® 27,

Data were analyzed using the SPSS software (version 19.0), and unpaired t-tests were used to compare changes in lower-
extremity kinematics and center of mass between the fatigue and control groups. A p value of <0.05 was considered to
indicate significant difference.

RESULTS

Ratios of the vertical position of the center of mass during the post-trials to each variable during the pre-trials did not
differ significantly between the fatigue group (99.5 + 2.4%; pre-trial 831.3 + 40.1 mm, post-trial 827.3 + 47.2 mm) and the
control group (100.4 + 1.4%; pre-trial 816.7 + 45.5 mm, post-trial 819.8 + 46.2 mm). Ratios of the vertical velocity of the
center of mass during the post-trials to each variable during the pre-trials did not differ between the fatigue group (100.8 +
5.5%; pre-trial 1,966.8 + 228.9 mm/s, post-trial 1,978.4 + 229.5 mm/s) and the control group (99.0 + 4.2%; pre-trial 1,969.0
+ 175.0 mm/s, post-trial 1,945.7 + 161.9 mm/s). Findings were similar for the ratios of post-trial of the vertical position and
velocity center of mass to their pre-trial counterparts.

The ratios of hip flexion, knee flexion, ankle dorsiflexion angles, and angular velocities during the post-trials to each vari-
able during the pre-trials are shown in Table 1. The ratio of hip flexion angular velocity during the post-trials to that during
the pre-trials increased significantly in the fatigue group. Furthermore, the ratio of knee flexion angular velocity during the
post-trials to that during the pre-trial also increased significantly in the fatigue group (p<0.05); however, the ratio of ankle
dorsiflexion angular velocity did not differ between groups during either set of trials. In contrast, peak hip flexion, as well as
knee flexion and ankle dorsiflexion angles did not alter after the fatigue protocol; thus, hip and knee flexion angular velocities
increased significantly in the fatigue group compared to the control group, whereas all lower extremity joint angles were
unchanged.

The ratios of hip flexion, knee flexion, ankle dorsiflexion angles, and angular velocities during the post-trials to each
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Table 2. Angles of lower extremity and ratios of each variable in the post-trials to those in the pre-trials at specific times

Fatigue group (N=17) Control group (N=17)
Pre-trial (deg) Pre-trial (deg)
Post-trial (deg) The ratio (%) ? Post-trial (deg) The ratio (%) ?

Initial ground contact

Hip flexion angle 21.7+8.4 214+64
21.0 +8.2 97.8 £ 16.1 21.0+6.7 99.2+12.2

Knee flexion angle 18.2+6.3 185+ 7.1
171 +6.0 945+ 11.8 184+74 101.0 £ 16.2

Ankle dorsiflexion angle -16.3+6.1 -151+49
-15.1+£5.8 93.5+15.2 —13.3+43 90.9 +20.1

40 ms after initial ground contact

Hip flexion angle 25.8+9.0 25.8+7.0
253+8.8 99.2+13.1 253+74 109.1 +13.4

Knee flexion angle 29.0+6.7 30171

28.1+£6.6 96.9 +5.6 29.6+74 98.6+74

Ankle dorsiflexion angle 27+£54 54+£31

3.5+£53 36.1 +£409.6 6.3+4.1 130.9 +£75.9
The moment of peak ground reaction force

Hip flexion angle 30.5+8.9 30.6+7.5
29.5+94 96.1+72 29.1 +7.7 95.3+12.0

Knee flexion angle 38.8+8.2 393+77
36.5+8.6 94.3+10.2 37.0+77 947+ 14.1

Ankle dorsiflexion angle 15.6 +4.4 16.4+5.0
14.1 £ 6.6 89.1 £29.1 15.1+5.1 94.0 £23.7

The ratios (%) of each kinematic variable in the post-trials to those in the pre-trials were presented alongside

variable during the pre-trials at the moment of initial ground contact, 40 milliseconds after the initial ground contact, and
the peak ground reaction force, are shown in Tables 2 and 3. First, results show that angles, and angular velocities of lower
extremity joints upon initial ground contact were not altered by the fatigue protocol. Second, 40 milliseconds after the initial
ground contact, the ratio of hip flexion angular velocity during the post-trials to each variable during the pre-trials increased
significantly in the fatigue group in comparison with the control group (p<0.05), whereas knee flexion and ankle dorsiflexion
angular velocities were unchanged following the fatigue protocol. Finally, at the peak vertical ground reaction force, lower
extremity joint angles and angular velocities were also unchanged following the fatigue protocol.

DISCUSSION

The purpose of this study was to reveal influences of fatigue on the lower extremity alignments, and angular velocities,
during landing from a single-leg drop vertical jump. One of the key findings of this study is that it is important to select
appropriate evaluation parameters and timing during landing for assessing effects of fatigue.

Lower extremity kinematics and ground reaction force during landings alter under fatigue conditions® % 'V, and reveal hip
or knee angles, moments, and alignments of lower extremities during landing during fatigue conditions. Moreover, modifica-
tion of these parameters by fatigue may a biomechanical factor leading to lower extremity injuries, including ACL injuries.
Although evidence indicates that fatigue alters lower extremity kinematics, and that fatigue is a risk factor for incurring
such injuries, most studies measured hip and knee angles® - 19), or moments®), during landings. However, lower extremity
injuries, including ACL injuries, may change lower extremity angles or velocities over time, including the phase of changing
direction in sidestepping, or landing from a jump. Furthermore, rapid changes in lower extremity alignment occur frequently
in many situations during sporting activities, and these findings indicate that measuring angle and angular velocity during
fatigue is useful for preventing lower extremity injuries.

The results of this study show that peak hip flexion and knee flexion angular velocities increased significantly after the
fatigue protocol, suggesting that fatigue decreased capacity to perform deceleration movements in the hip and knee joints
during landings from jumps. Other investigators have suggested that knee kinematics play an important role in attenuating
impact during running or jump landings® %% 2%); indeed, these results, indicate that fatigue may induce the knee joint to
decrease impact attenuation during landings because knee flexion angular velocity increased significantly after the fatigue

501



Table 3. Angular velocities of lower extremity and ratios of each variable in the post-trials to those in the pre-trials at spe-
cific times

Fatigue group (N=17) Control group (N=17)
Pre-trial (deg/s) Pre-trial (deg/s)
Post-trial (deg/s) The ratio (%)? Post-trial (deg/s) The ratio (%) ?

Initial ground contact

Hip flexion angular velocity 95.8+55.9 104.6 + 67.3
98.0+£54.2 99.7 +37.0 99.8 +£56.4 118.4+75.5

Knee flexion angular velocity 318.1 £ 67.6 340.6 £ 89.7

3117+ 694 979 +7.0 321.7+81.9 959+ 134
Ankle dorsiflexion angular velocity 600.4 + 136.1 672.5+139.2

589.8 + 106.4 99.2+ 6.6 642.4 +162.1 957+ 13.1

40 ms after initial ground contact

Hip flexion angular velocity 186.7 +£47.8 205.0 £62.6

201.0 +48.0 109.1+37.0 * 2059 +61.8 100.8 +8.2
Knee flexion angular velocity 408.3 £56.3 429.0 +65.3

4259 +62.1 104.4+£7.0 434.1 £57.6 101.7+£6.3
Ankle dorsiflexion angular velocity 601.9 +£102.2 600.6 = 99.5

583.9+75.1 977+175 579.3 £ 65.0 97.5+93

The moment of peak ground reaction force

Hip flexion angular velocity 207.9 +£47.2 216.9 £ 63.9

228.1 +£41.8 111.4+12.7 233.6 +£53.6 114.0 +39.6
Knee flexion angular velocity 389.8 £59.4 387.8£77.6

4277 +55.5 110.6 £ 10.7 432.0+479 115.5+27.2
Ankle dorsiflexion angular velocity 405.1 £103.0 368.2 £96.5

428.2 +78.2 108.7 +17.2 411.6 594 121.7 +50.5

aThe ratios (%) of each kinematic variable in the post-trials to those in the pre-trials were presented alongside.
*Significant difference between the ratios of fatigue and control groups (p<0.05)

protocol. Moreover, we showed that hip flexion angular velocity increased significantly during landings after the fatigue
protocol, and that fatigue might induce the hip and knee joints to decrease impact attenuation during landings. In contrast,
peak ankle dorsiflexion angular velocities did not change after the fatigue protocol; thus, on the basis of these findings,
angular velocity of knee and hip flexion during fatigue conditions should be analyzed to evaluate their capacity for impact
attenuation by the lower extremities during landings. Hip and knee angular velocities altered by fatigue may be important
parameters to measure to prevent knee injuries.

In this study, we measured hip flexion, knee flexion, and ankle dorsiflexion angles as well as angular velocities, at the mo-
ment of initial ground contact, 40 milliseconds after initial ground contact, and peak ground reaction force. The moment of
initial ground contact represents the initial phase when contraction of the lower extremity muscles occurs during the landing
phase. Furthermore, during the phase between initial ground contact and the peak ground reaction force, the ground reaction
force in the vertical direction rapidly increased from the moment of initial ground contact during landings. Subsequently, it
is likely that the ground reaction force continues to decrease until the takeoff from a vertical jump. For these reasons, fatigue
may alter lower extremity kinematics upon initial ground contact with increasing muscle contractions of the lower extremity
and the vertical ground reaction force. However, lower extremity kinematic values were unchanged by fatigue condition at
the moment of initial ground contact and peak ground reaction force.

Krosshaug et al. used video analysis to show that most ACL injuries occur approximately 25-50 milliseconds after initial
ground contact during landings'”, and Koga et al. have suggested that it is likely that the majority of ACL injuries occur
within 40 milliseconds after initial ground contact??). Indeed, other evidence shows that ACL is strained during the initial
phase of landings, approximately 40 milliseconds after initial ground contact, during landings®®27). According to the results
of this study, 40 milliseconds after initial ground contact, hip flexion angular velocity increased significantly after the fatigue
protocol, whereas other kinematics variables were unchanged. Thus, we conclude that fatigue does not affect knee kinemat-
ics, 40 milliseconds after initial ground contact, the point at which most ACL injuries are considered to occur. In contract, hip
flexion angular velocity was significantly affected by fatigue condition 40 milliseconds after initial ground contact. Evidence
indicates that increased hip flexion angle during landings is a biomechanical risk factor for ACL injuries'”. However, we
were unable to demonstrate that fatigue affect hip flexion angle or the position of the center of mass during landings, con-
sidering that hip flexion angle and the position of the center of mass did not change after fatigue in this study. Furthermore,
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ACL injuries are caused by the combined movement of lower extremity angles in the sagittal plane and their variables in the
frontal or horizontal planes, including hip adduction or knee abduction angles'>). Therefore, it may be necessary to consider
the influence of hip flexion velocity on ACL injuries by measuring knee abduction and hip adduction angles or knee external
or internal angles, or both.

This study shows that fatigue decreased the ability to attenuate impact by increasing angular velocity in the direction of
hip and knee flexion during a single-leg jump landing. Moreover, 40 milliseconds after initial ground contact, hip flexion
angular velocity increased during fatigue, whereas knee and ankle kinematics remained unchanged. These results indicate a
requirement to evaluate movement quality over time by measuring peak hip and knee flexion angular velocities during the
landing phase during fatigue conditions. In addition, it may be necessary to evaluate these parameters at each peak variable
and at specific times such as 40 milliseconds after initial ground contact during the landing phase during fatigue conditions.
These findings further suggest that measuring hip and knee angular velocity during landings might be useful for efforts to
prevent knee injuries during fatigue conditions.

The results of this study indicate that fatigue decreases the ability to attenuate impact by increasing angular velocity in
the direction of hip and knee flexion during single-leg jump landing. Furthermore, it may be necessary to evaluate knee and
hip angular velocities at their peak values and a specific time such as 40 milliseconds after initial ground contact, during the
landing phase under fatigue conditions. These findings suggest that measuring hip and knee flexion angular velocities during
fatigue conditions may serve as important evaluation parameters to prevent knee injuries, including ACL injuries.
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