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a b s t r a c t

Research on the correlation analysis between COVID-19 and air pollution has attracted increasing
attention since the COVID-19 pandemic. While many relevant issues have been widely studied,
research into ambient air pollutant concentration prediction (APCP) during COVID-19 is still in its
infancy. Most of the existing study on APCP is based on machine learning methods, which are not
suitable for APCP during COVID-19 due to the different distribution of historical observations before
and after the pandemic. Therefore, to fulfill the predictive task based on the historical observations
with a different distribution, this paper proposes an improved transfer learning model combined with
machine learning for APCP during COVID-19. Specifically, this paper employs the Gaussian mixture
method and an optimization algorithm to obtain a new source domain similar to the target domain
for further transfer learning. Then, several commonly used machine learning models are trained in
the new source domain, and these well-trained models are transferred to the target domain to obtain
APCP results. Based on the real-world dataset, the experimental results suggest that, by using the
improved machine learning methods based on transfer learning, our method can achieve the prediction
with significantly high accuracy. In terms of managerial insights, the effects of influential factors are
analyzed according to the relationship between these influential factors and prediction results, while
their importance is ranked through their average marginal contribution and partial dependence plots.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

At the beginning of 2020, the novel coronavirus pneumonia
alled COVID-19 is spreading rapidly in China. And then, it be-
omes a major global public safety and health event [1]. To effec-
ively control the epidemic, researchers have paid great attention
o the transmission and treatment methods of COVID-19 [2].
pecifically, since COVID-19 is a respiratory disease, many studies
ave focused on the correlation analysis between COVID-19 and
ir pollution, mainly including the impact of reduced human
ctivity due to COVID-19 on air quality [3] and the relationship
etween the infection with COVID-19 and air pollution [4]. While
any relevant influential issues have been widely studied, less
rogress, however, has been made in ambient air pollutant con-
entration prediction (APCP) and management strategy during
OVID-19. APCP is of great significance for social environmental
overnance and personal safety protection, and it has become a
ocal issue for academics and practitioners [5]. Especially during
he pandemic of COVID-19, accurate APCP and effective man-
gement strategy can help to guide health management and
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950-7051/© 2022 Elsevier B.V. All rights reserved.
pollutant emission control, thereby reducing the possible impact
of air pollution during COVID-19 [3]. This study is motivated by
these two streams of research – the prediction of air pollutant
concentration and management strategy – to contribute to APCP
research during COVID-19 from both predictive and managerial
perspectives. To achieve this, the study proposes an effective
model for APCP during COVID-19 to obtain accurate prediction
results and useful management implications.

The APCP refers to adopting advanced information technology
to monitor and warn air quality based on a large amount of
historical data, to achieve ‘‘prevention before disease onset’’ [6].
The commonly used methods for APCP mainly include determin-
istic methods [7], statistical methods [8], and machine learning
(ML) methods [9]. The deterministic method is a kind of simu-
lation model that considers atmospheric chemical diffusion and
transportation process. The necessary simulation process of this
method comes at cost of computational complexity and the in-
accuracy of prediction due to the lack of real historical data [10].
Statistical methods can well leverage this gap by simulating the
relationship between influential factors and prediction targets
based on historical observations. However, most statistical meth-
ods assume this relationship to be linear [9], which is inconsistent
with most practical scenarios. Many ML methods that rely on
large numbers of samples relax this linear assumption and show
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Fig. 1. The AQI of Wuhan during 20180124–20200408.
xcellent performance for APCP [11]. This type of method em-
loys the training set divided from the original data set for model
raining and then applies the well-trained model to the unlabeled
est set to obtain the results. Note that almost all ML methods rely
n the assumption that the distribution of the training set and
est set are similar. Whether ML models could achieve the desired
erformance depends largely on the amount of sample data to be
eferred to. That is, only when there are sufficient training sets
nd test sets with similar distribution can ML methods ensure
he accuracy of APCP.

When it comes to APCP during COVID-19, due to some quar-
ntine measures like city lockdowns, there are significant differ-
nces in the observed pollutant concentrations before and after
he epidemic [12]. Fig. 1 shows the distribution of AQI during
018–2020 in Wuhan, the first city in China to impose traffic
ontrol. Selected January 24, 2020 solstice April 8, 2020, is the
ime that Wuhan implements the measures of city closure, and
orresponding data of 2018 and 2019 are selected for comparison.
n Fig. 1, the overall level of AQI in 2020 is lower than that
n 2018 and 2019. More importantly, the distribution of AQI in
020 is different from those in the previous two years. In this
ase, traditional ML methods are not suitable for APCP during
OVID-19: on the one hand, historical observations over the years
hat could have been used for model training do not meet the
equirement of identical distribution; and on the other hand,
he current accumulation of identically distributed observations
vailable for the prediction task is limited, particularly in the early
tages of the COVID-19 epidemic. Therefore, it is necessary to
ropose an improved ML model to obtain results of APCP during
OVID-19.
Recent researches have started to deal with the limited re-

erred data by adopting transfer learning (TL) to obtain results
f APCP [13]. TL is a learning pattern that applies knowledge
rom related domains (called the source domain, with a large
mount of dataset with label) to the applied domain (called
he target domain, with a limited dataset even without label),
ithout requiring similar sample distribution between the two
omains [14]. For example, Ma et al. [15] proposed a method
o transfer the information of the existing air pollutant concen-
ration stations to new stations to obtain the results of APCP in
ew stations. Ma et al. [9] applied TL to transfer the information
f smaller temporal resolutions to larger temporal resolutions to
enerate high accuracy for APCP at larger temporal resolutions.
e find that these existing researches introducing the TL to APCP
ainly focus on the spatial transfer or temporal transfer while

gnoring the detailed analysis of the relationship between transfer
omains. That is, although spatial and temporal transfers are
heoretically reasonable, the lack of detailed analysis of transfer

omains may result in unconvinced transfers and may affect P

2

learning performance. Especially for APCP during COVID-19, the
target domain is entirely new and uncharted territory, and it
therefore emphasizes the detailed analysis of transfer domains to
ensure the feasibility and validity of the prediction.

In this study, we attempt to fill the above research gap by
measuring and then minimizing the difference between domains,
thereby generating accurate APCP during COVID-19 with the help
of TL. Specifically, this study first introduces the Gaussian mixture
method (GMM) and maximum mean discrepancy (MMD) to deal
with the sample distribution of the source domain and target
domain. The former is used to describe the sample distribution
of these two domains and the latter calculates the distance be-
tween domains represented by GMM. On this basis, this study
proposes an optimization algorithm to minimize the difference
between domains to obtain a new source domain that is similar
to the target domain. Then, this study employs several commonly
used ML prediction models to train the new source domain, and
these well-trained models are transferred to the target domain to
obtain prediction results. Compared to the existing ML prediction
models without TL or with other TL strategies, the experimental
results suggest that, by using the improved ML methods based
on TL, our proposed method can achieve the prediction with
significantly high accuracy. In addition to the improvement of
prediction, we also complement this study by analyzing some
influential factors to obtain management implications. Specifi-
cally, this study employs two effective feature analysis methods,
i.e., SHapley Additive exPlanations (SHAP) and partial dependence
plot (PDP), to explain the relationship between influential factors
and results.

The rest of the study is organized as follows: Section 2 re-
views the related works. Section 3 proposes the methodology
framework. Section 4 develops experimental analysis. Section 5
discusses some result interpretations and managerial insights.
Finally, Section 6 concludes this study.

2. Related works

Some basic methods that will be used in the followings are
introduced in this section, including TL for knowledge transfor-
mation, GMM for domain description, and two feature analysis
methods, SHAP and PDP, for result interpretation.

2.1. Transfer learning

Given a labeled source domain Ds = {xi, yi}ni=1 and an unla-
beled target domain Dt =

{
xj
}n+m
j=n+1 or a labeled target domain

with relatively little data Dt =
{
xj, yj

}n+m
j=n+1, data distribution of

these two domains, P (xs) and P (xt), are different, i.e., P (xs) ̸=
(xt). The TL is used to find the similarities between these two
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omains, thereby achieving the knowledge transferring from the
ource domain to the target domain to learn the labels [16]. Ac-
ording to the classification of learning methods, the existing TL
ethod can be categorized into instance-based TL, feature-based
L, parameter-based TL, and relation-based TL [17,18].
Instance-based TL focuses on how to select instances from

he source domain that are useful for training in the target do-
ain [19]. This type of TL is based on the precondition that

here is a similar distribution between source and target do-
ains. Then it can achieve the knowledge transformation by

e-weighting samples in the source domain and applying the
vailable information to the target domain. For example, Kim
nd Lee [20] proposed a new domain adversarial neural network,
hich can modify the original source domain data and convert

t into an auxiliary target domain. By incorporating the attention
echanism into TL, He et al. [21] employed the source domain

o create samples for the training of the target domain. Chen
t al. [22] adopted the weight updating scheme to obtain valuable
amples from the source domain, thereby reducing the effort on
he source domain. In our study, the source domain refers to the
bservations of ambient air pollutant concentration before the
OVID-19 epidemic and the target domain refers to the obser-
ations during COVID-19. Although there are sample distribution
ifferences between these two domains, they are all time series
ata related to pollutant emissions. Therefore, the instance-based
L is suitable for the prediction task of this study and we will
ollow the instance-based transfer strategy to carry out APCP
uring the COVID-19 epidemic.
Feature-based TL focuses on how to find the common

eature representation between the source domain and target
omain, and then employs these features for knowledge trans-
ormation [23]. The feature-based TL emphasizes effective fea-
ure analysis like feature selection, mapping, and encoding. This
ype of TL method generally includes symmetric and asymmetric
eature transformation [24]. The former aims to find valuable
eatures across domains, and the latter reduces the domain dif-
erence by transforming the features of the source domain into
he target domain. The commonly used transfer component anal-
sis (TCA) is based on symmetric feature transformation, which
an discover the representations of cross-domain features by
inimizing the differences between marginal distributions [25].
arameter-based TL assumes that the source domain and target
omain share some model parameters or have the same prior
istribution. This type of method aims to find these same model
arameters or prior distributions to achieve knowledge transfor-
ation [26]. For example, the single-model knowledge transfer

earns both the knowledge of the target domain and the transfer
nowledge in the parameters of the pre-trained model to achieve
he prediction task of the target domain [24]. Relation-based TL
ssumes that if two domains are similar, they will share a similar
elationship. Specifically, this method uses the source domain to
earn the logical relation network and then applies it to the target
omain to achieve knowledge transformation [27]. However, this
ype of TL method is limited in practice because it involves the
omplex relational map between source and target domains.
By comparing different types of TL methods, this paper chooses

he instance-based TL to obtain results of APCP during COVID-
9. Considering that the existing TL methods for APCP have
gnored the detailed domain analysis and comparison, this paper
ntroduces a distribution description method, GMM, to obtain
he distribution of each domain for further domain analysis and
nowledge transformation. A detailed introduction to GMM is
hown in the following subsection.
3

2.2. Gaussian mixture model

The TL method aims to reduce the distribution discrepancy
between domains, and it mainly relies on the description of
domains with appropriate distributions. For example, the distri-
bution of atmospheric pollutant concentrations is uncertain and
may change at any time, and it is therefore impossible to directly
measure the difference between sample distributions. GMM is a
popular method to explore the distribution structure of samples,
which adopts Gaussian distribution to quantify the sample and
decompose the sample into several Gaussian sub-models [28].
The domain distribution quantified by GMM can well support
the discrepancy calculation between samples, and as a result,
it provides a basis for distribution description and knowledge
transfer procedure [29]. GMM has been widely used in TL re-
search due to its excellent capabilities for sample distribution
analysis [30]. In this study, we utilize this method to obtain
the distribution description of historical observation. Specifically,
GMM is a simple extension of the Gaussian distribution, which
can be regarded as a mixed model composed of K Gaussian sub-
distributions (namely, hidden variables). The distribution of GMM
can be represented as:

F (x) =

K∑
k=1

αkφ (x |θk ) , (1)

where αk is the probability that the observation data belongs to
the kth sub-distribution, αk ≥ 0 and

∑K
k=1 αk = 1. φ (x |θk ) is the

Gaussian distribution density function of the kth sub-distribution.
And θk = (µk, Σk), where µk, Σk represent the mean and covari-
ance matrix of the sample in the kth sub-distribution. K , αk, µk
and Σk are the parameters needed to be solved. The expectation
maximization (EM) algorithm is the commonly used method for
parameter training of GMM [31]. This is an iterative algorithm
for estimating the maximum likelihood of the parameters of
a probability model with hidden variables. Steps for updating
parameters of GMM through EM iteration are as follows:
Step 1: Initialize the parameters.
Step 2: Calculate the probability of data j belongs to sub-
distribution k, which is represented as rjk and calculated by:

rjk =
αkφ

(
xj |θk

)∑K
k=1 αkφ

(
xj |θk

) , j = 1, 2, . . . ,N; k = 1, 2, . . . , K (2)

Step 3: Calculate the model parameters for the new iteration.

µk =

∑N
j

(
rjkxj

)∑N
j rjk

, k = 1, 2, . . . , K , (3)

Σk =

∑N
j rjk

(
xj − µk

) (
xj − µk

)T∑N
j rjk

, k = 1, 2, . . . , K , (4)

αk =

∑N
j=1 rjk
N

, k = 1, 2, . . . , K . (5)

Step 4: Repeat the above two steps until convergence. Thus, we
can obtain the parameters of GMM.

After obtaining the domain distribution by GMM, we further
focus on the distribution difference between domains. Commonly
used distribution discrepancy measure methods include correla-
tion alignment (CORAL) [32] and MMD [33]. The former realizes
deep domain adaptation of knowledge by reducing the differ-
ence of covariance matrix between two domains. The latter is a
popular unsupervised pattern recognition method, which can cal-
culate the distribution difference between domains by matching
appropriate feature representation and kernels [34]. Comparing
these two methods, we find that MMD is more compatible with
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he domain distributions represented by GMM. In addition, the
istance calculation of MMD can support parameter optimization
o minimize the difference between domains. Hence, we employ
MD to determine the difference between the two distributions.

.3. Shapley additive explanations and partial dependence plot

This subsection introduces two types of feature analysis meth-
ds to analyze the impact of influential factors on final results,
hich are helpful to reveal some valuable management implica-
ions. First, SHAP is used to rank the Shapley values of features,
amely the average marginal contribution of features, to obtain
he importance of variables [35], which can be represented by:

i = ybase + g (xi1) + g (xi2) + · · · + g (xik) , (6)

where yi represents the prediction result and ybase represents the
baseline for the prediction model (usually the mean of the target
variables for all samples). xi represents the ith sample, and xij
represents the jth feature of the ith sample. g

(
xij

)
represents the

SHAP value of xij, that is, g (xi1) is the contribution value of the
first feature to the final results yi in the ith sample. g (xi1) > 0
indicates that this feature shows a positive effect and g (xi1) <
0 represents the negative feature. That is, the results of SHAP
generate both feature importance and the polarity of influence,
positive or negative [36].

Second, PDP is another type of feature analysis method to
further show how features affect the prediction results. That is,
different from other feature importance analysis methods, which
only focus on the feature importance or the polarity of influence,
PDP can show the detailed influence of features on the prediction.
This method can help to show how the prediction results vary
with the changing of features by capturing the marginal effect
of features [37]. Specifically, we can observe the relationship
between prediction target and input features, such as whether
it is linear, monotonic, or more complex. In addition to obtaining
the relationship between the prediction target and input features,
the PDP can also be adopted to analyze the relationships between
different features.

3. Methodology framework

3.1. Domain distribution comparison

Considering that the distribution of domains greatly influences
knowledge transfer, we first explore the distribution comparison
of the source domain and target domain. Despite the simple
comparison of distribution in Fig. 1, this study employs a useful
tool, the Q–Q plot, to show the specific distribution comparison
between domains. This plot takes the percentile of each value in
the sample data set as the abscissa value, and the percentile of the
value in the reference data set as the vertical axis. It employs a 45-
degree reference line to visualize distribution differences: if two
sample sets come from a population with the same distribution,
the sample points should fall near this reference line; on the
contrary, the greater the departure from this reference line, the
greater the evidence for the conclusion that the two data sets are
distributed differently.

This study takes one of the important pollutant indicators,
AQI, as an example to show the Q-Q plot in the source domain
and target domain, as illustrated in Fig. 2. In this study, the
source domain refers to the pollutant observation before the
COVID-19 epidemic and the data span is from January 1, 2018,
to January 23, 2020. The target domain refers to the pollutant
observation during the COVID-19 epidemic and the selected data
span is from January 24, 2020, to July 31, 2020. Detailed data
introduction is in the following Section 4.1. In Fig. 2, we observe
4

Fig. 2. The Q-Q plot of AQI in the source domain and target domain.

that both the distribution of points and the red line fitted by
points deviate significantly from the blue reference line. We also
obtain the p-value of the Kolmogorov–Smirnov test, which is
a popular method to test whether a group of samples comes
from a probability distribution or compare the distribution of the
two groups of samples [38]. In this study, the obtained result
of the Kolmogorov–Smirnov test is 3.66e−15. In the case of
a confidence level of 5%, this result indicates that there is no
sufficient reason to explain that the two datasets are subject to
the same distribution, which also verifies the results shown in
the Q-Q plot. That is, there are distribution differences between
these two kinds of domains, and as a result, the traditional ML
methods are not suitable for the prediction task. Therefore, this
paper introduces an improved TL method combining the analysis
of data distribution to achieve the prediction.

3.2. The improved TL prediction model based on GMM

3.2.1. The improved GMM for domain analysis
Facing the significant distribution difference between source

and target domains, this study employs the GMM method to
determine distributions of source and target domains. According
to Eq. (1), the distribution of the source domain represented by
GMM is:

Ps (xs |θs ) =

sK∑
sk=1

αskφsk

(
xs

⏐⏐θsk )
. (7)

Let Ssk
(
αsk

)
= αskφs

(
xs

⏐⏐θsk )
, the Gaussian distribution of the

above sub-models can be represented as Ps =
{
Ssk

(
αsk

)⏐⏐⏐φsk ∈ Ssk , αsk ≥ 0, sk = 1, 2, . . . ,#φsk ,
∑#φsk

sk αsk = 1
}
, and Ps (αs

=
{
Ss1

(
αs1

)
, Ss2

(
αs2

)
, . . . , Ssk

(
αsk

)}
where Ssk

(
αsk

)
is φsk

(
xs

⏐⏐θsk )
related to the weight αsk , and #φsk represents the number of
Gaussian distribution terms in φs (αs). All the notations below
have the same meaning. In the same way, the target domain can
be represented as:

Pt (xt |θt ) =

tK∑
tk=1

αtkφtk

(
xt

⏐⏐θtk )
. (8)

Then Gaussian distribution of the above sub-models can be repre-
sented as Pt =

{
Stk

(
αtk

) ⏐⏐φtk ∈ Stk , αtk ≥ 0, tk = 1, 2, . . . ,#φtk ,∑#φtk
tk αtk = 1

}
, and Pt =

{
St1

(
αt1

)
, St2

(
αt2

)
, . . . , Stk

(
αtk

)}
.

We further solve the parameters involved in the above GMM.
As for the parameters s and t , i.e., the number of clusters
K K
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n GMM, this paper employs the Bayesian information criterion
BIC) to obtain the optimal values. BIC is a parameter selection
ethod based on Bayesian considerations, which can effectively
revent excessive complexity by introducing penalty terms [39].
he smaller the value of BIC, the better the performance. And the
emaining parameters of GMM can be obtained by Eqs. (2)–(5).
fter obtaining the source domain and target domain represented
y GMM, this study calculates the similarity between these do-
ains to generate a new source domain P̂s that is similar to the

arget domain Pt . This study employs MMD for the calculation,
nd the result D |Ps − Pt | is:

|Ps − Pt |

= MMD (Ps, Pt) =

1
n

n∑
sk=1

Ssk
(
αsk

)
−

1
m

m∑
tk=1

Stk
(
αtk

)
2

H

, (9)

where the subscript H represents that this distance is measured
by S() mapping the data to the regenerated Hilbert space. Given
the distribution difference between the two domains, a new
source domain P̂s can be obtained by adjusting the value of αsk
through the following optimization solution:

opt.MinD |Ps − Pt |

st.
{

αsk ∈ [0, 1]∑
αsk = 1

. (10)

By calculating the optimized weights of the sub-distributions
in the source domain, a new source domain P̂s similar to the
target domain can be obtained. After that, this paper selects and
pre-trains some base models in P̂s, and then transfers them to the
target domain to obtain the results of APCP during COVID-19. The
architecture of the improved GMM in the study can be concluded
as:

First, given the source domain and target domain of the data
set to be analyzed, we employ the GMM to obtain the sample
distribution of these two domains. Specifically, this study uses the
BIC method to obtain the initial number of clusters, i.e., parame-
ters sK and tK , and uses the EM method in Section 2.2 to optimize
the remaining parameters of GMM, i.e., α, µ, and Σ .

Second, after obtaining the source domain and target domain
represented by GMM, i.e., Ps and Pt , this study employs the opti-
mization method based on MMD in Eqs. (9) and (10) to calculate
and minimize the discrepancy between the two domains. Then,
we can obtain the optimized parameter α̂S of sub-models in the
source domain to generate the new source domain P̂s with the
highest similarity to the target domain.

3.2.2. The TL prediction framework based on the improved GMM
To verify the robustness of the improved TL method, this study

selects different types of ML methods to achieve the prediction.
Given the continuous prediction setting in this study, we choose
five widely used ML regression prediction methods, including lin-
ear regression (LR), Bayesian ridge regression (BR), LASSO regres-
sion, elastic net regression (ENR), and gradient boosting regres-
sion (GBR). LR is the basic regression algorithm based on linear
analysis [40]. BR is a ridge-based and Bayesian-based method,
which can impose penalties on the size of coefficients to solve
some problems with least squares and also has stronger ro-
bustness to deal with uncertain problems [41]. LASSO regres-
sion is an extension of ordinary regression, which can effectively
avoid overfitting by adding an L1 regularization term [42]. ENR
is a regression model based on network structure combining
L1 regularization (LASSO) and L2 regularization (BR) [43]. GBR
is a regression model based on an integration structure and it
achieves learning from its mistakes [44]. This model integrates
a bunch of poor learning algorithms to learn, so in theory, the
5

results of GBR will be better than those of any other single model.
The selected ML methods include general linear regression and
its popular variants, regression based on network structure and
model integration, basically covering the types of commonly used
ML methods. Given the selected ML regression models, the struc-
ture of the proposed methodology is shown in Fig. 3. Detailed
introduction of each step is as follows:

Step 1: Obtain the sample distribution of the source domain
and target domain by GMM. The BIC method and the EM method
are adopted to optimize the parameters of GMM. Thus, we can
obtain the distribution of the source domain Ps and target domain
Pt represented by GMM.

Step 2: Compare the similarity of two domains and optimize
parameters to obtain the new source domain similar to the target
domain. The optimization method based on MMD in Eqs. (9)
and (10) is adopted to calculate and minimize the discrepancy
between the two domains, thereby obtaining the new source
domain P̂s with the highest similarity to the target domain.

Step 3: Train the selected base models in the optimized source
omain P̂s. The selected five ML regression prediction models,
ncluding LR, BR, LASSO, ENR, and GBR, are used as base models
nd trained in the new source domain.
Step 4: Apply the well-trained models to the target domain

nd obtain predictive results. The well-trained models in the
ptimized domain P̂s are transferred to the target domain Pt to
btain the final prediction results.

. Experiments

.1. Data collection

This paper collects monitor data for two years and seven
onths (ranging from 2018.01.01 to 2020.07.31) from the mon-

toring station in Wuhan, China. Websites for the monitor data
ollection include China National Environmental Monitoring Cen-
re (CNEMC) (http://www.cnemc.cn) and National Climatic Data
enter (NCDC). The collected data includes the concentration of
ain ambient air pollutants and some meteorological variables,
hich are commonly used variables in existing APCP studies. The
ollected ambient air pollutants/indicators include AQI, PM2.5,
M10, SO2, NO2, O3, and CO. These pollutants/indicators are the
ey factors used by monitoring stations to report air quality and
re also the main reference information used in many existing
tudies on air pollutants. All the mentioned indicators in addition
o AQI are measured by real-time concentration and 24-h moving
ean (variables related to O3 include the real-time concentration,
-h moving mean, 24-h moving mean, and the 24-h maximum
f the 8-h sliding mean). The collected meteorological variables
nclude some factors related to atmospheric pollutant concentra-
ions such as temperature, relative humidity, windspeed, wind
irection, air pressure, air pressure trend, and amount of precipi-
ation. To simplify the data without losing important information,
e collect data at three-h intervals starting from 2:00 every
ay. And the missing values can be filled by crawling data from
djacent monitoring sites at the same time. A detailed description
f the collected data is shown in Table 1.
In this paper, AQI is taken as an example to carry out the

rediction. That is, AQI is the dependent variable to be predicted,
nd other variables in Table 1 are independent variables. Note
hat AQI data is a kind of time series, the lagged AQI can also be
pplied as input variables in the prediction model. Considering
hat most AQI predictions are 3–10 days, we take the commonly
sed 7 days as the prediction cycle and select the AQI value
t the same time 7 days earlier as the additional feature input.
n this way, we obtain 7544 pieces of data from 2018.01.01 to
020.07.31 and 22 features for the prediction task.

http://www.cnemc.cn/
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Fig. 3. The structure of the proposed method.
Table 1
A detailed description of the collected data for APCP.
Variable Description Major source

AQI Data that can provide a quantitative
description of air quality

/

PM2.5, PM2.5_24h Real-time concentration and 24 h
moving mean of PM2.5

Vehicle emissions, industrial kilns, road
and construction dust, straw burning,
civil combustion, and so on.

PM10, PM10_24h Real-time concentration and 24 h
moving mean of PM10

SO2, SO2_24h Real-time concentration and 24 h
moving mean of SO2

The burning of coal, such as coal-fired
power plants, and production processes
such as non-ferrous metal smelting and
sulphuric acid plants.

NO2, NO2_24h Real-time concentration and 24 h
moving mean of NO2

The burning of fossil fuels, including
industrial sources such as thermal
power generation and motor vehicle
exhaust emissions.

O3, O3_8h, O3_24h, O3_8h_24h Real-time concentration, 8 h moving
mean, 24 h moving mean, and the 24 h
maximum of the 8 h sliding mean of O3

Motor vehicle exhaust and chemical
production.

CO, CO_24h Real-time concentration and 24 h
moving mean of CO

Exhaust gas from motor vehicles, steel
making, stoves for civil use, and
incineration of solid waste.

Temperature Real-time observation of temperature /
Relative humidity Real-time observation of relative

humidity
/

Windspeed Real-time observation of windspeed /
Wind direction Real-time observation of wind direction /
Air pressure (meteorological station) Real-time observation of air pressure in

the meteorological station
/

Air pressure trend The change in atmospheric pressure in
the three hours before observation

/

Amount of precipitation Real-time observation of the amount of
precipitation

/

4.2. Prediction evaluation method and experiment setting

Given the collected dataset, this paper employs some com-
only used methods to evaluate prediction performance, in-
luding mean square error (MSE), mean absolute error (MAE),
xplained variance score (EVS), and R2_score. The calculation of
6

MSE is:

MSE =
1
N

N∑
i=1

(Ai − Fi)2 , (11)

where N represents the number of samples. Ai and Fi represent
the actual value and prediction value, respectively. The smaller
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he value of MSE, the better the fitting effect. MAE is another
valuation method by calculating the average of absolute error
etween the actual value and prediction value, and the function
f MAE is:

AE =
1
N

N∑
i=1

|Ai − Fi| . (12)

The MAE is commonly used to assess the closeness of the
redicted results to the actual value, and the smaller the value,
he better the fitting effect. EVS is used to explain the variance
cores of regression models, and the value of EVS is [0, 1]. The
closer the value of EVS is to 1, the more independent variables can
explain variance changes of dependent variables. And the smaller
the value, the worse the effect. R2_score refers to the judgment
coefficient, which is also the variance score of the regression
model. Its value range is [0, 1], and the larger the R2_score, the
more independent variables can explain the variance change of
dependent variables and vice versa.

We then introduce the experimental settings of this study.
All experiments involved in this study are based on Python 3.7.
The source codes of the main experiment in this study can refer
to https://github.com/chenny1996/APCP-based-on-TL. To satisfy
the predictive requirements, the proposed APCP model requires
prospective validation, that is, the test set should be isolated from
model tuning and forward in time. In this study, we divide the
data set in Section 4.1 into a training set containing data from the
first 25 months (i.e., source domain, 2018.01.01 to 2020.01.23)
and a test set containing data from the last 6 months (i.e., target
domain, 2020.01.24 to 2020.07.31). We first employ GMM to deal
with the original domains and then obtain the new source domain
by the proposed optimized model. Note that all the mentioned
analysis of domain distribution in this study only contains the
22 input features without the predicted target AQI. Then this
study trains the selected ML prediction models on the new source
domain with these input features. Models estimated from the
new source domain are then applied to the target domain for AQI
prediction during the COVID-19 epidemic. All samples for training
are normalized by the minimum–maximummethod to ensure the
comparable performance of different models.

Like other ML methods, the selected prediction models except
LR have hyperparameters that need to be determined during
model training, such as the penalty value in LASSO and the
maximum depth in GBR. This study determines the optimal hy-
perparameters for each model by using grid search and 5-fold
cross-validation. Then we train the selected models on the target
domain and evaluate the prediction performance using the four
aforementioned methods: MSE, MAE, EVS, and R2_score. To verify
the validity of the proposed model and statistically compare
different models, this study employs the n-out-of-n bootstrap
sample based on the source domain to evaluate each model (in-
cluding the proposed method and comparison models) 30 times.
The n-out-of-n bootstrap is an emerging method for deriving test
statistics under large samples [45,46], and the comparison results
with statistical significance can be obtained by combining this
method with paired t-tests. The calculation of paired t-tests of
n-out-of-n bootstrap is as follows:

Suppose that to compare the predictive performance of model
A and model B, N is the number of n-out-of-n bootstrap subsets,
A

=
[
PA
1 , PA

2 , . . . , PA
N

]
and PB

=
[
PB
1 , P

B
2 , . . . , P

B
N

]
are the obtained

rediction performance of model A and model B on all subsets.
i =

(
PA
i − PB

i

)
represents the performance difference between

odel A and model B on the ith bootstrap subset. The paired t-
est calculates the following t statistic for the null hypothesis that
he mean difference P =

1
N

∑N
i=1 Pi is equal to zero:

t =
P ∗

√
N√∑N

i=1(Pi−P)
2

(13)
N−1

7

Fig. 4. BIC score of the source domain.

Fig. 5. BIC score of the target domain.

4.3. Results analysis

This study introduces the improved TL prediction model to
obtain the results of APCP during COVID-19. We first obtain the
sample distribution of the source domain and target domain by
GMM. By employing the BIC method, we can obtain the number
of clusters in GMM for the source domain and target domain, as
shown in Fig. 4 and Fig. 5, respectively. The color-coded boxes
in these two figures represent different covariances in GMM. The
bar charts marked with * represent the best selection for each
domain. We find that the optimal number of clustering of these
two domains is 5, and the full covariance performs better.

The remaining parameters of GMM, i.e., parameters of sub-
distributions and corresponding weights, can be obtained by EM
optimization. Then we can obtain the sample distribution of
the source domain and target domain represented by GMM. To
visualize the obtained distribution of these samples, we select
the first two variables, PM2.5 and PM2.5_24 h, as coordinates to
visualize the clustering results of the predicted target AQI. The
clustering result of AQI in the source domain is shown in Fig. 6.
Due to the partial overlap of the sample distribution, the 3D graph
in Fig. 6 still cannot show the results of each cluster. Five clusters
of the source domain are separately shown in Figs. A.1 to A.5. The
clustering result of AQI in the target domain by GMM is shown in
Fig. 7, and separate visualizations are shown in Figs. A.6 to A.10,
respectively. To clearly show the data distribution, the men-
tioned graphs are based on unnormalized data, and the following
predictions are based on normalized data to compare different
models.

Within the obtained sample distribution of the source domain
and target domain, we then compare the similarity of these
two domains and obtain the new source domain similar to the
target domain by Eqs. (9) and (10). And finally, training selected
base models in Section 3.2.2 in the adjusted source domain and

applying the well-trained model to the target domain. The results

https://github.com/chenny1996/APCP-based-on-TL
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Table 2
Results of APCP during COVID-19 based on the proposed methods.
Model MSE MAE EVS R2_score

TL_LR 0.000011 (2.14E−06) 0.002495 (0.000222) 0.965566 (0.006902) 0.958681 (0.010624)
TL_BR 0.000011 (2.14E−06) 0.002495 (0.000222) 0.965561 (0.006901) 0.958684 (0.010625)
TL_LASSO 0.000011 (2.14E−06) 0.002486 (0.000217) 0.965728 (0.006863) 0.958965 (0.010472)
TL_ENR 0.000014 (2.93E−06) 0.002813 (0.000267) 0.954922 (0.008805) 0.947358 (0.012886)
TL_GBR 0.000008 (4.16E−06) 0.001819 (0.000226) 0.971073 (0.009294) 0.970890 (0.009247)

Note: The numbers in bold represent the best, and the standard deviations of the 30 samples of the Bootstrap test set are in
parentheses.
Fig. 6. The clustering result of the source domain obtained by GMM.

Fig. 7. The clustering result of the target domain obtained by GMM.

obtained by the proposed TL-based ML models are shown in
Table 2. The numbers in bold represent the best, and the standard
deviations of the 30 samples of the bootstrap test set are in
parentheses, the same as below. In these prediction models, we
observe that the prediction errors of all models are small and EVS
and R2_score are close to 1, which verifies the effectiveness of the
proposed model. Further analysis of the table reveals that LR and
its variants, BR and LASSO, show little difference in results, while
ENR generates the worst results. Among them, the GBR model
performs the best, which can be attributed to the effect of model
integration in GBR.
8

4.4. Comparison analysis

4.4.1. Comparison analysis with models without considering TL
To verify the effects of the improved TL model, we compare

the prediction results by using corresponding ML methods with-
out TL, as shown in Table 3. Comparing Table 2 with Table 3,
we find that the prediction performance of almost all models
combined with the improved TL is significantly better than that
without TL. The only outlier is that EVS and R2_score of GBR
without considering TL are better than that of GBR considering
TL. This may be because GBR integrates multiple models, and
these two evaluation measures based on variance scores are
accordingly biased. From the comprehensive consideration of
other models and evaluation measures, we can still conclude that
the prediction performance of the proposed model is better than
that without considering TL. Further analysis of the comparison
finds that although the performance improvement after consid-
ering TL is not great in absolute values (this is mainly due to
the normalization of the data in our experiments), the relative
improvement in prediction performance is considerable. Taking
the evaluation method MSE as an example, after combining the
optimized TL, the MSEs of the five ML prediction models have
decreased 93.125% (= (0.00016 − 0.000011) /0.00016), 93.125%
(= (0.00016 − 0.000011) /0.00016), 93.125% (= (0.00016−
0.000011) /0.00016), 91.083% (= (0.000157 − 0.000014) /
0.000157), 70.370% (= (0.000027 − 0.000008) /0.000027), re-
spectively. These results can well verify the effective performance
of the proposed model for APCP than models without considering
TL.

4.4.2. Comparison analysis with different TL methods
This subsection adopts three other TL methods, TCA, CORAL,

and balanced distribution adaptation (BDA) for comparative anal-
ysis. TCA is a commonly used marginal distribution adaptation
method, the goal of which is to reduce the distance between the
marginal probability distribution of the source domain and target
domain [25]. CORAL is a statistical feature alignment method,
which learns a second-order feature transformation so that the
feature distance between the source domain and the target do-
main can be minimized [47]. BDA is an adaptive method that can
leverage the importance of the marginal and conditional distri-
bution differences [48]. While other TL methods can be used for
comparison, we believe that the selected TL methods represent
different types of knowledge transfer and are all classical meth-
ods, making them ideal choices for comparative analysis. With the
same training/test data in Section 4.3, we obtain the prediction
results of comparison models, as shown in Tables 4 to 8. Each ta-
ble represents the prediction results of different TL methods with
corresponding ML models. Note that due to the long computation
time of the TCA model, we did not train this model in the 30
bootstrap samples, and as a result, the standard deviation of this
model is not shown in Tables 4–8.

From these tables, we observe that results obtained by the
proposed model are better than those of comparison models, and
the performance improvement is significant. Note that EVS and
R2_score of CORAL_GBR in Table 8 are better than the proposed
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Table 3
Results of APCP during COVID-19 based on the selected ML models.
Model MSE MAE EVS R2_score

LR 0.00016 (8.02E−06) 0.009636 (0.000298) 0.935432 (0.002511) 0.924365 (0.003784)
BR 0.00016 (7.90E−06) 0.009633 (0.000298) 0.935483 (0.002500) 0.924421 (0.003777)
LASSO 0.00016 (8.01E−06) 0.009636 (0.000296) 0.935496 (0.002493) 0.924431 (0.003766)
ENR 0.000157 (7.51E−06) 0.009563 (0.000292) 0.936759 (0.002197) 0.925801 (0.003578)
GBR 0.000027 (1.75E−06) 0.004187 (0.000119) 0.987268 (0.000844) 0.987134 (0.000804)

Note: The numbers in bold represent the best, and the standard deviations of the 30 samples of the Bootstrap test set are in
parentheses.
Table 4
Comparison results of different TL with LR.
Model MSE MAE EVS R2_score

TL_LR 0.000011 (2.14E−06) 0.002495 (0.000222) 0.965566 (0.006902) 0.958681 (0.010624)
CORAL_LR 0.000170 (8.8E−06) 0.010005 (0.000322) 0.934656 (0.002567) 0.919831 (0.004135)
BDA_LR 0.000248 (1.26E−05) 0.011916 (0.000321) 0.884492 (0.006344) 0.882716 (0.005937)
TCA_LR 0.001968 0.036357 0.575567 0.069892

Note: The numbers in bold represent the best, and the standard deviations of the 30 samples of the Bootstrap test set are in
parentheses.
Table 5
Comparison results of different TL with BR.
Model MSE MAE EVS R2_score

TL_BR 0.000011 (2.14E−06) 0.002495 (0.000222) 0.965561 (0.006901) 0.958684 (0.010625)
CORAL_BR 0.000169 (8.74E−06) 0.010002 (0.000322) 0.934707 (0.002557) 0.919886 (0.004129)
BDA_BR 0.000248 (1.15E−05) 0.011914 (0.000282) 0.884634 (0.005841) 0.882762 (0.005431)
TCA_BR 0.001972 0.036427 0.576784 0.067614

Note: The numbers in bold represent the best, and the standard deviations of the 30 samples of the Bootstrap test set are in
parentheses.
Table 6
Comparison results of different TL with LASSO.
Model MSE MAE EVS R2_score

TL_LASSO 0.000011 (2.141E−06) 0.002486 (0.000217) 0.965728 (0.006863) 0.958965 (0.010472)
CORAL_LASSO 0.000170 (8.798E−06) 0.010006 (0.000322) 0.934654 (0.002569) 0.919826 (0.004137)
BDA_LASSO 0.000246 (1.230E−05) 0.011877 (0.000310) 0.886712 (0.006222) 0.883636 (0.005780)
TCA_LASSO 0.002993 0.046991 0.511742 −0.414699

Note: The numbers in bold represent the best, and the standard deviations of the 30 samples of the Bootstrap test set are in
parentheses.
Table 7
Comparison results of different TL with ENR.
Model MSE MAE EVS R2_score

TL_ENR 0.000014 (2.927E−06) 0.002813 (0.000267) 0.954922 (0.008805) 0.947358 (0.012886)
CORAL_ENR 0.000167 (8.421E−06) 0.009934 (0.000320) 0.936004 (0.002256) 0.921255 (0.003963)
BDA_ENR 0.000306 (1.884E−05) 0.013723 (0.000497) 0.891421 (0.005186) 0.855462 (0.008920)
TCA_ENR 0.003478 0.050037 0.340819 −0.64406

Note: The numbers in bold represent the best, and the standard deviations of the 30 samples of the Bootstrap test set are in
parentheses.
TL_GBR, which can also be explained by the variance score bias
of the aggregation model as above. The comprehensive perfor-
mance of the proposed model still outperforms these comparison
models. This result can be explained that some of the comparison
models only consider differences in marginal distributions and
thus have difficulty in quantifying observed sample changes in
APCP. Additionally, some comparison models using other transfer
types in addition to instance-based transfer are incompatible with
the current learning task. Furthermore, some TL methods like TCA
obtain results through matrix calculation, which undoubtedly
leads to high computational complexity. The proposed prediction
model discusses the differences between domains through data
sub-distributions, and the obtained knowledge transfer is more
applicable and effective for APCP during COVID-19.

To statistically compare the performance of various models,
we evaluate each model in addition to TCA 30 times on the

bootstrap samples and the results are shown in Table 9. The

9

values in Table 9 are the t-statistic of the comparison between
the model in the row and the corresponding column model, and
the asterisk is the significance level of the comparison. As the
prediction performance of LR, BR, and LASSO is not significantly
different, we only choose LASSO as the representative one in
Table 9. In this table, for the benefit evaluation measures, EVS and
R2_score, the large positive t-statistic indicates that the model in
the row outperforms the corresponding column model, whereas a
more negative t-statistic suggests the reverse. For cost evaluation
measures, MAE and MSE, the results are opposite.

5. Discussion – Result interpretation and managerial insights

Accurate prediction results are useful for future decision-
making, and the detailed analysis of influential factors is also
helpful for result interpretation to generate some useful man-

agerial insights. In this section, we employ two methods, SHAP
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Table 8
Comparison results of different TL with GBR.
Model MSE MAE EVS R2_score

TL_GBR 0.000008 (4.159E−06) 0.001819 (0.000226) 0.971073 (0.009294) 0.970890 (0.009247)
CORAL_GBR 0.000032 (2.387E−06) 0.00441 (0.000153) 0.985723 (0.001092) 0.984691 (0.001106)
BDA_GBR 0.000705 (5.703E−05) 0.021445 (0.000764) 0.796994 (0.016657) 0.666844 (0.026940)
TCA_GBR 0.0013 0.029798 0.719994 0.38538

Note: The numbers in bold represent the best, and the standard deviations of the 30 samples of the Bootstrap test set are in
parentheses.
Table 9
Pair comparisons of each model based on bootstrap samples and t-statistic.

TL_LASSO TL_ENR TL_GBR

MSE CORAL_LASSO 98.1535*** CORAL_ENR 98.31521*** CORAL_GBR 35.20019***
BDA_LASSO 106.8178*** BDA_ENR 79.52758*** BDA_GBR 67.94562***

MAE CORAL_LASSO 118.5499*** CORAL_ENR 108.4205*** CORAL_GBR 59.47519***
BDA_LASSO 140.1118*** BDA_ENR 101.9126** BDA_GBR 133.2196**

EVS CORAL_LASSO −23.7185** CORAL_ENR −11.5139** CORAL_GBR 6.791105**
BDA_LASSO −46.3072* BDA_ENR −33.6071* BDA_GBR −51.7483

R2_score CORAL_LASSO −18.9603** CORAL_ENR −10.0756** CORAL_GBR 6.404508**
BDA_LASSO −32.977* BDA_ENR −34.4672* BDA_GBR −60.4539

*p < 0.1.
**p < 0.05.
***p < 0.01.
nd PDP, to carry out feature importance analysis. Considering
he outstanding performance of TL_GBR in Table 2, this section
akes the results of the proposed TL_GBR method to introduce
he following analysis.

.1. Results and discussion of SHAP analysis

Using the open-source package shap in Python, we can ob-
ain the results of SHAP for this study. The top 20 important
eatures obtained by SHAP are shown in Fig. 8. In this figure,
he samples are represented by points with different colors. The
edder the point color represents the greater the feature value,
nd the bluer the point color represents the smaller the feature
alue. The ordinate of Fig. 8 represents features and the abscissa
s the SHAP value of features, i.e., the influence of features. In
his figure, we find that some features show positive effects on
rediction, and the representative features include PM10, PM2.5,
nd O3. And some of the features show no significant effects,
hat is, the increase or decrease of these types of features will
ot directly lead to the change of the influence on the results,
r the corresponding change has no obvious rule. For example,
s for the feature O3_24 h, we observe that when the feature
alue is small, the SHAP value is close to 0. But when the feature
alue is large, the changes of SHAP have no obvious rule. And
s for some meteorological features, such as wind direction and
indspeed, both the increase and decrease of feature value show
o significant influence on SHAP.
To obtain a clearer understanding of how each feature affects

he final results, Fig. 9 supplements the importance of features
btained by calculating the mean SHAP value. Combining these
wo figures, we can conclude: (1) Compared with meteorological
eatures, pollutant-related features show more influence on the
rediction of AQI; (2) Among pollutant-related features, PM10
nd PM2.5 show more significant influence than other pollutants;
3) Some meteorological features that are generally considered
mportant, like windspeed and amount of precipitation, show no
ignificant effects on the prediction. While some meteorological
eatures which are easily ignored, such as air pressure trends,
ave a great influence on the prediction results. The above results
an help us understand the role of each feature in the prediction,
nd then the PDP is adopted to analyze how these features affect
he final results.
10
Fig. 8. Results of SHAP value.

Fig. 9. The importance of features obtained by SHAP.
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Fig. 10. PDP of PM10.
Fig. 11. PDP of PM2.5.
.2. Results and discussion of PDP analysis

This subsection selects four relatively important features in
ig. 9, PM10, PM2.5, O3, and air pressure trends, to analyze
ow they affect the prediction. Using the open-source package
n Python, pdp, we obtain the PDPs of these four features, as
hown in Figs. 10 to 13. The x-axis of these figures represents
the feature and the y-axis represents the change of predicted
values. The blue shaded part represents the confidence interval.
In Figs. 10 to 12, we observe a monotonically increasing linear
relationship between the three pollutant-related features and
the predicted target. This result indicates that the influence of
these features on the predictive target is almost linear, and this
influence increases with the increase of the feature value. These
findings can provide guidance for managers to make decisions.
For example, given the absolute contribution of PM10 and PM2.5
to the prediction, these two variables should be monitored more
rigorously to accurately predict AQI values during COVID-19. In
addition, the positive linear effects of these variables on predic-
tion remind us to pay more attention to the major source of PM10
and PM2.5 shown in Table 1 and take corresponding control mea-
sures to alleviate air pollution. While in Fig. 13, we observe that
the positive effect of air pressure trends on prediction is short-
lived and disappears when the variable increases to a certain
11
extent. This finding supplements Fig. 9 about how air pressure
trends specifically affect the prediction.

The above analysis draws a conclusion about the relationship
between each feature and the prediction target. Then we further
focus on the analysis of different features to uncover the effect
of controlling these features on other features. This study selects
the feature with the greatest impact, i.e., PM10, and explores
the relationship between PM10 and the other three main fea-
tures. We employ the PDP to obtain the results, as shown in
Figs. 14 to 16. In these figures, the x-axis and y-axis represent the
features to be analyzed, and the z-axis represents the influence
on the prediction results. In Fig. 14, we observe that when one of
PM10 or PM2.5 is fixed, the value of another feature changes will
also lead to the corresponding impact on the prediction results. In
Fig. 15 and Fig. 16, we observe that when the values of PM10 are
constant, the change of O3 and air pressure trends do not cause
significant changes in the results. On the contrary, the change
in PM10 can lead to significant changes in the results. These
observations indicate that both PM2.5 and PM10 have a positive
correlation with the predicted results, while O3 and air pressure
trends show no significant positive effects on the prediction when
fixing PM10. Therefore, we can conclude that controlling PM10
and PM2.5 has a greater impact on the prediction, and more
attention should be paid to these two factors.
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Fig. 12. PDP of O3.
Fig. 13. PDP of air pressure trends.
Fig. 14. The PDP relationship analysis between PM10 and PM2.5.
12
Fig. 15. The PDP relationship analysis between PM10 and O3.
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Fig. 16. The PDP relationship analysis between PM10 and air pressure trends.

6. Conclusions

This paper proposes an improved prediction model based
on TL for APCP during COVID-19 and analyzes some influen-
tial factors to obtain effective management implications. Based
on the dataset collected from CNEMC and NCDC, the proposed
method shows better predictive performance than other compar-
ison methods. Then, the SHAP and PDP are adopted to explain the
relationship between influential factors and prediction results to
conclude the following findings:

(1) All features either have a positive effect or show no obvious
rule of influence on the prediction results. Specifically,
several main features including PM10, PM 2.5, and O3 show
significantly positive effects on the prediction of AQI.

(2) Some meteorological features that are generally considered
important show no significant effects on the prediction
of AQI. Air pressure trends, a feature that is not easily
perceived by humans, play a significant role in the pre-
diction. This result reminds us that we should not only
focus on features that are considered to be valid subjec-
tively but should fully consider the possible influencing
variables.

(3) PM2.5 and PM10 have a positive correlation with the pre-
diction of AQI. Therefore, when taking AQI as the goal of air
pollution treatment, managers should pay more attention
to the control of PM10 and PM2.5 during COVID-19 in
Wuhan.

The model proposed in this paper still has some limitations,
which provide directions for future work. First, this paper only
considers the TL based on the instance of APCP during COVID-19,
and further studies on the TL, such as TL based on deep learning,
can be considered in the future. Second, this paper only analyzes
the relationship between features and results without consider-
ing the impact of actual traffic control measures. Future research
should consider the effects of practical restrictions to obtain some
practical management insights. Additionally, future research can
extend the proposed TL method to multi-source domain transfer
and further explore the application of the proposed method in
more TL tasks and practical scenarios.
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Appendix

See Figs. A.1–A.10.

Fig. A.1. The first cluster of source domain obtained by GMM.

Fig. A.2. The second cluster of source domain obtained by GMM.
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Fig. A.3. The third cluster of source domain obtained by GMM.

Fig. A.4. The fourth cluster of source domain obtained by GMM.

Fig. A.5. The fifth cluster of source domain obtained by GMM.
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Fig. A.6. The first cluster of target domain obtained by GMM.

Fig. A.7. The second cluster of target domain obtained by GMM.

Fig. A.8. The third cluster of target domain obtained by GMM.



S. Chen, Z. Xu, X. Wang et al. Knowledge-Based Systems 258 (2022) 109996
Fig. A.9. The fourth cluster of target domain obtained by GMM.

Fig. A.10. The fifth cluster of target domain obtained by GMM.
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