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Genomic studies not only help researcher not only to identify genomic features in organisms, but also facil-
itate understanding of evolutionary relationships. Species in the Withania genus have medicinal benefits,
and one of them is Withania frutescens, which is used to treat various diseases. This report investigates
thenucleotides andgenic features of chloroplast genomeofWithania frutescens and trying to clarify the evo-
lutionary relationshipwithWithania sp and family Solanaceae.We found that the total size ofWithania fru-
tescens chloroplast genome was 153.771 kb (the smallest chloroplast genome in genus Withania). A large
single-copy region (91.285 kb), a small single-copy region (18.373 kb) form the genomic region, and are dis-
tinct from each other by a large inverted repeat (22.056 kb). 137 chloroplast genes are found including 4
rRNAs, 38 tRNAs and 83 protein-coding genes. The Withania frutescens chloroplast genome as well as four
closest relatives was compared for features such as structure, nucleotide composition, simple sequence
repeats (SSRs) and codon bias. Compared to otherWithania species,Withania frutescens has unique charac-
teristics. It has the smallest chloroplast genome of anyWithania species, isoleucine is themajor amino acid,
and tryptophan is the minor, In addition, there are no ycf3 and ycf4 genes, fourth, there are only fifteen
replicative genes, while in most other species there are more. Using fast minimum evolution and neighbor
joining, we have reconstructed the trees to confirm the relationship with other Solanacaea species. The
Withania frutescens chloroplast genome is submitted under accession no. ON153173.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Medical plants have a major role in the production of struc-
turally distinct phytomolecules with a range of therapeuticand
economic relevance (Srivastava and Sangwan, 2020). Secondary
metabolites and essential oils found in medicinal plants have sig-
nificant therapeutic and health benefits. Along with their effective-
ness, affordability, and accessibility, medicinal plants are said to
provide other substantial benefits for treating a variety of condi-
tions. These benefits also led to their widespread use in the treat-
ment of microbial infections by conventional medical professionals
(Upendra and Ahmed, 2021). Medicinal plants in India have been
used in herbal treatments for the efficient management of a wide
range of illnesses and syndromes (Ningthoujam et al., 2013). The
Withania genus belongs to the Solanaceae family of flowering
plants. In addition to being part of the Magnoliophyta division, it
contains 23 different species found in North Africa, western and
south Asia, southern Europe, and the Mediterranean region
(Mirjalili et al., 2009). It is believed that Withania was named in
honor of a British geologist, Henry Witham who began writing
about fossil botany in 1830 (Symon, 1981). The roots of Withania
are aphrodisiac, diuretic, aphrodisiac, astringent, bitter, acrid, som-
niferous, thermogenic, and stimulant. The leaves have antibacte-
rial, anticancer, anti-inflammatory, and anti-hepatotoxic
activities. The seed has hypnotic, diuretic, and milk-coagulating
qualities (Bharti et al., 2016). Traditional medicine has recognized
Withania as an effective treatment for stress, tuberculosis, inflam-
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mation, etc. (Archana and Namasivayam, 1998; Jayaprakasam and
Nair, 2003; Bhattacharya and Muruganandam, 2003) as well as
model organisms that exhibit immunomodulatory properties
(Sharma et al., 2010). There are 61 species in the Withania genus
that have been identified worldwide, however, only five were
accepted as names: Withania somnifera (L.) Dunal, Withania japon-
ica (Franch and Sav), Withania coagulans (Stocks) Dunal, Withania
begonifolia (Roxb.) Hunz, and Withania frutescens (L.) Pauquy.
(Srivastava and Sangwan, 2020).Withania frutescens (W. frutescens)
is a perennial woody medicinal plant. Bioactive chemical classes
found in this plant include polyphenols, mucilage, saponins, tan-
nins, and flavonoids. Many indigenous people used W. fructescens
to treat intoxication, while other reports also documented its
medicinal properties (antioxidant, antimicrobial, and antifungal)
(Jamal 1998; El Moussaoui et al., 2019). As far as we know, nobody
has reported the toxicity of W. frutescens (El Moussaoui et al.,
2020). Chloroplasts (cp) are found in most species of plants
between 72,000 and 217000 bp in size and are one of the defining
issues in evolutionary studies (Moore et al., 2007). The chloroplast
genome is typically a four-part structure, having a large single copy
(LSC), a small single copy (SSC), and two inverted repeats (IR)
(Palmer 1991). In closely related and distantly related species, both
constriction and extension of the IR can affect the size and number
of genes (Ahmed et al., 2012; Abdullah et al., 2019a). Mutations
occur in chloroplast genomes in a variety of ways, including inser-
tions, substitutions, deletions, genome rearrangements, inversions,
and translocations (Ahmed et al., 2012; Sloan et al., 2014; Daniell
et al., 2016). Phylogenetic and taxonomic discrepancies have been
resolved by exploiting polymorphism in chloroplast genomes
(Ahmed et al., 2012; Sloan et al., 2014; Daniell et al., 2016; Guo
et al., 2017). Furthermore, DNA barcoding can also be used for
the identification of plant species (Nguyen et al., 2017; Lee et al.,
2017), for chloroplast transformation to produce vaccines and
metabolites, plant evolution (Wambugu et al., 2015; Waheed
et al., 2015), and for the selection of cultivars to produce by select-
ing the most suitable taxa for breeding (Lössl and Waheed, 2011).

Numerous significant economic species belong to the Solana-
ceae family. The development of novel cultivars with qualities that
meet market demands can be facilitated by understanding the
relationship based on the chloroplast genome for all species
belonging to this family (Madhav et al., 2015).

The present study continues previous efforts (Mehmood et al.,
2020a,b) to determine the details of chloroplast genomes of Witha-
nia species, which are still largely undefined, such as expansion
and contraction. The chloroplast genome sequence of Withania fru-
tescens is reported here. For an evolutionary story of this genus, we
compare those in four other species of Withania.
2. Materials and methods

2.1. Mapping of Withania frutescens cp genome

Reads quality of publicly available genomic data of Withania
frutescens paired-end (acc.no. SRR9845561) was determined using
FastQC (Andrews 2010). A large contig was formed from raw data
of long reads using Velvet 1.2.10 (Zerbino and Birney 2008). Gen-
oious R 8.1 (Kearse et al., 2012) was used to generate a complete
genome from the contigs generated by velvet. IR, LSC, and SSC
boundaries were assigned manually.
2.2. Withania frutescens cp genome

Withania somnifera NC_047245 was used as a reference genome
for annotation. Additionally, GeSeq (Tillich et al., 2017) and CPGA-
VAS2 (Shi et al., 2019) were used to annotate the genome
2

sequence. Our next step was to correct codons and coordinate
intron positions, and then to compare and curate all annotations.
Aragorn version 1.2.38 (Laslett and Canback 2004) and tRNAscan-
SE version 2.0 were used to verify the tRNA genes.

BMW (Li and Durbin 2009) and Tablet (Milne et al., 2009) were
utilized to map and visualize all reads to assembled Withania fru-
tescens chloroplast genome, otherwise, circular map was created
using OGDRAW (Lohse et al., 2007). Withania frutescens’s chloro-
plast genome was submitted to NCBI under acc.no. ON153173.

2.3. Comparative evaluation of the Withania frutescens chloroplast
genome

Withania frutescens cp genome was compared to those ofWitha-
nia species, including Withania somnifera, Withania coagulan,
Withania riebeckii, and Withania adpressa. Geneious R8.1 was used
to estimate Codon bias and amino acid (Kearse et al., 2012). The
divergence regions were analyzed by mVISTA (Frazer et al., 2004)
in Shuffle-LAGAN mode. Through IRscope (Amiryousefi et al.,
2018), On the IR boundary between different sections of the gen-
ome (LSC/IRb/SSC/IRa) could be seen expanding and contracting.
A microsatellite was measured using MicroSAtellite (MISA) (Beier
et al., 2017), in mononucleotides, the threshold is 7 nucleotides,
in di’s, 4 nucleotides, in tri’s, tetra’s, penta’s, and hexanucleotides,
3 nucleotides each. The phylogenetic analysis was performed by
NCBI using family Solanaceae.

2.4. Phylogenetic tree

Phylogenetic tree is achieved by Blast Tree View (https://blast.
ncbi.nlm.nih.gov/blast/treeview) using two methods, Fast mini-
mum evolution and Neighbor joining with Max Seq Difference
0.75.

3. Results

3.1. Genome features of chloroplasts of Withania frutescens

Approximately 6 GB of data were generated with 5.5 million
reads from the HiSeq2500 and coverage depth of 1000x in the
chloroplast genome assembled from de novo. Chloroplast genome
of Withania frutescens measures 153,771 bp and has four regions:
LSC (91,285 bp), SSC (18,373 bp), and IRa and IRb (inverted
repeats) each measuring approximately 22,057 bp (Fig. 1, Fig. 2).
The 137 genes found in Withania frutescens cp encode 88 proteins,
4 rRNAs and 38 tRNAs (Table 1, Table S1).(Table 1, Table S1).

3.2. Gene regions and features

Introns were found in 15 of these 137 genes. Three ribosomal
genes, two RNA polymerase genes, and seven respiratory coding
genes have one intron, while PafI, rps12, and clpP each have two
introns (Fig. 3, Table S2). 1138 base pairs make up the longest
intron of the ndhA. 30 end of rps12 is in the IR and 50 end in the
LSC. The LSC possesses 65 coding genes, SSC region 11 and the IR
region 16 coding genes (4 rRNAs, 6 tRNAs and 6 protein-coding
genes). GC content in the cp genome was 37 %, including 43.7 %
in the IRs regions, 31.7 % in the SSCs, and 35.6 % in the LSCs. Coding
regions (CDS) had GC content of 37.8 %, rRNA had 54 %, and tRNA
had 56 % (Table 1).

3.3. Codon bias, nucleotide and amino acid composition

Several Withania species shared the same nucleotide composi-
tion and structure, including Withania frutescens, which was
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Fig. 1. Withania frutescens plastid genome diagram. An inner circle was drawn around the genes transcribed clockwise, and an outer circle around the genes transcribed
counterclockwise. Each group of genes is the same color. Drake gray is GC content, light gray is AT content. Large single copy (LSC) and small single copy (SSC). IRa and IRb are
two inverted repeat locations.

Fig. 2. The percentages of Withania frutescens chloroplast main region. LSC (blue), SSC (orange), IRa (gray), IRb (yellow).
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Fig. 3. The intron containing genes in Withania frutescens chloroplast genome including exons and introns length. Exon1 length (blue), intron1 length (orange), exon2 length
(gray), intron 2 length(yellow), exon3 length(blue).

Table 1
Chloroplast genes of Withania frutescens.

Gene group Gene name

ATP synthase atpA, atpB, atpE, atpF, atpH, atpI
Conserved open reading

frames
Ycf1, Ycf1, Ycf 2, Ycf 2,Ycf 15, Ycf 15

Cytochrome b/f complex petA, petB, petD, petG, petL, petN
Envelope membrane

protein
cemA

Large subunit of rubisco rbcL
Maturase matK
NADH dehydrogenase ndhA, ndhB, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK
Photosystem I psaA, psaB, psaC, psaI, psaJ
Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbT, psbZ
protease clpP1
Ribosomal RNA genes 16S rRNA, 23S rRNA, 4.5 rRNA, 5S rRNA
RNA polymerase subunits rpoA, rpoB, rpoC1, rpoC2
Small subunit of the

ribosome
rps11, rps12, rps12, rps14, rps15, rps16, rps18, rps19, rps19,rps2, rps3, rps4, rps7, rps7, rps8

Subunit of acetyl-CoA-
carboxylase

accD

The large subunit of the
ribosome

rpl14, rpl16, rpl2, rpl2, rpl20, rpl22, rpl23, rpl23, rpl32, rpl33, rpl36

Transfer RNA genes trnA-UGC, trnA-UGC, trnC-GCA, trnD-GUC, trnE-UUC, trnE-UUC, trnE-UUC, trnF-GAA, trnG-GCC, trnH-GUG, trnI-GAU, trnK-UUU, trnL-CAA, trnL-
CAA, trnL-UAA, trnL-UAG, trnM-CAU | trnfM-CAU, trnM-CAU | trnI-CAU, trnM-CAU, trnM-CAU, trnN-GUU, trnN-GUU, trnP-UGG, trnQ-UUG,
trnR-ACG, trnR-ACG, trnR-UCU, trnS-CGA, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC, trnV-GAC, trnV-UAC, trnW-CCA, trnY-
GUA,

Fig. 4. Base composition in the Withania frutescens plastid genome. T % (blue), C % (orange), A % (gray), G % (yellow),
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Fig. 5. Relative synonymous codon usage (RSCU) of Withania frutescens.

Fig. 6. Analysis of microsatellites in chloroplast genomes for Withania frutescens, Withania somnifera, Withania coagulan, Withania riebeckii, and Withania adpressa. (A) Plastid
genome SSR motifs, sizes and types; (B) Number of various forms of SSRs.
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analyzed along with four other species. The highly abundant
nucleotides were Thymine and Adenine with 31.6 % and 30.7 %,
respectively, while Guanine and Cytosine accounted for 18.5 %
and 19.2 %, respectively. At the first (59.3 %), second (61.53 %)
and third (77.38 %) positions of codons in coding sequences, the
AT content was equivalent (Fig. 4. And Table S3).

Based on RSCU analysis, isoleucinewas themajor frequencywhile
tryptophan was the lowest. Other Withania species have different
chloroplast genome patterns (Fig. 5, Table. S4). Accordingly in
Table S4, codons with third base A/T were favored because RSCU
value> 1,while codonswith thirdbaseG/Cwerenon-favoredbecause
RSCU value < 1. These results are common inWithania species.

3.4. SSRs analysis

Of total 382 SSRs, Two hundred and sixty-five mono-, 37 di-,
seventy-three tri-, eight tetra-, one penta-, and one hexanu-
cleotide repetitions were observed. SSRs were distributed as fol-
lows: 238 SSRs were in LSC regions (62.3 %), 62 SSRs were in
SSC regions (16.2 %) and 82 SSRs were in the IR region
(22.5 %). Compared to selected species of Withania, which ran-
ged from 375 (Withania somnifera) to 399 (Withania adpressa),
there was a high level of similarity in SSRs. A high proportion
of A (30.4 %, 27.8 %, 29.5 %, 29.4 % and 29.4 %) and T (34.2 %,
35.3 %, 34.4 %, 34.4 % and 34.1 %) nucleotides were detected
in Withania frutescens, Withania somnifera, Withania coagulan,
Withania riebeckii and Withania adpressa, respectively. As shown
in Fig. 2, table S5 and table S6, the mononucleotides were the
major (A/T repeats were highly frequency), trinucleotides (with
a high number of AAG/CTT repeats) and dinucleotides (AT/TA
repeats were highly frequency), however, pentanucleotides and
hexanucleotides were infrequent (Fig. 6).

3.5. Extension and constriction of IR region

The barriers between LSCs, IRs and SSCs of fourWithania species
were compared comprehensively (Fig. 7). Withania frutescens con-
tains the ycf2 gene at the junction between the LSC and IRb and a
portion of it is found in the IRb. However, other Withania species
Fig. 7. Comparing the IR, SSC, and LSC regions of five plastid genomes. The top of a line sh
Each gene is denoted by a box, and its length in each subregion is displayed above the bo
in one or two regions of the chloroplast genome. There are four junction sites: JLA; IRa/
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the rps19 gene located in the same region. SSC and IRb junctions
contained the ycf1 gene which had been integrated from the 50

end of the IRb region to leave a truncated copy that was present
within SSC/IRb junctions in Withania coagulan, Withania riebeckii
and Withania adpressa but not found in Withania somnifer and
found just at IRb in Withania frutescens. In addition, the ndhF gene
has been found in all plants at the SSC region start, but it stretches
into IRa in Withania frutescens.

3.6. Analyses of the Solanaceae phylogeny

In reconstructed phylogenetic trees for 20 species of the Solana-
ceae family including five Withania species, 99 % of sites were con-
stant. However, about one percent of the nucleotide sites between
species are polymorphic. All nodes of the phylogenetic tree support
complete lineage sorting (Fig. 8). Fast minimum evolution and
Neighbor joining results revealed that Withania frutescens was a
sister plant to other Withania species.

4. Discussion

The comparison between the chloroplast genomes ofWithania
sp rich knowledge of the cp genomes’ evolutionary dynamics.
These studies will enable us to learn more about how genomes
operate and how species like Wthania evolved. Additionally,
microsatellite markers could be developed using SSRs identified
in the current study. There is almost similar gene organization
and gene contents in the chloroplast genomes of angiosperms
across different plant lineages and from the same family of plants
(Chevenet et al., 2006; Amiryousefi et al., 2018; Abdullah et al.,
2019a). Cp genome of Withania frutescens is investigated in this
study for the first time. In the first observation, we found that
the size of chloroplast genomes of different Withinia species varied
between 9 and 200 bp, but Withania frutescens’ full-length chloro-
plast genome was about 600 bp smaller than Withania somnifera’s
(Table S1). According to Mehmood et al., (Mehmood et al., 2020)
and to our knowledge, we thought the chloroplast genome size
of Withania frutescens is one of the smallest chloroplast genomes
in the family Solanaceae, along with Solanum capsicoides and Sola-
ows positive strand genes, while the bottom of the line shows negative strand genes.
x. Genes are listed with a number of base pairs to indicate whether a gene is present
LSC, JSB; IRb/SSC, JLB; IRb/LSC and JSA; SSC/IRa.



Fig. 8. Phylogeny tree is reconstructed with 20 chloroplast genomes of Solanaceae including Withania frutescens with two methods; a, Fast minimum evolution tree and b,
Neighbor joining tree.
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num amotapense. The variation of GC content between Withania sp.
Is almost non-existent (table S1) but it varies between the regions
of the same species chloroplast (table S3). This result accepts pre-
vious reports that find the GC content of chloroplast genomes var-
ies across different regions, but it is higher in the IR regions
because rRNAs contain a high amount of GC (Abdullah et al.,
2019a; Chevenet et al., 2006; Kumar et al., 2018; Abdullah et al.,
2019b). In addition, almost all five species of Withania have a sim-
ilar gene content and genome structure, and the difference in gene
count is due to the absence of psedogenes, such as Ycf3 and Ycf4,
which are present in most solanaceans (Mehmood et al., 2020)
but not in Withania frutescens. Also, the repetition of some genes
is different between species. 15 genes in Withania frutescens, 17
in Withania somnifera and 18 in other species (Table S1). Codon
bias can help us learn about evolutionary processes, genome struc-
ture and selection pressures on genes (Yang et al., 2014), but the
five Withania species showed similar codon bias patterns, demon-
strating that these species’ ecological niches may have been sub-
jected to similar environmental stresses. In the genomes of
Withania, we discovered a preference for codons that end in A or
T (Table S3, S4). It is not limited to Withania alone, but also to most
species in the family Solanaceae (Mehmood et al., 2020). These
could be due to the abundance of A or T nucleotides in other
angiosperm chloroplast genomes (Kumar et al., 2018; Abdullah
et al., 2019a, Zhou et al., 2021).

Among Withania’s chloroplast genome, SSRs and oligonu-
cleotide repeats revealed similarities. SSRs, however, have been
observed in plants from similar lineages in previous studies
(Kumar et al., 2018; Abdullah et al., 2019a,b). Mononucleotide SSRs
predominate over dinucleotide and trinucleotide SSRs, while A/T
SSRs on mononucleotides and AT/TA SSRs on dinucleotides are
abundant (Table S5, S6). These patterns of SSRs are found in Sola-
naceae chloroplast genomes (Amiryousefi et al., 2018) as well as in
many angiosperm families (Abdullah et al., 2019a, b; Yang et al.,
2014; Choi et al., 2016). Also, there were severe similarities in
chloroplast SSRs between Withania species. However, we thought
mononucleotide A/T SSRs could be used to distinguish between
Withania species and needed more genetic studies.
7

In chloroplast genomes, IR shrinkage and extension are regular
occurrences. These differences can occur in both closely related
and distantly related species, and can result in the creation of
pseudo-genes, gene duplication, and gene deletion (Kim et al.,
2017; Abdullah et al., 2019a; Menezes et al., 2018). The relation-
ship between LSC, SSC, and IR in the five species studied revealed
some parallels and differences. The pseudo-gene copies of certain
genes, such as ycf1, were conserved across all species except
Withania somnifera (Fig. 7; Mehmood et al., 2020). In certain spe-
cies (Withania adpressa,Withania coagulans, andWithania riebeckii),
they are spread out in two regions (IRb, SSC), but with Withania
frutescens, they remain in one area (Fig. 7). This phenomenon raises
questions about the evolution of this species. These differences are
critical to gain a better knowledge of the chloroplast genome’s evo-
lution and organization (Kim et al., 2017; Abdullah et al., 2019a).

A phylogenetic tree was constructed based on the nucleotide
sequence for the Solanaceae family, and the results showed close
links among Withania species. Based on a phylogenetic analysis
of the chloroplast genome sequences, our results are confirmed.

In conclusion, as a first report, features of Withania frutescens
chloroplast genome was decoded. Withania frutescens differs from
other Withania species in a number of ways. There is no Withania
species with a smaller chloroplast genome than this one, isoleucine
is the major amino acid, and tryptophan is the least. Third, there
are no ycf3 and ycf4 genes. Fourth, there are only fifteen replicative
genes, while in most other species there are more. Our results may
help in species identification, clarification of taxonomic ambigui-
ties, and inference of genus Withania relationships. The entire cp
genome sequence of Withania frutescens is now available, which
could help researchers identify the most suitable sites for chloro-
plast transformation vectors and transgene integration.
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