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Abstract: The purpose of this study was to evaluate the microtensile bond strength (µTBS) and Knoop
hardness number (KHN) of a novel experimental light-cured resin cement (HL). Eighteen flat dentin
surfaces of human molars were polished using #600 SiC paper and bonded to CAD/CAM resin
blocks with the respective resin cements and composites: HL, Panavia V5 (PV), and Clearfil AP-X
(AP). All specimens were stored in distilled water at 37 ◦C for 24 h and 7 days. Scanning electron
microscope (SEM) and energy dispersive X-ray (EDX) observations were performed to evaluate filler
morphology and to detect the elements. The resin cements had a significant effect on the immediate
µTBS (F = 22.59, p < 0.05) and after water storage µTBS (F = 22.83, p < 0.05). Significant differences
(p < 0.05) in the KHN between the tested materials were observed, and HL indicated the highest KHN
when compared with PV. HL showed a combination of the regular-shaped filler and spherical-shaped
filler within the matrix. Silicon was detected in HL from the EDX evaluation. HL exhibited better
bonding performance and polymerization, which may have contributed to the improvement of the
adhesive strength.

Keywords: bond strength; resin cements; filler morphology; mechanical properties; Knoop
hardness; polymerization

1. Introduction

In the past three decades, various all-ceramic crowns have been developed, and in-
direct restorations, such as full-ceramic crowns, veneers, inlays, and onlays, have gained
popularity [1] because of their outstanding esthetic characteristics, biocompatibility, dura-
bility, chemical stability, and high compressive strength in the oral environment [2]. Resin
cement’s adhesion to tooth surfaces and restorative materials has been enhanced to improve
fracture resistance and retention [3–5]. Resin cement can be categorized by bonding [6,7],
including total-etch bonding, single-step etch bonding, self-cured resin cement, and dual-
cured resin cement, and by polymerization, which includes self-cured, light-cured, and
dual-cured polymerization [8,9]. Recently, dual-cured resin cement has become widespread
for indirect restoration, providing the optimal combination of light-cured and chemical
polymerization even amid inadequate irradiations [10,11].

In clinical situations, oral and sulcular fluids can cause cemented restoration failure
due to resin cement’s water sorption, solubility, and microleakage. Furthermore, extrinsic
and intrinsic discoloration can also affect esthetic restoration [12–14]. Water absorption and
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surface roughness are also responsible for extrinsic discoloration caused by food, drinks,
and smoking [15–17], which can be managed by proper finishing and polishing [15]. Nev-
ertheless, intrinsic discoloration is associated with the resin matrix and filler composition,
the type of photo-initiator, polymerization systems, and the degree of conversion, which is
not possible to manage clinically [18]. Most dual-cured resin cements contain unreacted
benzoyl peroxide, which can cause discoloration and compromise the restoration’s esthet-
ics [19]. Correspondingly, water sorption can degrade filler–matrix and induce swelling,
thereby reducing a resin cement’s mechanical properties [20].

Recently, Kuraray Noritake Dental Corporation, Japan, developed a light-cured ex-
perimental resin cement, HL-100C (HL), with good color stability, sufficient working time,
and newly developed spherical silica fillers for improved bonding stability. However, the
novel experimental resin cement’s bonding performance and Knoop hardness have not
been investigated to justify its clinical performance.

This study aims to evaluate the microtensile bond strength (µTBS) and Knoop hardness
number (KHN) of an experimental light-cured resin cement with commercially available
restorative resins. The null hypothesis of the study is that there is no significant difference
between conventional and novel resin materials in terms of µTBS and KHN.

2. Materials and Methods

The Hokkaido University Research Ethics Committee approved the current project
(approval number 2018-9). All teeth were placed in a 0.5% Chloramine-T solution at 4 ◦C
and immersed in distilled water for 30 min before use.

2.1. Materials Used in the Study

A novel experimental light-cured resin cement (HL), a commercially available dual-
cured resin cement, Panavia V5 (PV), and a resin composite, Clearfil AP-X (AP), were
used in this study. Additionally, PV tooth primer (PV-Primer) and Clearfil Se Bond 2 (SE2)
were used. All materials were obtained from Kuraray Noritake Dental, Tokyo, Japan. The
materials used in this study and their composition are shown in Table 1.

2.2. Specimen Preparation

The specimens were prepared using eighteen caries-free human molars and CAD/
CAM (12 sizes; shade A3LT) resin blocks (Katana Avencia Block 2, Kuraray Noritake Dental,
Tokyo, Japan). The CAD/CAM resin blocks were sliced into 1.5 mm thickness using a slow-
speed diamond saw, Isomet (Buehler, IL, USA). The CAD/CAM resin block surfaces were
polished under running water for 60 s with 600-grit SiC sheets (Sankyo-Rikagaku Co., Ltd.,
Tokyo, Japan), sandblasted with 50 µm alumina powder at 0.2 MPa, ultrasonically cleaned
for 2 min, and then dried with a syringe air blow for 10 s. All CAD/CAM resin block
samples were etched with phosphoric acid and a silane coupling agent, following the
manufacturer’s instructions.

The flat, occlusal dentin surfaces of the molar teeth were exposed using a model
trimmer under water cooling and then polished with #600 SiC paper for 60 s under running
water to produce smear layers for bonding. All samples were divided into three groups
according to the resin materials: HL-100C (HL), Panavia V5 (PV), and Clearfil AP-X. (AP).
For the HL and PV groups, PV-Primer was applied to the exposed surface, according to the
manufacturer’s recommendations. For the AP group, the primer and bonding agent SE2
were applied to the exposed dentin surface. Then, the resin materials were applied to the
tooth surface, and the prepared CAD/CAM resin slices were placed with firm pressure
over the resin cement or resin composites. The samples were light-cured at ≥2000 mW/cm2

for 20 s using a cordless LED (Pencure2000, Morita, Tokyo, Japan).
To obtain the standard height for the µTBS test, the CAD/CAM resin block surface

was applied with Clearfil Ceramic Primer Plus (Kuraray Noritake Dental, Tokyo, Japan) for
the HL and PV groups. The SE2 priming agent was applied for the AP group, followed by
a bonding agent and light curing. All groups received 2.5 mm of a light-cured AP resin
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composite. The specimens were stored in 37 ◦C water for 24 h and 7 days. A graphical
representation of the study design is presented in Figure 1.

Table 1. Composition of the tested materials.

Materials Compositions Manufacturer Lot No.

HL-100C

Paste: silanated spherical silica, UDMA, Ytterbium
trifluoride, TEGDMA, hydrophilic aliphatic dimethacrylate,

hydrophilic amide monomer, accelerators,
dl-camphorquinone, pigments

Kuraray Noritake
Dental, Tokyo, Japan T200615-1

Panavia V5

Paste-A: Bis-GMA, TEGDMA, hydrophobic aromatic
dimethacrylate, hydrophilic aliphatic dimethacrylate,
initiators, accelerators, silanated barium glass filler,

silanated fluoroalminosilicate glass filler, colloidal silica Kuraray Noritake
Dental, Tokyo, Japan

8H0168Paste-B: Bis-GMA, hydrophobic aromatic dimethacrylate,
hydrophilic aliphatic dimethacrylate, silanated barium glass

filler, silanated aluminum oxide filler, accelerators,
dl-camphorquinone, pigments

Clearfil AP-X
Paste: Bis-GMA, TEGDMA, silanated barium glass filler,

silanated silica filler, silanated colloidal silica,
dl-camphorquinone, catalysts, accelerators, pigments

Kuraray Noritake
Dental, Tokyo, Japan 850124

Katana
Avencia Block 2

Mixed filler with colloidal silica and aluminum oxide, cured
resins consisting of methacrylate monomer (copolymer of

UDMA and other methacrylate monomers), pigments

Kuraray Noritake,
Tokyo, Japan 001122

Clearfil Ceramic
Primer Plus

Ceramic primer: 3-trimethoxysilylpropyl
methacrylate, MDP, ethanol

Kuraray Noritake
Dental, Tokyo, Japan 2R0053

Panavia V5
Tooth Primer

Tooth primer: MDP, HEMA, hydrophilic aliphatic
dimethacrylate, accelerators, water

Kuraray Noritake
Dental, Tokyo, Japan AW0071

Clearfil SE Bond 2

Primer: MDP, HEMA, hydrophilic aliphatic dimethacrylate,
dl-camphorquinone, hydrophobic aliphatic, water

Kuraray Noritake
Dental, Tokyo, Japan 4A0114

Bond: MDP, Bis-GMA, HEMA, dl-camphorquinone,
hydrophobic aliphatic dimethacrylate, initiators,

accelerators, silanated colloidal silica
4H0173

Abbreviations: Bis-GMA—bisphenol-A-diglycidylmethacrylate; HEMA—2-hydroxyethyl methacrylate;
MDP—10-methacryloxydecyl dihydrogen phosphate; TEGDMA—triethyleneglycol dimethacrylate;
UDMA—urethane dimethacrylate.
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2.3. µTBS Test

After storage, the specimens were longitudinally cross-sectioned with an Isomet (slow-
speed diamond saw) to produce a beam-shaped specimen with a surface area of around
1 mm × 1 mm. Before testing the µTBS, the digital caliper (E-PITA15, Nakamura Mfg. Co., Ltd.,
Chiba, Japan) was used to measure each beam size and record the results. After that, the
specimen was fixed to the Ciucchi’s jig using a cyanoacrylate adhesive (Model Repair 2 glue,
Dentsply-Sankin, Tokyo, Japan) and placed in a testing device (EZ-S test, Shimadzu, Tokyo,
Japan). Then, tensile force was applied at a cross-section speed of 1 mm/min until it fractured.
Fifteen beams were tested for each group.

2.4. Fracture Modes Analysis

Following the µTBS test, the fractured specimens were air-dried, mounted on an
aluminum stub, sputter-coated with Pt–Pd for 120 s, and analyzed using an SEM (S-4000,
Hitachi, Tokyo, Japan) at ×80 and ×1000 magnifications with an accelerating voltage of
5 kV. The failure modes were classified into six categories: type 1, interfacial failure at
block (IB); type 2, interfacial failure at block and cement (IB + C); type 3, interfacial failure
at block, cement, and dentin; type 4, cohesive failure in cement (CC); type 5, interfacial
failure at dentin and cement (ID + C); type 6, inter facial failure at dentin (ID).

2.5. Filler Morphology Observation by Scanning Electron Microscope (SEM)

The specimen blocks for each resin were made with polypropylene tubes (2 mm in
thickness and 13.8 mm in diameter). Then, a glass slide was placed on top and light-cured
for 20 s. The filler morphologies were observed on polished and unpolished samples. For
polished samples, the resin surfaces were thoroughly polished with SiC paper (#600, #1000,
#1200, and #2000), followed by a diamond polishing paste with grit sizes of 6 µm, 3 µm,
1 µm, and 0.25 µm for 60 s each. The samples were then ultrasonically cleaned for 5 min.
For unpolished samples, the resin material groups were submerged in acetone for 30 s. The
samples were cleaned with water, air-dried for 10 s, and kept in a plastic container. The
specimens were air-dried and sputtered with a Pt–Pd ion while mounted to aluminum
stubs. At 5 or 10 kV, the specimens were evaluated with an SEM. The filler particle sizes
were detected at ×2000, ×5000, ×20,000, and ×50,000 magnifications. Image J (National
Institutes of Health, Bethesda, DC, USA) was used to examine filler particle morphology.

2.6. Atomic Elemental Analysis by Energy Dispersive X-ray (EDX)

The cured resin blocks of all groups (3 mm × 3 mm × 2 mm in size) were fabricated
and embedded in an epoxy resin. After 24 h, the embedded blocks were polished with #600,
800, and 1000 SiC papers under running water. Afterward, the surfaces were polished using
6 µm, 3 µm, and 1 µm diamond pastes (DP-Paste, manufactured by Struers in Copenhagen,
Denmark). An ultrasonic device was used to clean the surface. The elemental analysis of
the cured resins was carried out using (EDX) mode equipped with an SEM (JSM-5310LV,
JEOL, Tokyo, Japan) at ×3000 magnification with an acceleration voltage of 20 kV. This
process was carried out after the resin cement sample had been allowed to dry in a plastic
container for 24 h.

2.7. Knoop Microhardness Test

Five resin samples were prepared to measure the KHN. The samples were made
employing a 13.8 mm length, 13.8 mm width, and 2 mm depth Teflon mold. The resin
materials were dispensed directly into the Teflon mold. The excess resin was removed,
and a 25 µm mylar strip was placed on top. The resin was then cured for 40 s using a
PENCURE2000 at 2000 mW/cm2. During the light activation procedure, the light guide
was placed in the middle of the specimen. All procedures were performed at (23 ± 2 ◦C)
and (50 ± 10%) humidity. This prevented photo-initiator sensitization. In addition, a filter
was utilized to maintain the ambient red light. The resin cement samples were kept in a
dry, dark environment at 37 ◦C for 24 h after light curing.



Polymers 2022, 14, 4075 5 of 12

Microhardness was tested using a microindenter (MVK-C, Akashi, Kanagawa, Japan)
with a ×20 objective lens and 25 gf load for 15 s. Each specimen was indented ten times
at 0.5 mm intervals, starting from the center and proceeding outward. Each indentation’s
long-axis length was measured to calculate the KHN.

2.8. Statistical Analysis

The results of µTBS and KHN were analyzed using a one-way ANOVA, and a
Games–Howell test was performed at a level of significance of 5%. IBM SPSS Statistics
Version 22 for Windows (IBM, Tokyo, Japan) was used to perform the analysis.

3. Results
3.1. µTBS

The mean and standard deviations of µTBS values are shown in Table 2. The result of
a one-way ANOVA revealed that resin cements had a significant effect on the immediate
µTBS (F = 22.59, p < 0.05) and after water storage µTBS (F = 22.83, p < 0.05). PV showed
a statistically significant difference between HL and AP at 24 h after water storage. After
7 days of water storage, statistical differences were observed between all groups.

Table 2. Mean ± SD of µTBS and fracture modes of resin cement.

Resin
Cements

Mean ± SD (MPa)
(24 h)

(n = 15)

Fracture Mode (n) (24 h)
IB/IB + C/IB + C +
ID/CC/ID + C/ID

Mean ± SD (MPa)
(7 Days)

Fracture Mode (n) (7 Days)
IB/IB + C/IB + C +
ID/CC/ID + C/ID

HL 60.32 ± 11.28 a 0/0/0/14/1/0 53.81 ± 9.56 B 0/0/0/13/0/2
PV 37.24 ± 7.28 b 0/0/0/15/0/0 40.23 ± 8.78 C 0/0/0/14/0/1
AP 72.07 ± 21.10 a 0/0/0/8/4/3 67.24 ± 13.82 A 0/0/0/10/1/4

Different superscript letters indicate statistically significant differences (Games–Howell test, p < 0.05).
IB—interfacial failure at block; C—cement; CC—cohesive failure in cement; ID—interfacial failure at dentin.

3.2. SEM Observation of the Failure Modes

The number of fracture modes after µTBS is shown in Table 2. For the HL group, the
predominant failure mode at 24 h and 7 days after water storage was cohesive failure in
cement at 93% and 87%, respectively. For the PV group, the predominant failure mode
at 24 h and 7 days after water storage was cohesive failure in cement at 100% and 93%,
respectively. For the AP groups, the predominant failure mode at 24 h and 7 days after water
storage was cohesive failure in cement at 53% and 66%, respectively. Nevertheless, after
24 h, 20% of the beams showed a combination of interfacial failure in dentin and cement.
Interfacial failure in dentin increased 27% after 7 days. Figure 2 shows the SEM images of
the representative fracture modes at the dentin side at ×80 and 1000 magnifications. No
pretest failure was observed in this study.

3.3. SEM Observation of Fillers and Elemental Analysis of Cured Resin Cements and Composite

SEM images at magnifications of ×2000, ×5000, ×20,000, and ×50,000 revealed
changes in the size, shape, and distribution of various filler particles in the resin ma-
terials (Figures 3 and 4). HL showed a combination of the regular-shaped filler (Figure 3d)
and spherical-shaped filler (the diameter was approximately 100 nm) within the matrix
(Figure 3a–c). The fillers were clustered together in some areas. On the other hand, PV and
AP represent micro-hybrid filler particles with sizes that were approximately ranging from
0.50 µm to 6.30 µm, or 2.00 µm to 18.50 µm, respectively (Figure 3e,i).

An EDX element mapping evaluation and point analysis are shown in Figures 5–8.
From the results, F, Si, and Yb were detected in HL. Ba, C, O, and Si were detected in both
PV and AP. Al, B, and F were detected only in PV.
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3.4. Microhardness Evaluation of Resin Materials

The means and standard deviation of KHN are shown in Table 3. A one-way ANOVA
showed a significant difference in the KHN between the tested materials (p < 0.05) at 24 h
and after 7 days of water storage. It is noteworthy that all the tested materials featured a
different Knoop hardness. HL indicated the highest KHN when compared with PV. Then,
AP showed the highest KHN among all tested materials.

Table 3. Means ± SD of KHN of the resin cements.

Cements KHN (24 h) KHN (7 Days)

HL 24.85 ± 3.39 a 27.10 ± 4.90 a

PV 11.01 ± 1.55 b 10.87 ± 1.21 b

AP 83.80 ± 14.43 c 89.77 ± 14.08 c

Different superscript letters indicate statistically significant differences (Games–Howell test, p < 0.05).

4. Discussion

Light-cured resin cements are used with thin, translucent, indirect restorations permit-
ting adequate light transmission [21]. The advantages of using light-cured resin cements
include adequate working time, being able to remove excess cement without difficulties
prior to polymerization, having the capacity to undergo “polymerization on demand”,
and having greater color stability following cementation [22]. Recently, Kuraray Noritake
dental corporation launched a new light-cured resin cement, named Panavia Veneer LC,
which is unlike their already-existing, popular “Touch and Cure” resin cement, Panavia V5.
According to the manufacturer, they incorporated newly developed spherical silica fillers,
which provide better stability. They also incorporated the nano-cluster filler technology,
which provides non-stickiness to the application tip and ensures easy application [23].

In the present study, HL demonstrated a significantly higher bond strength than PV,
whereas AP exhibited a significantly higher bond strength than HL and PV. Therefore, the
null hypothesis in terms of µTBS was rejected. In the present study, µTBSs were evaluated
after 24 h and 7 days of water storage. For resin materials, the polymerization continues for
at least 24 h after initiation. On the other hand, the µTBS was higher after 7 days, which
was not surprising. This phenomenon might occur due to further polymerization after
24 h. Notably, AP was bonded with the dentin bonding agent SE. Recent studies reported
that when AP is bonded with SE, it has high and stable bonding performance with dentin
substrates [24,25]. The bonding agent and primer SE includes the functional monomer
10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). The 10-MDP monomer is es-
sential to bind with hydroxyapatite through chemical bonding, smear layer dissolution,
and improved monomer penetration [26]. The higher µTBS of AP might be due to the
presence of a photo-initiator system, which may have the potential to improve its degree of
conversion and mechanical properties [25]. According to Politano et al., a light-cured resin
composite also shows better mechanical properties and wear resistance than conventional
dual-cured resin cement [27].

On the basis of our result, the commercially available “Touch and Cure” resin cement
PV showed a significantly lower µTBS. One of the possible reasons for a lower µTBS is the
slow polymerization of resin cement, which occurs because of the possible formation of
water droplets in the adhesive cement interface when it comes into contact with dentin
treated with an adhesive. It is possible that limited light transmission may allow water
from the dentin to diffuse across the adhesive into the resin cement [28–31]. On the other
hand, in contrast to PV, HL showed better bonding performance in our study. This might
have occurred due to the improvement of the translucent structure of light-cured resin
cement, thus allowing the resin cement to achieve better polymerization kinetics, which
also contributes to the higher bond strength [32].

From our results, PV showed a significantly lower KHN than HL and AP. Therefore,
the null hypothesis in terms of KHN was rejected. This might be because of the different
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material composition, filler size and morphology, and the distribution pattern or quality of
the polymerization reaction [33].

From the EDX evaluation, Si indicated a silanated spherical silica filler in HL, which
might allow better light transmission [34]. The observation of spherical-shaped filler
particles might have a potential lubricating effect on the substance, which would allow
the materials to flow more freely while having no effect on its viscosity [35]. It was
demonstrated in a previous study that adding a silica filler to the resin materials might
influence the radiopacity [36], and the addition of filler particles might have an influence
on reduced degradation [37]. On the other hand, the SEM images show smaller filler
particles in HL than PV and AP. This might have an impact on improving film thickness
and allowing better bonding performance [38]. According to previous studies, the addition
of Si fillers to resin materials resulted in higher bond strength, which is in accordance with
this study [39–41].

The present study has some limitations. Although the outcomes of our investigation
are promising, they ought to be regarded with caution for the time being. Furthermore,
long-term in vitro bonding performance evaluation, water sorption and water solubility
characterizations, color stability evaluation, and the degree of conversion are needed to
verify the current results.

5. Conclusions

Within the limitations of this in vitro study, it was concluded that the novel experimen-
tal light-cured resin cement HL showed better bonding performance than the conventional
dual-cured resin cement PV, which might be due to its improved chemical structure. More-
over, innovative spherical-shaped silica fillers and smaller-sized filler particles might
also contribute to the better bonding performance of the novel experimental light-cured
resin cement.
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