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Simple Summary: Cellular senescence is considered a stress response that protects cells against
malignant transformation, facilitates tissue repair and development, and prevents virus replication.
However, excessive accumulation of senescent cells is associated with chronic diseases such as
age-related disorders, cancer, inflammatory diseases and virus replication. The relationship between
virus and cellular senescence is proving to be very complex. Cellular senescence can be induced
in response to virus infection restricting virus propagation. Some viruses are able to exploit the
senescence program to improve their replication, while others have developed strategies to subvert
senescence. Therapeutic approaches to eliminate senescent cells may be used as a mechanism to
ameliorate age-related diseases, but they may have an impact on virus replication. Here we review the
available evidence revealing an interplay between cellular senescence and virus replication. We also
discuss the consequences that treatment with senolytic agents may have on virus replication.

Abstract: Cellular senescence is viewed as a mechanism to prevent malignant transformation,
but when it is chronic, as occurs in age-related diseases, it may have adverse effects on cancer.
Therefore, targeting senescent cells is a novel therapeutic strategy against senescence-associated
diseases. In addition to its role in cancer protection, cellular senescence is also considered a mechanism
to control virus replication. Both interferon treatment and some viral infections can trigger cellular
senescence as a way to restrict virus replication. However, activation of the cellular senescence
program is linked to the alteration of different pathways, which can be exploited by some viruses to
improve their replication. It is, therefore, important to understand the potential impact of senolytic
agents on viral propagation. Here we focus on the relationship between virus and cellular senescence
and the reported effects of senolytic compounds on virus replication.
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1. Introduction

Viral infection triggers the activation of many cellular stress–response pathways, such as heat
shock, oxidative-stress or DNA damage response (DDR), that can result in the induction of apoptosis or
autophagy. In most cases, these cellular responses contribute to controlling virus replication. However,
some viruses have developed strategies to avoid these antiviral responses or subvert them for their
own benefit [1,2]. Another consequence of the activation of stress response pathways by viruses may
be the induction of senescence. For some viruses, the unspecific induction of senescence is part of the
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antiviral response, limiting virus replication. Reinforcing the hypothesis that senescence contributes
to control virus replication, some viruses encode for proteins that specifically inhibit this process.
In contrast, some viruses are able to usurp the senescence pathway to promote virus production.
For example, some of the transcriptionally upregulated genes in senescent cells are cellular proteins
that work as viral receptors. Moreover, the characteristic stable cell cycle arrest that defines cell
senescence can benefit some viral agents. For example, the human immunodeficiency virus (HIV) is
more transcriptionally active in G2 [3], and a G2 cell cycle arrest increases the number of integrated
HIV provirus [4]. In addition, a G2 arrest can also modulate viral or cellular genes that are important
for the completion of the virus life cycle, as proposed for the enhanced expression of papillomavirus
capsid proteins of human papillomavirus type 6 (HPV6) and bovine papillomavirus type 1 (BPV1) [5].
Similar to what occurs with other antiviral responses, the outcome of senescence depends on the virus.

Cellular senescence denotes a condition of stable cell cycle arrest in which senescent cells do
not replicate but stay viable and metabolically active. This process can be beneficial and protect
against cancer or other types of stress, but an excess of senescent cells can favor cancer progression [6].
Senescent cells are characterized by metabolic and morphological alterations, reorganization of the
chromatin, altered gene expression and the secretion of a variety of cytokines, growth factors, proteases,
and chemokines called senescent-associated secretory phenotype (SASP) [7,8].

Although many biomarkers of senescence have been identified, most of them lack specificity or
are restricted to particular conditions. Among the diverse hallmarks of cellular senescence, some of the
most characteristic ones are a persistent DDR; a stable cell cycle arrest mediated by the p53/p21Cip1

and p16INK4a/pRb pathways; morphological changes characterized by enlarged size, flattened shape,
extensive vacuolization and multinucleation; upregulation of the cell cycle regulators p16INK4a

and p21Cip1; formation of senescence-associated heterochromatin foci (SAHF); the acquisition of
a senescence-associated secretory phenotype (SASP); and increased levels of beta-galactosidase
(SA-beta-gal) activity at pH 6.0 [9].

Cellular senescence can occur in response to different stimuli, including chemotherapeutic
treatment, oxidative or genotoxic stress, ionizing radiation, telomere shortening, oncogenic signaling
or virus infection [10]. DNA damage is a key event for the induction of cell senescence in response to
many of these stimuli, such as treatment with chemotherapeutic drugs, oxidative stress, the shortening
of telomeres, or oncogenic stress [11].

A factor linked to both DNA damage and senescence is interferon (IFN) signaling. Persistent beta
IFN treatment triggers a DNA damage signaling pathway and senescence [12], and DNA damage
induces type I IFN and stimulate IFN signaling, which amplifies DNA damage responses and promotes
a p53-dependent senescence program [13–15].

In this review, we focus on the interplay between viruses and senescence and the potential of
senolytic drugs as antivirals.

2. Virus and Senescence

2.1. Virus and Senescence-Associated Pathologies

Cellular senescence is considered a mechanism to prevent malignant transformation of damaged
cells, to facilitate tissue repair and development, and to control virus replication. However, senescence
can also contribute to the development of different pathologies such as age-related disorders, cancer,
inflammatory diseases and virus replication [5,16]. Although the upregulation of senescence-associated
pathways is related to some pathological conditions that can be triggered by a viral infection,
the existence of a direct relationship between virus infection and senescence induction in most of these
diseases has not been proved.

One of the few pathologies clearly related to both senescence and virus infection is HIV-related
osteoporosis and osteopenia. The maintenance of bone remodeling requires an adequate balance
between osteoblast generation-osteoclast resorption and an alteration of this balance leads to
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osteoporosis or osteopenia [17]. Cellular senescence is considered one of the key factors in this disease,
and it is clearly established that HIV infection is a risk factor for this pathological condition [18–20].
The secretion of two HIV proteins, Tat and Nef, to the media promotes human bone marrow
mesenchymal stem cell senescence through induction of inflammation and reduction of autophagy,
altering osteoblastic differentiation and inducing osteopenia or osteoporosis [21].

2.2. Cellular Senescence in Response to Virus Infection

The fact that many viruses activate the cellular DDR [22] and that virus infection induce the
production of IFN suggests that viruses may be a stimulus for senescence induction. The induction of
senescence in response to virus infection can result from the activation of different pathways (Table 1).
Infection of immortalized epithelial cells as well as of the respiratory epithelia of mice with the human
respiratory syncytial virus (HRSV) induces double-stranded breaks (DSB) caused by the generation of
reactive oxygen species (ROS) at the mitochondria leading to activation of a DDR and the induction of
senescence. A contribution of the HRSV-induced senescence to the physiopathology of the infection
has been proposed since the senescence state, and DNA damage induction still persists in the lungs of
the infected mice [23]. Similarly, infection with Merkel cell polyomavirus (MCPyV) also activates a host
DDR resulting in the induction of senescence of normal human dermal fibroblasts [20]. Expression of the
large T antigen of MCPyV has been demonstrated to induce DSB, the activation of ataxia–telangiectasia
mutated (ATM) protein kinase and the phosphorylation of p53 and KRAB-associated protein 1 (KAP-1).
The accumulation of phosphorylated KAP-1 has been associated with a G2 phase arrest, a mechanism
that may avoid viral DNA replication [24,25].

Infection of the human umbilical vein endothelial cells (HUVEC) with dengue virus (DENV) also
leads to the expression of SA-beta-gal, cell cycle arrest and morphologic changes typical of senescent
cells [26], and this process has been proposed to contribute to the pathogenesis of the virus. However,
whether the DENV-induced senescence occurs through a DNA damage-mediated pathway is unknown.

Another mechanism that mediates virus-induced cellular senescence is cell-to-cell fusion, a strategy
that may facilitate viral spreading, avoiding detection by the immune system [27]. Infection of normal
human lung fibroblast (IMR90) cells with measles virus (MV) triggers cellular senescence as revealed
by the reduction of cell proliferation, the SA-beta-gal staining, the increase in the expression of p53 and
p21 or the induction in the expression of SASP components such as interleukin-8 (IL-8) or the C–C
motif chemokine ligand 5 (CCL5). The authors also reported an increase in DNA damage and p53
phosphorylation in IMR90 cells expressing the MV protein ERWVE, which facilitates the maintenance
of the senescence state of the cells. Induction of senescence by MV was not restricted to IMR90.
MV infection also triggered senescence in the adenocarcinoma cell line A549, and this induction occurs
in a p53-dependent manner [28]. The authors propose that this process may facilitate the recognition
and elimination of the infected cells by the immune system.

Another virus that has been proposed to trigger senescence through activation of p53, as well
as the p16INK4a pathways, is the human cytomegalovirus (HCMV). Infection of fibroblasts with
HCMV induces cell cycle arrest and premature senescence, probably mediated by the expression
of the viral IE2 protein [29,30]. Similar to HCMV IE2 protein, the expression of other individual
viral proteins can also promote cellular senescence. This is the case of the HIV Tat and Nef proteins,
which can induce senescence of human bone marrow mesenchymal stem cells [21], as mentioned
above. Inhibition of autophagy seems to mediate the HIV Nef-induced senescence while Tat triggers
senescence through the nuclear factor kappa B (NF-kB) pathway [21,31]. Moreover, HIV Tat may also
trigger senescence by additional mechanisms. Thus, expression of HIV Tat in endothelial cells or in
transgenic mice upregulates the expression of the microRNA miR-34a [32], a molecule that targets
sirtuin 1 (SIRT1), leading to the induction of senescence [33,34]. Together with Tat and Nef, other HIV
proteins can also increase the expression of this senescence-associated microRNA and contribute to the
induction of cell senescence, as revealed after the expression of the gp120 protein from X4 and R5 HIV-1
strains in endothelial cells [35]. Analysis of senescence markers such as p16INK4a, p53 or SA-beta-gal
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activity revealed that expression of Tat and Nef proteins from the simian immunodeficiency virus
(SIV) in adipose tissue and human adipose stem cells also results in the induction of senescence [36].
Activation of the senescence program by both proteins occurs through an oxidative stress pathway.
The pro-senescent activity of HIV proteins has been proposed to contribute to the pathology in infected
people, such as in cardiovascular diseases.

Table 1. Induction of senescence by viruses.

Virus Mechanism References

Human respiratory syncytial virus (HRSV) Oxidative-stress-mediated DNA damage [23]

Human cytomegalovirus (HCMV) The HCMV IE2 protein transcriptionally upregulates
p16INK4a [29,30]

Epstein–Barr virus (EBV) Replicative stress and DNA damage [41]

Kaposi’s sarcoma-associated herpesvirus (KSHV) Replicative stress and DNA damage [42]

Merkel cell polyomavirus (MCPyV) ATM-dependent DDR [25]

H7N9 influenza A virus (IAV) Viral NS1 protein increases nitric oxide synthase expression
and nitric oxide release [40]

Human immunodeficiency virus (HIV)
HIV Tat protein activates NF-kB [21,31]

HIV Tat, and gp120 proteins upregulate miR34a [32,35]
HIV Nef protein inhibits autophagy [21]

Hepatitis B virus (HBV) The C-terminally truncated HBx protein of HBV upregulates
p16INK4a and p21Cip1 and downmodulates pRb [39,43]

Hepatitis C virus (HCV) Telomere shortening [37,38]

Measles virus (MV) Cell to cell fusion [28]

Dengue virus (DENV) Unknown mechanism [26]

Senescence induction also results from infection with other tumor viruses such as hepatitis
C virus (HCV) or hepatitis B virus (HBV). Senescent hepatocytes were found in chronic hepatitis due
to HCV [37]. In addition, a correlation between liver fibrosis observed in chronic HCV infections
and cellular senescence has been reported. Cellular senescence in liver cells infected with HCV has
been suggested to occur as a consequence of the telomere shortening produced in response to the
oxidative stress caused in the mitochondria by the HCV core protein [37,38]. Analysis of liver tissue
from patients with chronic HBV infection also revealed an association between HBV infection and
senescence-associated markers [39].

Interestingly, the NS1 protein of some influenza A virus (IAV) strains can also trigger cellular
senescence. Thus, the increase in nitric oxide synthase expression and nitric oxide release by neuro2a
cells and primary cultured mouse cortical neurons in response to NS1 protein from H7N9 IAV
expression can activate a cellular senescence program [40].

2.3. Cell Senescence as an Antiviral Response

Cellular senescence can contribute to dysfunctional viral-sensing mechanisms and thus affect
virus replication. Senescence of primary or tumor cells, independently of the stimuli involved in
its induction, is a mechanism to control vesicular stomatitis virus (VSV) infection [44]. Importantly,
the control of VSV propagation by senescence was also demonstrated in mice. Senescence induction in
a mouse model of bleomycin-induced lung injury reduced the VSV recovery from the lungs of the
infected mice [44].

Senescence of HUVEC cells was also reported to inhibit DENV infection [26]. However, this effect
seems to be cell type-dependent since senescence induction in monocytes has been shown to trigger
an increase in the expression of the dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3)
grabbing nonintegrin (DC-SIGN) receptor facilitating DENV infection [45].

Finally, a negative role of senescence on MCPyV infection has been reported. Siebels et al. (2020)
demonstrated that KAP-1 is a restriction factor for MCPyV infection and that replication of the virus
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induces the phosphorylation of KAP-1 and the subsequent cellular senescence [25]. Therefore, it has
been proposed that senescence is a host defense mechanism against MCPyV [25].

2.4. Viral Proteins That Inhibit Cellular Senescence

Cellular senescence may contribute to the antiviral activity of IFN [46]. To replicate in the host,
viruses require mechanisms to subvert this antiviral response. Therefore, some viruses have developed
proteins able to counteract cell senescence (Table 2).

The deregulation of cell proliferation that occurs after the initial infection of primary cells in
response to the expression of latent viral oncoproteins from the Epstein–Barr virus (EBV) or Kaposi’s
sarcoma-associated herpesvirus (KSHV) elicits the activation of a DNA damage response [47,48]
and the induction of oncogene-induced senescence [41,42]. Early after B-cell infection with EBV,
the expression of the latent proteins EBNA-LP and EBNA2 induces the transcriptional transactivation
of cellular genes that control entry into the cell cycle and the activation of an ATM/Chk2-dependent
DDR [47]. Activation of the ATM kinase is also the mechanism inducing the DDR signaling in response
to KSHV infection [48]. However, the expression of the EBV latent proteins EBNA3C and LPM1 of EBV
has been shown to attenuate the DNA damage response [47] and to block the p16INK4a-Rb pathway
promoting senescence bypass [49,50]. Similarly, expression of the KSHV latent proteins vCyclin and
v-FLIP also inhibits senescence. KSHV vCyclin forms active kinase complexes with Cdk6 that are
resistant to the inhibition by p21Cip1, p16INK4a and p27Kip1 [51] and induces p27 degradation [52]
suppressing replicative senescence in primary human lymphatic endothelial cells [53] as well as
senescence triggered by NF-kB hyperactivation [54]. Suppression of autophagy has been proposed as
the mechanism that mediates the senescence bypass by KSHV v-FLIP [55].

Table 2. Inhibition of senescence by viruses.

Virus Mechanism References

Epstein–Barr virus (EBV) EBV latent proteins EBNA3C and LMP1 attenuate DDR
and block p16INK4a-pRb pathway [47,49,50]

Kaposi’s sarcoma-associated
herpesvirus (KSHV)

KSHV vCyclin protein forms active kinase complexes
with Cdk6 and induces p27 degradation KSHV vFLIP

protein suppresses autophagy
[51–55]

Hepatitis B virus (HBV) HBV HBx protein downmodulates p16INK4a and p21Cip1 [56,57]

Human papillomavirus (HPV) HPV E6 and E7 proteins destabilize pRb and activate
telomerase [58,59]

The HBx protein of HBV has a crucial role in the pathogenesis of hepatocellular carcinoma
(HCC). Expression of the C-terminal truncated HBx protein has been reported to induce senescence
through the induction of p16INK4a and p21Cip1 expression and the downmodulation of pRb
phosphorylation [43]. However, the expression of the full-length HBx protein diminishes the expression
of DNA methyltransferases, downmodulating the expression of p16INK4 and p21Cip1 and overcoming
senescence [56,57].

Other two viral proteins able to inhibit senescence are the human papillomavirus (HPV) E6 and
E7 proteins. Among the different functions attributed to HPV E6 and E7 proteins is the binding of
HPV E7 to the active form of the retinoblastoma family of tumor suppressor proteins inducing its
destabilization, the degradation of p53 or the activation of telomerase [58]. Although co-expression
of both proteins bypasses replicative senescence in keratinocytes, only the inhibition of pRb and the
stimulation of telomerase activity was essential for this inhibition [59].

2.5. Hijacking Cellular Senescence by Virus

Some viruses can exploit the senescence program to increase their replication rate through a
variety of mechanisms. One example is viruses that benefit from the increase in viral receptors that
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occurs when cells go to senescence, such as DENV. DENV can attach to DC-SIGN to infect cells [60],
and this receptor is upregulated in senescent cells, which facilitates its infection by DENV [45,60].
The exploitation of the senescence program by DENV may be limited by the cell type. Thus, it has been
reported that senescence has a negative impact on the infectivity of HUVEC cells by DENV [26]. It has
been speculated that increased DC-SIGN expression in senescent monocytes might increase infectivity
by other viruses, including IAV, HIV, Ebola, HCV, cytomegalovirus and severe acute respiratory
syndrome coronavirus (SARS-CoV) since these pathogens can be captured by DC-SIGN [61].

A reduction in the virus-induced type I IFN expression in senescent cells is the mechanism
proposed by Kim et al. (2016) to explain the increased susceptibility of primary human bronchial
epithelial cells and human dermal fibroblasts undergoing replicative senescence to both IAV and
varicella-zoster virus (VZV) relative to non-senescent cells [62]. Higher susceptibility of senescent cells
to VZV has been proposed as the cause of the relatively high incidence of zoster in aging patients
together with immunosenescence.

The increased susceptibility of senescent cells to some viral infections makes senescence a potential
target to control viral replication.

2.6. Utility or Risks of Using Senolytic Drugs to Treat Virus Infection

The relevance of senescence in some pathogenic conditions has led to the development of
senolytics, compounds able to selectively eliminate senescent cells [63], as potential treatments for
several diseases [64–66]. Since senescence may alter (upregulate or downmodulate) the replication
capacity of different viruses, it is important to evaluate the effect of drugs with senolytic activities on
virus replication.

Dasatinib is a potent kinase inhibitor whose main targets are the Src family of kinases and probably
other tyrosine kinases [67,68]. Its ability to inhibit Src and Bcr-Abl kinases [67,69,70] is the main reason
for its utility for the treatment of patients with chronic myeloid leukemia (CML), especially for those
resistant to imatinib treatment [71]. Moreover, dasatinib seems to be effective in the selective elimination
of senescent cells [68] and also appears to be effective in suppressing renal fibrosis and improve renal
function in several animal models [72]. In addition, its combination with other senolytic agents
revealed improved physical function in patients with idiopathic pulmonary fibrosis [73]. Treatment
with dasatinib has an impact on the replication of different viruses such as the flavivirus DENV and
HCV. Treatment of DENV infected cells with dasatinib inhibits DENV replication, particle assembly
and secretion, likely through the inhibition of the Src-family kinases [74,75]. Inhibition of the Abl
kinase has been proposed as the mechanism through which dasatinib blocks the entry of HCV [76,77].
Several alphaviruses have also been reported to be sensitive to the inhibition of Src family kinases.
Thus, treatment of cells infected with chikungunya virus, Mayaro virus, o’nyong-nyong virus, Ross
river virus or Venezuelan equine encephalitis virus with dasatinib decreases the translation efficiency
of viral RNAs, limiting their replication [78]. Src protein tyrosine kinases play a relevant role at various
stages of HIV-1 entry, and its inhibition restricts HIV-1 entry in activated primary CD4 + T cells [79]
and preserves the antiviral activity of the sterile alpha motif and histidine-aspartic domain-containing
protein 1 (SAMDH1) [80,81]. Other viruses, such as poliovirus, are not affected by this drug [74].
In contrast, there are numerous reports describing the reactivation of latent viral infections in CML
patients treated with Src tyrosine kinase inhibitors, including dasatinib or imatinib, likely due to the
downmodulation of the T-cell mediated immune response caused by these drugs. Thus, CML patients
treated with these drugs present more predisposition for infection with or reactivation of different
viruses such as cytomegalovirus, human herpesvirus 6, VZV or SARS-CoV-2 [82–87]. Additionally,
although dasatinib treatment has been reported to inhibit the replication of HBV [88], enhanced HBV
replication and reactivation has been reported in CML patients [89,90].

Navitoclax (also known as ABT-263) belongs to a class of senolytic agents whose mechanism
of action is the inhibition of the Bcl-2 family of anti-apoptotic proteins [91,92]. It has been validated
in different preclinical models demonstrating its capacity to kill senescent cells, although with high
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toxicity [93]. Evaluation of navitoclax on virus replication revealed that it induces premature apoptosis
of cells infected with IAV leading to the attenuation of the production of proinflammatory and antiviral
cytokines [94]. Importantly, treatment with navitoclax of mice infected with IAV led to an imbalance in
cytokine production that, together with the inability of the immune system to clear the virus, reduced
the survival rate of IAV-infected mice. Although the authors demonstrated that navitoclax treatment
also induced the premature apoptosis of cells infected with other viruses such as herpes simplex virus
type-1 (HSV-1), MV, vaccinia virus (VACV), herpes simplex virus type-2 (HSV-2), influenza B virus
(IBV), Bunyanwera virus (BUNV) or Sindbis virus (SINV) in vitro, they did not evaluate whether this
increased apoptosis accelerated or attenuated virus infection in vitro or in vivo. A reduction in virus
replication resulting from premature and specific death of the cells infected with IAV, IBV, Middle
East respiratory syndrome (MERS-CoV), Zika virus (ZIKV), HBV, HSV-1, HSV-2 and echovirus 1 and
6 upon navitoclax treatment has been recently reported [95]. The selective killing of HIV-infected
primary cells during productive infection by navitoclax has been proposed as a strategy of eliminating
host cells capable of producing HIV [96].

HSP90 inhibitors such as geldanamycin, 17-DMAG (alvespimycin), and 17-AAG (tanespimycin)
constitute other classes of agents with senolytic activity in mouse and human cells. These compounds
destabilize the phosphorylated form of protein kinase B (PKB/AKT), resulting in apoptosis of senescent
cells [97]. Numerous articles demonstrate that HSP90 is required for most viral protein homeostasis.
Therefore these drugs can exert antiviral activity against a wide variety of viruses. Inhibition of HSP90
through treatment with geldanamycin reduced the replication of VSV, paramyxovirus SV5, human
parainfluenza virus type-2 (HPIV-2), human parainfluenza virus type-3 (HPIV-3), Simian virus 41
(SV41), La Crosse bunyavirus, Zaire Ebola virus, VACV, HCV, HSV-2, and poliovirus [98–103].

Another frequently used senolytic agent is quercetin [68]. Quercetin belongs to a group of natural
compounds found in a wide variety of plants and fruits. The senolytic activity of quercetin is mediated
by the modulation of different signaling pathways and gene expressions such as NF-kB, cyclin D1, Bax,
Bcl-2, PARP and Gadd45 [104]. Recently, these compounds acquired high interest because different
screenings and preliminary studies propose quercetin as a potential drug against SARS-CoV-2 [105–108]
and ZIKV replication [109]. Quercetin has been proved to inhibit ZIKV replication by binding to
ZIKV NS2B-NS3 protease and inhibiting its catalytic activity [110,111]. In addition, quercetin also
prevents ZIKV to enter into the host cells [109], likely through a direct action on the viral particle,
as described for other flavonoid agents like epigallocatechin gallate (EGCC) [112]. It has been
reported that this compound binds to the surface of the HIV envelope and destabilizes the viral
particle [113]. A similar interaction with and inhibition of the DENV NS2B-NS3 protease has also been
reported [114–116]. In addition, quercetin has also been demonstrated to exert antiviral activity against
other viruses. Quercetin inhibits HCV by many different mechanisms directed either against the host or
the virus. Thus, it affects virion integrity, decreases internal ribosome entry site (IRES) activities [117],
inhibits NS5A-driven IRES-mediated translation of the viral genome [118,119], and inhibits HCV
replication [120]. Moreover, quercetin also downmodulates the synthesis of triacylglycerol (TAG),
partially through modulating diacylglycerol acyltransferase (DGAT) activity, affecting the trafficking of
the HCV core protein to lipid droplets (LDs), an essential process for infectious virion production [121].
This drug has also been shown to be effective against IAV. Quercetin interacts with the hemagglutinin
of different IAV strains, blocking their entry into the cell [122]. Herpesviruses are also blocked by
this drug. In this case, quercetin downmodulates the expression of immediate-early genes of HCMV
and VZV [123], whereas several activities seem to mediate its effect on HSV-1. Quercetin inhibits
binding and entry of HSV-1 in host cells and downmodulates NF-kB activation inhibiting viral gene
expression [124]. Inhibition of the expression of TLR-3 has been proposed as the mechanism by which
quercetin inhibits NF-kB and IRF3 [125].

A novel class of broad-spectrum senolytics is cardiac glycosides such as ouabain or
digoxin [126,127]. This family of compounds targets the Na+/K+ATPase pump causing an imbalanced
electrochemical gradient within the cell leading to depolarization and acidification. Cardiac glycosides



Biology 2020, 9, 455 8 of 16

have been demonstrated to have a broad antiviral activity such as anti- alphavirus [128],
cytomegalovirus [129–131], herpesvirus [132,133], or HIV [134,135], among others, and the mechanism
of action depends on the viral agent. Ouabain downmodulates the expression of both viral RNA
and antigens in cells infected with Sendai virus, likely by preventing the intracellular accumulation
of K ion required for the exponential growth of the virus [136]. Ouabain and digoxin also inhibit
SARS-CoV-2 replication [137] as well as the cellular entry of VSV, mouse hepatitis virus (MHP), feline
infectious peritonitis virus (FIPV) and MERS-CoV through a mechanism mediated by Src [138]. In this
study, the authors did not find any effect of these compounds on IAV. However, more recent studies
have found that cardiac glycosides decrease IAV replication in alveolar epithelial cells by decreasing
intracellular potassium, which triggers the inhibition of protein translation [139].

The ability of some viruses to exploit the senescence pathway to improve their replication opens a
window of opportunities to use those viruses as potential senolytic agents. Thus, infection with MV has
been reported to accelerate the lysis of a panel of cancer cell lines induced into senescence after treatment
with chemotherapeutic drugs [140]. The combinatorial effect of measles-based virotherapy, together
with the chemotherapeutic agent that induces senescence, gemcitabine, on human pancreatic cancer
cell lines, has also been evaluated [141]. The authors found that the combination was significantly
more effective than the individual treatments reducing cell viability. The use of MV as a senolytic agent
is possible due to the ability of the virus to replicate in senescent cells and induce their lysis even faster
than in non-senescent cells. An increase in the cellular receptors intercellular adhesion molecule-1
(ICAM-1) and decay-accelerating factor (DAF) in response to doxorubicin and the consequently
improved infection by the oncolytic Coxsackievirus A21 may explain why the combination of this
viral agent with the senescence-inducing agent doxorubicin also resulted in greater tumor reduction
compared to either agent alone [142]. Another oncolytic virus that replicates more efficiently in
senescent than in normal cells is IAV. Therefore, an IAV adapted to avoid pathogenicity may be a
potentially useful “virosenolytic” agent.

3. Conclusions

Prolonged IFN treatment or infection with some viruses can promote cellular senescence,
which can protect against the infection with these or other viral agents, but it may contribute to
the physiopathology of the infection. Some viral agents have developed strategies to prevent cellular
senescence, thereby promoting virus replication and virus-related diseases. Others have evolved
different mechanisms to exploit the senescence program for their own benefit. Senescence-targeted
therapies have proved effective in removing senescent cells from animal models and humans and
have been proposed as a therapeutic strategy to delay, prevent or treat different age-associated
pathologies. Senolytic strategies may also be useful to combat the infection with those viruses
that benefit from cellular senescence (Figure 1). One potential problem of using oncolytic viruses
as senolytic agents is the antiviral immunity that can decrease the effectiveness of the viral agent.
In addition, the proinflammatory response promoted by the virus will be added to the extracellular
factors that comprise the SASP and that evoke immune responses. Could this strategy result in
excessive inflammation? Finally, it is also important to consider that many clinical data reveal the
reactivation of latent viral infections in response to senolytic drugs. What would be the effect of a
virus coinfection? More studies are needed to define the benefits and risks of these compounds on
virus-related diseases.
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