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A B S T R A C T   

For emerging epidemics such as the COVID-19 pandemic, quantifying travel is a key component of developing 
accurate predictive models of disease spread to inform public health planning. However, in many LMICs, 
traditional data sets on travel such as commuting surveys as well as non-traditional sources such as mobile phone 
data are lacking, or, where available, have only rarely been leveraged by the public health community. Evalu-
ating the accuracy of available data to measure transmission-relevant travel may be further hampered by limited 
reporting of suspected and laboratory confirmed infections. Here, we leverage case data collected as part of a 
COVID-19 dashboard collated via daily reports from the Malagasy authorities on reported cases of SARS-CoV-2 
across the 22 regions of Madagascar. We compare the order of the timing of when cases were reported with 
predictions from a SARS-CoV-2 metapopulation model of Madagascar informed using various measures of 
connectivity including a gravity model based on different measures of distance, Internal Migration Flow data, 
and mobile phone data. Overall, the models based on mobile phone connectivity and the gravity-based on 
Euclidean distance best predicted the observed spread. The ranks of the regions most remote from the capital 
were more difficult to predict but interestingly, regions where the mobile phone connectivity model was more 
accurate differed from those where the gravity model was most accurate. This suggests that there may be 
additional features of mobility or connectivity that were consistently underestimated using all approaches but 
are epidemiologically relevant. This work highlights the importance of data availability and strengthening 
collaboration among different institutions with access to critical data - models are only as good as the data that 
they use, so building towards effective data-sharing pipelines is essential.   

1. Introduction 

Human mobility underlies the spatial patterns of many infectious 
diseases (Findlater and Bogoch, 2018; Grenfell et al., 2001; Kramer 
et al., 2016; Meloni et al., 2011; Tatem et al., 2006; Tizzoni et al., 2014; 

Wesolowski et al., 2016; Zhou et al., 2020) and will drive the dynamics 
of emerging epidemics. Quantifying travel patterns is key to predicting 
where and when the pathogen may spread and therefore to devising 
measures and policies to contain the epidemics (Wesolowski et al., 
2015b; Charu et al., 2017). As demonstrated by the COVID-19 pandemic 
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(Badr et al., 2020; Chang et al., 2021; Kraemer et al., 2020; Nouvellet 
et al., 2021), a broad range of travel from international trips to local 
commuting patterns drives the spatial spread of SARS-CoV-2. While data 
is increasingly being used to inform mobility patterns and inform pre-
dictive transmission models for public health planning (Grantz et al., 
2020; Kishore et al., 2020; Oliver et al., 2020), these data are often 
limited in low- and middle-income countries (Gupta et al., 2020) where 
routine data collection of mobility patterns may be sparse (Wesolowski 
et al., 2016, 2015a). 

Extrapolating generic patterns of mobility, e.g., weights in the 
gravity model, derived from data from High Income Countries (HIC) to 
Low & Middle Income Countries (LMICs) may be misleading (Weso-
lowski et al., 2016, 2015a) given greater subnational heterogeneity. For 
instance in Madagascar, beyond the road infrastructure, which is sparse 
and may be in poor condition (Fig. 1A), there is one semi-functional 
railroad, and a handful of commercial flights directed mostly to tourist 
destinations. Standard travel estimates algorithms are vastly inaccurate. 
Moving is also highly dependent on local topography and road condi-
tions and not only takes time but also is expensive. Although mobility 
data has the potential to shed light into how these limitations translate 
to realized mobility, high quality data on mobility are limited. There is 
no systematic digitized data for travelers, access to mobile phones is one 
of the lowest in the world (41% of the population at 11th place from the 
bottom) (Mobile cellular subscriptions), and mobility data derived from 
the latter are not readily available. Yet the problem of understanding 
spatial spread of infectious diseases is persistent and there is a need to 
use data to inform decision-making around resource allocation. 

Madagascar is a large island 400 km east of Africa with a population 
size of about 26 million (INSTAT-RGPH-3, 2020) of which 78% earns 
less than 1.9 US dollar per day (UNDP-Multidimensional Poverty Index). 
The pandemic virus, SARS-CoV-2 was officially reported on the 20th of 
March 2020, with three imported cases from France arriving at the 
capital airport. One specific case was investigated after a tourist tested 
positive upon return in France prompting the first contact tracing efforts 
in Madagascar. About six months after the first official case, Melaky was 
the last of the 22 regions to have reported at least one confirmed case. 
Madagascar has undergone two waves with the second declared roughly 
one year after the first confirmed case (Fig. 1B). At the time of writing 
(May 2021) a total of 40,474 cases have been reported. Because all 
airports were closed, minimizing the risks of importation, Madagascar is 
a near ‘closed’ system, making it an ideal setting in which to investigate 
the role of internal mobility in the spread of SARS-CoV-2. 

Previous work in Madagascar has noted that the low numbers of 
reported cases has been attributed to delayed introduction due to quick 
closure of the international borders and small number of performed tests 
(Evans et al., 2020). We extend this work here by providing an analysis 
of the spatial spread of COVID-19 using various measures of mobility to 
identify which source of mobility is best able to reproduce the spatial 
dynamics of the outbreak. Lack of an official compiled and accessible 
database on COVID-19 in Madagascar prompted us to develop a 
Madagascar-specific dashboard (covid19mg.org), which is used 
throughout our analysis (see below). We leverage a range of data and 
modeling tools to better understand the spread of SARS-CoV-2 in a data 
limited setting reflecting highly heterogeneous demographics, accessi-
bility, and road networks throughout the country. 

2. Material and methods 

SARS-CoV-2 Confirmed Case Data in Madagascar: Since there is no 
accessible national SARS-CoV-2 database, we compiled data communi-
cated by the Ministry of Health of the Government of Madagascar on 
national television every day. These include the number of new cases 
(confirmed by PCR (Polymerase Chain Reaction)), severe clinical cases, 
deaths, recovered, and the number of tests (data accessible at: cov-
id19mg.org). The detail and consistency of reporting for each category 
varies, however the number of cases per region was reported throughout 

the time period allowing us to reconstruct the spatial spread across the 
country. The reported cases used here only include those confirmed by 
detection of viral nucleic acids (RT-PCR (Real Time Polymerase Chain 
Reaction) tests and or geneXpert (Rakotosamimanana et al., 2020)). Due 
to reporting delays, testing delays, and variable patterns of healthcare 
seeking behavior, we focused on the order in which cases were reported 
in each region. 

Each region was ranked based on the date when the first and fifth 
cases were confirmed. The first confirmed case is the most obvious 
metric on the occurrence of the disease in that region and the spread 
across the island. However, because foreign tourists tested positive at 
the early phase of the pandemic, the first case might not necessarily 
reflect the mobility of Malagasy people (Ministry of Health). We chose 
the fifth case as an alternative and intermediate threshold to strengthen 
our results and investigate mobility patterns that are more likely to be 
non-tourist related travel. As some regions did not even reach the fifth 
confirmed case, this quantity reflects a balance between moving away 
from the possible biases inherent in using the first case, yet also 
capturing outcomes across regions. In the transmission model described 
below, we then used various mobility matrices to model the occurrence 
of the first and fifth cases to compare to the reported rank. 

2.1. Mobility matrices 

A mobility matrix describes how many individuals move from within 
and between regions per unit of time (Grenfell and Harwood, 1997). 
Since our goal is to understand how cases spread across regions, we 
ignored mobility within a region. We used four types of mobility 
matrices. The first three matrices are based on the gravity model with 
various measures of distance (Erlander and Stewart, 1990). The con-
nectivity between region i and j is defined as cij = a Ni

τNj
τ/dij

2, where a 
and τ are scaling factors, N is population size and dij represents the 
distance between region i and j. The distance is either the Euclidean 
distance (referred to as Euclidean model) between the centroids of the 
two regions or average transit time between the regions (referred to as 
transit model). To estimate the average travel time between regions 
(excluding flying as it is not the primary mode of transportation), we 
interviewed national bus companies on the travel times between the 
capital (Antananarivo) and the capitals of each of the 21 remaining re-
gions. Since Antananarivo is the primary hub of travel (Fig. 1A), we 
calculated trips between other regions by adding or subtracting the 
travel times to and from Antananarivo. Travel times were directly ob-
tained for routes that do not pass through the capital (e.g., neighboring 
remote regions). We also varied the parameter τ (0.5, 1, and 1.5) giving a 
total of eight mobility matrices explored. 

A third gravity-based model was used. The mobility matrix is the 
Internal Migration Flow (flow for short) accessed from the WorldPop 
project (worldpop.org). The Internal Migration Flow data was devel-
oped to study the spread of malaria where no migration data is available. 
In short, the model estimates the number of people moving between 
regions by fitting a gravity model extended to account for geographic 
and socioeconomic factors between 2005 and 2010 (more details in 
(Garcia et al. 2015; Sorichetta et al., 2016)). 

The fourth matrix comes from mobile phone data from Orange 
Madagascar, one of three main mobile phone operators in Madagascar, 
which records mobility traced by cell towers. Since current data is not 
available, we used data from a malaria study in 2015 (Ihantamalala 
et al., 2018). 

In practice, we used a hierarchical approach to calculate the number 
of individuals moving across the regions. First, we fixed the total number 
of individuals moving per unit of time (X). Then, we used a vector P =

(P1, …, P22), where Pk ≥ 0 and 
∑22

k=1Pk = 1, to calculate the number of 
individuals leaving each region (X1,…, X22) ~ Multinomial(X, P). 
Finally, for each region i, we used a vector Mi = (M1, …, M22), where 

Mi. ≥ 0 and 
∑22

j=1Mij = 1 and Mii = 0 as we ignored mobility within 
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Fig. 1. The geographic context and time-course of SARS-CoV-2 cases in Madagascar. A) The primary and secondary road infrastructure in Madagascar with the 
location of the first reported case (national capital of Madagascar: Antananarivo (gray pin) of the Analamanga Region) and last region to report a confirmed case 
(Maintirano (black pin) of the Melaky region). B) The confirmed cases of SARS-CoV-2 as collated on the COVID-19 dashboard (covid19mg.org) from the 20th of 
March 2020 to the 17th of May 2021. The date when the first case was reported in Maintirano, Melaky is shown as a grey dashed line (9th September 2020). Codes: 
AA = Atsimo Atsinanana, AD = Atsimo Andrefana, AJ = Analanjirofo, AL = Alaotra Mangoro, AM = Amoron’i Mania, AN = Analamanga, AT = Atsinanana, AS 
= Anosy, AY = Androy, BE = Betsiboka, BG = Bongolava, BO = Boeny, DI = Diana, IT = Itasy, MA = Matsiatra Ambony, ME = Menabe, MK = Melaky, IH 
= Ihorombe, SA = SAVA, SO = Sofia, VA = Vakinankaratra, VF = Vatovavy-Fitovinany. 
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regions, to calculate the number of individuals leaving region i and 
entering region j where xij is the jth entry from xi. ~ Multinomial(Xi, Mi). 
The technical details of obtaining the vectors P and Mi from the four 
mobility matrices are reported in the supplement. 

2.2. Mechanistic model 

We developed a stochastic discrete time SEIR metapopulation model 
for the 22 regions in Madagascar. The deterministic skeleton of the 
model without mobility is, 

S(i, t + 1) = S(i, t) − β S(i, t)I(i, t)/N(i, t)

E(i, t + 1) = E(i, t) + β S(i, t)I(i, t)/N(i, t) − αE(i, t)

I(i, t + 1) = I(i, t) + αE(i, t) − γI(i, t)

R(i, t + 1) = R(i, t) + γI(i, t)

where i and t denote a region and time (days). N(i,t) is the population 
size in each region which was obtained from the National Institute of 
Statistics in Madagascar (INSTAT). Stochasticity is captured by setting 
the distribution of the number of new exposed individuals to follow a 
Negative Binomial(1, 1/(1 + m)) where m = βS(i, t)I(i, t)/N(i, t); simi-
larly, the number of new infectious and new recovered individuals are 
drawn from a Binomial(E, α) and Binomial(I, γ) distribution, respec-
tively. The parameters β, α, and γ are 0.24,1/3.6,and 1/3.4 and are the 
same for all the regions (Bar-On et al., 2020, MIDAS Network 

Fig. 2. Spatial and temporal dynamic of SARS-COV-2 across the 22 regions in Madagascar. In A) and B) the time-series of the cumulative number of cases for 
the regions based on the 1st or 5th reported cases. Black lines in A) and B) represent regions that ranked in the top ten based on the 1st and 5th reported case. Brown 
lines in A) represent the regions of Menabe and Diana that ranked in the top ten based on the 1st but not on the 5th reported case. Brown lines in B) represent the 
regions of Itasy and Boeny that ranked in the top ten based on the 5th but not on the 1st reported case. In C) and D) the distribution of the order of arrival ranked 
based on the first and fifth reported cases, respectively, is mapped by region. 
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COVID-19). 
At each time step, we draw a random sample of S, E, I, and R in-

dividuals to move from region i to region j according to their respective 
frequency in that population, i.e., mobility is independent of whether 
individuals are susceptible, exposed, infected or recovered. We first 
specify the total number of individuals moving which are then randomly 
distributed across the regions using a multinomial distribution with 
parameters from the mobility matrix (see section above). We simulated 
the model until time T = 700 days and 100 replicates. Our analysis does 
not depend on the magnitude of time-step chosen for the simulation nor 
the total number of individuals moving (set to 10,000), as we are 
comparing relative, rather than absolute arrivals in each region. 

2.3. Comparing reported and simulated data 

For each simulation using Analamanga region (capital) as the initial 
infected location, we ranked each region based on when the first and 
fifth cases occurred. We then compared the empirical and simulated 
rankings using both the cardinality of the matched rankings and 
Spearman rank correlations. Finally, we explored which regions were 
difficult to predict using the simulations using the root mean square 
error (rmse) of the simulated and reported rank. 

2.4. Statistical model 

In addition to the mechanistic model, we analyzed the statistical 
relationships between the mobility matrices and the order of arrival. We 
used the Network-Based Diffusion Analysis (NBDA) in the R statistical 
environment using the NBDA package v0.7.10 58. In network based 
diffusion analysis, the order in the regions (nodes) reported the first or 
the fifth case (acquire a trait) is compared to their position in the 
network to assess whether the trait is acquired through interactions with 
other nodes (Hoppitt et al., 2010). The model fits a diffusion model to 
the reported data, more precisely it estimates a scalar (s) that controls 
the importance of the diffusion matrix (here the mobility matrix) to 
explain the order of acquisition. Significance is obtained by comparing 
the log-likelihood ratio between the fitted model and a null model where 
the scalar is set to 0. 

The data compilation, metapopulation models, and figures were 
conducted with Mathematica 12.0 (Wolfram Research Inc.). All code is 

available in the repository https://github.com/ramiadantsoa/mob 
ilityMada. 

3. Results 

The timing of arrival of the 1st case and the 5th case yielded different 
rankings (Fig. 2). For instance, although the Menabe (ME) and Diana 
(DI) regions had their first confirmed case in March, the 5th case only 
occurred in July. Atsimo Atsinanana (AA) had less than five cases as of 
February 2021. Among the first five regions, the 1st and 5th case agree 
in three regions: Analamanga (AN), Atsinanana (AT), and Matsiatra 
Ambony (MA). For the 1st case metric, the remaining regions were 
Menabe (ME) in the west and Diana (DI) in north whereas for the 5th 
case metric, the remaining regions were Alaotra Mangoro (AL) in the 
east and Atsimo Andrefana (AD) and Anosy (AS) in the south. 

To assess the differences among the mobility matrices, we ranked the 
regions according to the number of individuals entering each region 
(Fig. 3). The gravity models are quite similar, the Spearman correlation 
between the ranks are 0.98 between the Euclidean and the Internal 
Migration Flow and 0.88 between the Euclidean and the transit models. 
The gravity model based on Euclidean distance ranks the eastern regions 
in the central highland higher whereas the transit model ranks the 
southern regions higher (Fig. 3AB). Although the east is indeed closer, 
the terrain is steep and windy, lengthening trip duration. The Internal 
Migration Flow provides a similar ranking except that it ranks Atsina-
nana (AT) higher, which is the second largest economic region in 
Madagascar, and also includes Atsimo-Andrefana (Fig. 3C). The mobile 
phone model is markedly different and is heterogeneous - the correlation 
with the Euclidean based gravity model is 0.26. The model ranks more 
highly the remote northern and southern regions Diana (DI) and Androy 
(AY) (Fig. 3D). 

Whether we looked at the overlap of the first five regions or the 
Spearman rank correlation for all regions, all mobility matrices better 
predicted the 5th case than the 1st case (Figs. 4 and S2). When pre-
dicting the first five regions for the 5th case, the mobile phone model 
performed best (mean = 1.9 regions corrected predicted, Fig. 4A). 
Surprisingly the null model has a higher mean number of regions 
correctly predicted than the gravity-based mobility when predicting the 
first five regions for the 1st case (1.5 vs 1.0, 1.0, 0.9 for the Euclidean 
distance, transit time, and Internal Migration Flow). The Internal 

Fig. 3. A comparison of the four main mobility matrices used. The regions are ranked according to the number of individuals entering the region per day using 
the various mobility matrices: A) Euclidean, B) transit, C) Internal Migration Flow (Flow), and D) mobile phone data. 
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Migration Flow model had the worst performance among the mobility 
matrices investigated (Fig. 4A). We also looked at the first ten regions 
and the results are quite similar except that the gravity models per-
formed better than the null-model (Fig. S2). 

In comparing simulated versus reported ranks, the overall median 
Spearman rank correlation was highest for the model using the gravity 

based on Euclidean distance (0.56), followed by the gravity based on 
transit time (0.53), the mobile phone model (0.4), and the Internal 
Migration Flow (0.38) (Fig. 4B). Increasing the exponent τin the gravity 
matrix improved the predictive ability of the metapopulation model 
(Fig. S2 for τ = 0.5,1, 1.5, the median of the distribution of the corre-
lation increases from 0.45, 0.53, to 0.56 for the gravity based on 
Euclidean distance and from 0.44, 0.49, to 0.53 for gravity based on 
transit time). Interestingly, the highest correlation for the 5th case 
among all replicates was with the null model with a value of 0.81. 

Given the challenge in predicting the order of the reported cases, we 
investigated if some regions are more difficult to predict than others. 
Overall, the southern area of the country was consistently the most 
difficult to predict (Fig. 5). However, for all other areas of the country, 
there were no consistent patterns by the type of model. 

Finally, we compared the performance of each mobility matrix with 

Fig. 4. The simulated and reported ranks for various mobility matrices. A) The overlap (mean, minimum, and maximum number of regions correctly predicted) 
according to the first five regions reporting infection. B) The distribution of the Spearman rank correlation between each replicate and the reported rank. N, E, T, F, 
and M denote respectively the null model, the gravity model based on Euclidean distance between centroids, the gravity model based on transit time, the Internal 
Migration Flow, and the mobile phone model, respectively. The reported ranks are either based on the 1st (red) or the 5th (blue) confirmed case (Analamanga is 
excluded as it was used as the initial condition). 

Fig. 5. The root mean squared error (RMSE) in predicting the rank of the reported fifth case for each region. The regions are colored based on the accuracy of 
the ranks for the reported fifth case for each region using various mobility matrices: A) Euclidean, B) transit, C) Internal Migration Flow (Flow), and D) mobile 
phone data. 

Table 1 
The estimated s (p-value) of the network-based diffusion analyses for the four 
main mobility matrices used.   

Euclidean Transit Flow Mobile Phone 

1st case 0.68 (0.19) 0.51 (0.33) 0.65 (0.37) 0.82 (0.12) 
5th case 0.64 (0.29) 0.02 (0.98) 0.99 (0.18) 0.98 (0.02) 

Significant p-value in bold. 
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a statistical approach. Table 1 shows the estimated parameter, s, rep-
resenting the importance of the matrix in explaining the pattern, and the 
significance value. For the 1st case, the models are quite similar showing 
intermediate s (0.5 < s < 0.8) but none are significantly different from a 
null model. For the 5th case, the results are inconsistent with regards to 
the best mobility matrix compared to predictions of the mechanistic 
model. The gravity model based on transit performs poorly with the 
lowest s, while the Internal Migration Flow model performs best, but is 
not statistically significantly better than the null model. Overall, only 
the mobile phone model was significantly associated (p < 0.02) with 
the order of detection, and only for the 5th case. Complete results for all 
mobility matrices are shown in Table S1. 

4. Discussion 

Understanding what types of mobility data and models can best 
predict spatial dynamics of infectious diseases, and particularly emer-
gent pathogens, could importantly contribute to allocating scarce re-
sources, prioritizing where improvements in healthcare and surveillance 
will be vital, and estimating the possible pace and severity of the 
epidemic (Grenfell et al., 2001; Rice et al., 2021; Tatem et al., 2006; 
Zhou et al., 2020). Often in low and middle income settings, there are 
few data sets on human travel available (Wesolowski et al., 2016), and 
limited surveillance data to estimate spatial dynamics directly from the 
pattern of cases (e.g., as in (Bjørnstad and Grenfell, 2008)). Here, we 
leverage a range of possible data sources on human mobility in order to 
better understand the spread of SARS-CoV-2, by integrating matrices 
describing mobility between regions into a spatial model of SARS-CoV-2 
and a network-based diffusion analysis. By comparing the simulated 
trajectories with data, we evaluate the ability of different measures of 
mobility to predict the spatial spread of SARS-CoV-2 in Madagascar. 

A major challenge in approaches of this kind is data availability. 
First, from the side of infectious disease data, there is limited availability 
of case numbers, and although many major cities in Madagascar have 
uniquely detailed mortality records (Masquelier et al., 2019) with scale 
and scope adequate to detect major outbreaks (Rasambainarivo et al., 
2021) data compilation and accessibility to the research and public 
health community have lagged. To fill this gap in the landscape of public 
health communication in Madagascar, we developed a dashboard by 
collating data from daily televised reports, and this is the data that we 
use in our analyses. The quality of the data on cases can thus only be as 
good as these available reports. For instance, daily reporting was 
interrupted between the 13th of October 2020 and the 13th of March 
2021 and was replaced by weekly cumulative numbers. 

Uncertainties in the case data will be of most concern if there are 
marked spatial differences in testing and reporting. Our analysis in-
dicates large differences in the rank of the regions confirming the first 
case and the fifth case. The first reported case, especially the top five 
regions, is most likely driven by imported cases, while the fifth reported 
case is likely to emerge as a result of onward transmission. Importantly, 
different locations may have different probabilities of both early 
detection, and onward transmission. As an example, Menabe and Diana 
were among the first five regions to report a first case but then lagged 
before the fifth case was reported. These regions represent popular 
tourist destinations and access by air is easy. Perhaps in part due to this 
demographic, the first cases in these regions were thus quickly isolated, 
contact tracing was swiftly established, and thus chains of transmission 
were slow to develop, delaying the fifth reported case. One positive 
interpretation of this pattern is that with adequate testing and contact 
tracing (as we hypothesize could have occurred following detection 
among tourists) spread from imported cases could be quickly controlled. 
Rolling out and prioritizing these strategies early on can thus have had 
an impact on curbing disease spread. Typically, data on air travelers is 
digitized and detailed, and could be leveraged to identify most regions at 
risk of such early introductions. 

Moving from availability of case data to considering availability of 

mobility data, there are also a set of challenges at this end. The first three 
mobility matrices that we use were formulated from gravity-based 
models with varying degrees of realism, encompassing for example the 
distance between two regions calculated using Euclidean distance be-
tween the centroid of the regions or the actual transit time from trans-
port companies; while the fourth mobility matrix we use is directly 
based on mobile phone data. Our comparison focused on relative mag-
nitudes of movement between regions rather than absolute magnitudes 
of movement, given the various uncertainties in the data available to 
develop a fully parameterized model. None of these approaches were 
able to correctly predict all of the reported patterns of spatial spread in 
Madagascar, although on average they all performed better than a null 
model. The best performing models were either the simplest (gravity 
with Euclidean distance) or extrapolated from data on mobility (mobile 
phone data). Adding realism in the gravity model with either transit data 
or Internal Migration Flows did not improve prediction. In a few rare 
replicates, the null model actually generated the most accurate pre-
dictions indicating the unpredictable nature of spread. Yet on average, 
the simplest gravity model most likely captures the core diffusion 
component of the process (infection ultimately spills into neighboring 
regions when the number of cases is high enough). Inference based on 
mobile phone data, despite being processed over five years ago (Ihan-
tamalala et al., 2018; Wesolowski et al., 2016), had the best perfor-
mance, perhaps because it captures a wider diversity of connections than 
are commonly predicted by a gravity model (Ihantamalala et al., 2018; 
Oliver et al., 2020; Tizzoni et al., 2014; Wesolowski et al., 2016, 2015a, 
2015b). In fact, the simplest gravity and mobile phone models per-
formed well in different (non-overlapping) regions, suggesting that they 
capture different important aspects of mobility. Notably, some ap-
proaches performed strikingly poorly (e.g., the internal migration flow 
model) indicating a need for caution in deciding what model or metric of 
mobility to use. Finally, the performance of the mobile phone data 
relative to other measures strongly suggests that accurate up-to-date 
measurements of mobility from this source (rather than the 2015 data 
we were compelled to use) might have opened the way to anticipating 
spread and reacting appropriately. Designing regulatory pipelines that 
efficiently enable sharing of detailed yet anonymous mobility from 
mobile phone companies in such times of crisis should be a priority in 
Madagascar, as it has been elsewhere (Buckee et al., 2020; Grantz et al., 
2020; Kishore et al., 2020; Oliver et al., 2020). 

As most models did not reliably predict the rank of the timing of the 
first, nor fifth case per region (Figs. 4 and 5) this work is still some steps 
away from driving policy recommendations. In particular, all models 
largely failed to predict the spatial patterns in the South, less populated 
and connected area of the country, possibly because stochasticity and 
thus rare events are overwhelmingly important, and perhaps also 
because delays in testing and data reporting given the remoteness of the 
region blurred the signal in numbers of cases. A key direction for 
expanding this work is to identify where models and data provide 
reasonable predictions and where they do not. The analysis reported 
here provides a potential starting point for further sensitivity analyses 
that explores core drivers of expectations of outcomes given the 
topography of the network, providing general expectations for pathogen 
spread. Uncertainty in case data is a very general issue in developing a 
mechanistic understanding of infectious diseases (for example, case 
numbers often apparently paradoxically increase with vaccination 
coverage, but this is actually a result of concomitant improvements in 
surveillance (Prada et al., 2018)). Various approaches to correcting for 
biases are available (Becker and Grenfell, 2017; Jarvis et al., 2021), but 
transparency in data generation mechanisms is an essential component. 

There are a number of caveats associated with this work. In partic-
ular, by focusing simply on region population size and connectivity 
patterns, the model simplifies a number of aspects that may be impor-
tant to the pace of spread of SARS-CoV-2, such as within region dy-
namics (i.e., some regions may be more internally connected than others 
(Rice et al., 2021)), as well as interventions including travel bans and 
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how these changed connectivity over the first months of spread. How-
ever, the better performance of the mobile phone model compared to the 
gravity-based model in both the mechanistic and statistical model sug-
gests that the connectivity matrix used to link the regions is the core of 
the problem. 

5. Conclusion 

In this work, we leverage a range of possible data sources on human 
mobility and use a set of mechanistic and statistical models to explain 
the spatial spread of the COVID-19 in Madagascar. We had little success 
in reproducing the spread. The approximated mobility matrices poorly 
characterize mobility in Madagascar. Furthermore, uncertainties arising 
from testing to reporting might further complicate prediction of emer-
gent pathogen’s trajectories. Our analysis provides a first step for 
moving towards models that can capture the spread of an emergent 
pathogen. It also highlights the centrality of data availability and 
strengthening collaboration among different institutions with access to 
critical data - models are only as good as the data that they use - so 
building towards effective data-sharing pipelines is essential. 
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