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ABSTRACT: Purpose: As a traditional herb product, the root of Caragana sinica (Buc’hoz) Rehder (Chinese name: Jin Quegen
[JQG]) has been widely used in folk medicines for rheumatoid arthritis (RA) treatment. However, which herbal constituents exert a
core pharmacological role in RA treatment remains a great challenge due to the multiple phytochemical constituents, targets, and
pathways. In this work, we aimed to use a new strategy to explore the core herbal constituents and potential mechanisms of JQG
against RA for the first time. Methods: A successively partitioned extract of JQG, bioactive partition screening in vitro and in vivo,
qualitative analysis, bioinformatic analysis, molecular docking, and mechanism validation were used in this study. The partitioned
extract was used to obtain the bioactive partition, while in vitro anti-inflammatory effects and in vivo anti-arthritis effects in adjuvant-
induced arthritis (AIA) rats were applied to screen the bioactive partition with the best efficacy. Qualitative analysis was used to
identify bioactive constituents. Bioinformatic analysis was used to explore the potential mechanism for RA treatment. Molecular
docking and immunofluorescence were used to validate the underlying mechanism. Results: After successively partitioning extract
and bioactive partition screening, ethyl acetate extract (EAE) yielded the best anti-inflammatory effects in vitro and in vivo among
JQG extracts. By ultra-performance liquid chromatography (UPLC) coupled with Orbitrap mass spectrometry, a total of 58
constituents were identified in EAE, and 17 constituents were regarded as the core constituents based on their oral bioavailability
and drug-like properties. The nuclear factor kappa B (NF-κB) signal pathway was screened as the core pathway of core constituents
for RA treatment based on bioinformatic analysis, and the core constituents showed good ligand−receptor binding activity to NF-κB
P65. In vitro study demonstrated that EAE could significantly reduce NF-κB P65 transfer from the cytoplasm to the nucleus.
Conclusion: Our study suggested that the therapeutic efficacy of JQG for RA treatment could be derived from negative regulation of
the NF-κB pathway, and EAE of JQG could represent a promising herb product for RA treatment that deserves further development.

1. INTRODUCTION
Rheumatoid arthritis (RA) is a chronic systemic inflammatory
disease characterized by erosive synovitis that can cause severe
joint destruction and disability,1,2 as well as the involvement of
other tissues throughout the body.3 Disease-modifying anti-
rheumatic drugs (DMARDs), biological DMARDs, and herbal
products represent the most important agents to alleviate
symptoms and prevent RA progression.4,5 Traditional Chinese
medicines have been widely applied to disease treatment,
cosmetics, and health care products.6 Many of the drugs used
in clinical practice are directly or indirectly derived from
traditional Chinese medicines.7 Traditional Chinese medicine
has the characteristic of a multiconstituent, multitarget, and

multipathway treatment,8 which has shown great efficacy and
mild adverse effects in RA prevention and treatment.9,10

Caragana sinica root (Chinese name: Jin Quegen [JQG]), the
dried root of Caragana sinica (Buc’hoz) Rehder (Leguminosae),
is widely distributed in China, Korea, and Japan.11 JQG has
been used as a folk medicine in China and Korea for the
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treatment of neuralgia, RA, vascular hypertension, and
bruises.12,13 Clinically, JQG not only yields good efficacy for
RA treatment but also has a very high safety profile.14,15

JQG has demonstrated antioxidative, neuroprotective,
antibacterial, anti-inflammatory, neuroprotective effects, and
anti-acetylcholinesterase activity.16−20 Phytochemical analyses
have indicated that JQG mainly contains triterpenoids,
flavonoids, oligostilbene, alkaloids, sesquiterpenoids, pterostil-
bene, steroidal phenylpropanoid, and coumarin.12,21−23 How-

ever, there are multiple constituents in JQG, and many of them
have been reported to exhibit biological activities. Additionally,
multiple constituents can work synergistically on the targets to
produce an overall therapeutic effect. Therefore, exploring
which constituents make a core contribution to the efficacy of
JQG is a huge challenge. The same problem makes it difficult
to elucidate the relationship between phytochemicals and
overall efficacy. Furthermore, almost all studies have focused

Figure 1. Anti-inflammatory effects of different JQG extracts on RAW264.7 cells and AIA rats. Concentrations of (A) PGE2, (B) TNF-α, (C) NO,
and (D) IL-6 in RAW264.7 cells stimulated with 1 μg/mL LPS (n = 3). The doses of EE, PEE, CE, EAE, and NBE were 25, 50, and 100 μg/mL. All
data are displayed as the mean ± SD. * p < 0.01, ** p < 0.01, *** p < 0.001 vs LPS-stimulated cells, ### p < 0.001 vs unstimulated cells. Anti-
arthritic effects of JQG EAE on AIA rats (n = 5). (E) Effect of EAE on the swelling of the left hind paw of AIA rats. Effect of EAE on the secretion
of serum inflammatory cytokines (F) interleukin-1 beta (IL-1β), (G) IL-6, and (H) TNF-α in AIA rats; (I) hematoxylin and eosin (H&E) staining
of ankle joints of AIA rats (×100). ** p < 0.01, *** p < 0.001 vs the control group; ### p < 0.001 vs the model group.
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on the isolated constituents and pharmacological activity rather
than the precise mechanism of JQG for RA therapy.

Due to the complex chemical constituents of Chinese
medicines, it is difficult for traditional research methods to fully
elucidate the mechanism of Chinese medicines. Therefore, it is
of high necessity to provide a method for this problem
solution, which is suitable for the study of multiconstituent and
multitarget compounds in traditional Chinese medicine.
Network pharmacology is an emerging discipline based on
an organic combination of systems biology, computer
technology, pharmacology, and medicine. Based on bioinfor-
matics, a multilevel network of disease−target−drug inter-
actions can be constructed, followed by the analysis of the

association between them, to clarify the mechanism of drugs
on diseases at the protein, molecular, and gene levels.24−26

In this work, an integrative strategy combining successively
partitioned extraction of JQG, bioactive partition screening in
vitro and in vivo, qualitative analysis, bioinformatic analysis,
molecular docking, and mechanism validation were used to
exploit the core active constituents and potential mechanism of
JQG for RA treatment.

2. RESULTS
2.1. Screening of Bioactive Partition of JQG Extract.

The anti-inflammatory effects of ethanol extract (EE),
petroleum ether extract (PEE), chloroform extract (CE),

Figure 2. TICs of JQG EAE obtained from UPLC coupled Orbitrap Exploris 120 mass spectrometer analysis in (A) negative mode and (B)
positive mode.
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ethyl acetate extract (EAE), and n-butanol extract (NBE) were
evaluated in RAW264.7-cell lines stimulated by lipopolysac-
charide (LPS) to screen the bioactive partition of JQG extract.
As shown in Figure 1A−D, nitric oxide (NO), interleukin-6
(IL-6), tumor necrosis factor-alpha (TNF-α), and prostaglan-
din E2 (PGE2) concentrations were significantly increased
after LPS stimulation in the LPS group (p < 0.001). EE and
NBE could significantly suppress LPS-induced increases in
NO, IL-6, TNF-α, and PGE2 levels (p < 0.05) at 50 and 100
μg/mL, whereas EAE yielded the best anti-inflammatory
effects compared to other partitions that could suppress LPS-
induced cytokine increases (p < 0.01) at 25 μg/mL. Therefore,
EAE was selected for the following experiments.
2.2. Anti-Inflammatory Effects of EAE in Rats. After

obtaining the bioactive partition, its anti-arthritis effects were
evaluated in adjuvant-induced arthritis (AIA) rats. As shown in
Figure 1E, the edema of the left hind paw obviously increased
in the model group on the 9th day of injection compared with
normal rats (p < 0.01). Both EAE and aspirin decreased the
edema of the left hind paw after the 15th day of injection,
while EAE yielded better effects than aspirin in suppressing the
swelling of the left hind paw. After 14 days of administration,
EAE significantly ameliorated the swelling of AIA rats and
displayed remarkable anti-inflammatory effects via the down-
regulation of the inflammatory cytokines IL-1β, TNF-α, and
IL-6 (p < 0.001) (Figure 1F−H). Moreover, when compared

with normal group rats, the model group rats exhibited severe
bone erosion and infiltration of immune and inflammatory
cells by histological estimation. Furthermore, EAE suppressed
the infiltration of inflammatory cells and bone erosion, as
shown in Figure 1I. The abovementioned data demonstrated
that EAE could attenuate the inflammatory response in RA
treatment.
2.3. Constituent Identification in EAE by UPLC-

Orbitrap Mass Spectrometry. In this study, an Orbitrap
Exploris 120 high-resolution mass spectrometer was used to
analyze the active constituents in EAE. A total of 58
constituents were identified in EAE. Representative total ion
chromatograms (TICs) of EAE are shown in Figure 2.
Subsequently, an oral bioavailability (OB) of ≥30% and drug
likeness of ≥0.1827 obtained from the Traditional Chinese
Medicine Systems Pharmacology Database and Analysis
Platform were used to screen the potential core constituents.
Finally, 17 constituents (6-demethoxytangeretin, 8-desoxygar-
tanin, 21533-90-4 (2′,7-Dihydroxy-4′,5′-dimethoxyisoflavone),
acacetin, austricine, ceanothic acid, cirsimaritin, demethylno-
biletin, gamma-mangostin, glycitein, higenamine, isolicoflavo-
nol, isorhamnetin, isosinensetin, nobiletin, pseudobaptigenin,
and rutamarin) were screened as the core bioactive
constituents of JQG for RA treatment.
2.4. JQG Constituent-Target-RA Network. The poten-

tial targets of JQG were predicted and collected from the Swiss

Figure 3. JQG constituent-target-RA network. (A) Intersected target genes of JQG and RA; (B) constituent-target-RA network;(C) protein−
protein-interaction (PPI) network of intersected target genes; and (D) PPI network of key target genes based on degree.
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TargetPrediction database and 388 potential targets were
obtained after deleting duplicates. The targets of RA were
collected from the OMIM, GeneCards, and Therapeutic
Target Database databases, and 1202 potential targets were
obtained after deleting duplicates. After the intersection
between JQG targets and RA targets, a Venn diagram was
plotted to obtain 133 intersecting targets (Figure 3A). Then,
the intersected targets were imported into Cytoscape software
to build the ingredient-target-RA network (Figure 3B).
Additionally, the core targets were imported into the STRING
database. The protein−protein-interaction (PPI) is displayed
in Figure 3C,D. The larger the degree value is, the closer the
relationship between proteins. The top 15 targets were SRC,
STAT3, MAPK1, PIK3R1, HSP90AA1, AKT1, RELA, TP53,
MAPK14, and ESR1 based on degree values.
2.5. GO and KEGG Enrichment Analysis. Based on GO

function analysis, the top 10 biological process (BP), cellular
composition (CC), and molecular function (MF) entries are
displayed in Figure 4A−C. In BP, positive regulation of
response to external stimulus, regulation of inflammatory
response, and response to oxidative stress were the main items.

The top CC items mainly involved membrane rafts, membrane
microdomains, and the external side of the plasma membrane.
For MF, protein serine/threonine/tyrosine kinase activity,
protein tyrosine kinase activity, and transmembrane receptor
protein tyrosine kinase activity were the main items. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis yielded 151 related signaling pathways,
including the PI3K-Akt signaling pathway, MAPK signaling
pathway, and NF-kappa B signaling pathway. The top 20
pathways and the interaction of genes and core pathways are
shown in Figure 4D (other pathways like ferroptosis are not
shown). Among these pathways, the PI3K-Akt signaling
pathway, MAPK signaling pathway, NF-kappa B signaling
pathway, Toll-like receptor signaling pathway, and AGE-RAGE
signaling pathway were associated with inflammation. Addi-
tionally, RELA (NF-κB P65) was the top core gene among the
key genes MAPK1, NFKB1, PIK3R1, IKBKB, EGFR, AKT1,
TP53, CASP3, and STAT3.
2.6. Molecular Docking. The screened core targets were

verified by using the molecular operation platform software
MOE, which could more intuitively show the optimal

Figure 4. Gene ontology enrichment analysis and KEGG analysis. The top 10 items of (A) biological process and (B) cellular composition, (C)
molecular function, and (D) top 20 items of KEGG pathway and core gene topology analysis. The KEGG pathway corresponding to the hsa code is
listed in Table S1.
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interaction between the core targets and key constituents. The
molecular docking results of RELA (NF-κB P65) with core
constituents are given in Table S2. The results showed that
there might be hydrogen bonding, pi−cation, pi−pi, pi−H, and
other intermolecular binding forces between the active
constituent and RELA (NF-κB P65). The binding interaction
of core constituents with RELA (NF-κB P65) chain A is shown
in Figure 5. Almost all docking scores of core constituents were
better than the positive control Nigakinone, indicating good
ligand−recepor binding.
2.7. Mechanism Validation for the Anti-Inflammatory

Effects of EAE. In the resting state, NF-κB exists in the
cytoplasm in an inactive state. When the upstream signal
activates NF-κB, it translocates from the cytoplasm to the
nucleus (especially NF-κB P65) and interacts with inflamma-
tion-related genes to induce inflammation.28 In this study, we
wanted to investigate whether EAE could inhibit NF-κB P65
translocation from the cytoplasm to the nucleus. As shown in
Figure 6, NF-κB P65 translocation from the cytoplasm to the

nucleus was significantly increased after LPS stimulation in the
model group. Bay and EAE significantly suppressed LPS-
induced increases in NF-κB P65 in the nucleus, whereas EAE
H yielded the strongest negative regulation of NF-κB.

3. DISCUSSION
As a traditional herbal product, JQG is widely used in folk
applications for RA treatment. The chemical constituents in
JQG are the basis of its pharmacological activity. Due to the
development of modern technology, many chemical constitu-
ents in JQG have been identified.29−32 However, which
constituent exerts a core pharmacological role, not to mention
the exact mechanism for RA treatment, remains unknown. In
the present work, we investigated the key constituents and
potential mechanisms of JQG for RA treatment.

The chemical constituents in JQG extracts vary depending
on the polarity of the extracted solvents, thus resulting in
varied pharmacological activities. For example, EAE of JQG
yields better antiherpetic activity than other bioactive

Figure 5. Schematic diagram of the docking results of JQG key constituents with NF-κB P65 (PDB Code 1k3z). (A) rutamarin; (B) nobiletin; (C)
austricine; (D) higenamine; (E) cirsimaritin; (F) demethylnobiletin; (G) 8-desoxygartanin; (H) ceanothic acid; (I) 6-demethoxytangeretin; (J)
isosinensetin; (K) acacetin; (L) isorhamnetin; (M) pseudobaptigenin; (N) 21533-90-4; (O) glycitein; (P) isolicoflavonol; and (Q) gamma-
mangostin.

Figure 6. Anti-inflammatory effects of EAE by modulating NF-κB P65 in RAW264.7 cells stimulated with 1 μg/mL LPS (n = 3). EAE significantly
reduced NF-κB P65 translocation from the cytoplasm to the nucleus. The doses of EAE L/H and Bay11-7028 were 25/100 μg/mL and 20 μM,
respectively.
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partitions extracted by different solvents.33 In this study, EAE
of JQG also displayed better anti-inflammatory effects than
other bioactive partitions.

Constituent identification plays a precursor role in network
pharmacology analysis for traditional herbal medicine. Varied
constituents produce radically different core targets and action
pathways. Therefore, an ultra-performance liquid chromatog-
raphy (UPLC)-Orbitrap mass spectrometer was used to
identify bioactive constituents. Consistent with a previous
report, the identified constituents mainly belonged to
flavonoids, terpenoids, and oligostilbenes. For network
analysis, OB, drug-like, and a degree in the constituent-target
network were acknowledged rules for screening core active
constituents.6 Thus, these parameters were used to extract the
constituents, and anti-inflammatory effects were used to
estimate the bioactivity of core constituents. A total of 17
constituents (6-demethoxytangeretin, 8-desoxygartanin,
21533-90-4, acacetin, austricine, ceanothic acid, cirsimaritin,
demethylnobiletin, gamma-mangostin, glycitein, higenamine,
isolicoflavonol, isorhamnetin, isosinensetin, nobiletin, pseudo-
baptigenin, and rutamarin) were screened as the core bioactive
constituents of JQG for RA treatment. In fact, these core
constituents have already demonstrated a clear anti-inflamma-
tory effect according to previous reports.34−42 Additionally, our
results from molecular docking verified the high binding
affinity of the key active ingredients to the core target. In
summary, the above-reported evidence further strengthened
the reliability of screening these compounds as JQG core active
constituents for RA treatment.

Several studies have reported that JQG total extract exhibits
anti-inflammatory effects via the NF-κB signaling pathway to
alleviate osteoarthritis and ulcerative colitis.18,19 However,
there has been almost no mechanistic research on JQG for RA
treatment because of its complicated constituents, multiple
targets, and multiple pathways. Therefore, the exact treatment
mechanism needs to be studied. Here, based on network
analysis, the main targets of EAE were affiliated with the PI3K-
AKT and MAPK signaling pathways, and these pathways may
be involved in immune function, inflammation, and bone
erosion.43−48 Furthermore, these pathways had many inter-
section genes, and the NF-κB signaling pathway was one of the
key overlaps among them. Activation of the PI3K-AKT and
MAPK pathways can trigger the NF-κB signaling path-
way.49−53 Moreover, NF-κB plays an important role in immune
function, inflammation, and cancer.54−56 After deduction by
network pharmacology, molecular docking was used to explore
the potential interaction between NF-κB and key constituents.
Molecular docking results indicated good ligand−receptor
binding interactions between NF-κB and key constituents.
Subsequently, immunofluorescence was used to further verify
the interaction between NF-κB and EAE. Consistent with the
molecular docking results, EAE significantly reduced NF-κB
P65 translocation from the cytoplasm to the nucleus. In
summary, these results suggested that EAE could suppress the
NF-κB pathway to exert anti-inflammatory effects, which, thus,
contribute to the efficacy of JQG for RA therapy.

4. MATERIALS AND METHODS
4.1. Chemicals and Reagents. Raw JQG materials were

obtained from Tong Ren Tang Co Ltd. (Hefei, China).
Analytical grade ethanol, petroleum ether, chloroform, ethyl
acetate, and n-butanol were obtained from Hefei Baierdi
Chemical Technology Co Ltd. Primary antibodies against P65

were purchased from Abcam Trading Co. Ltd. (Shanghai,
China). Enzyme-linked immunosorbent assay (ELISA) kits for
IL-6, TNF-α, and IL-1β were purchased from Multisciences
(Lianke) Biotech Co Ltd. (Hangzhou, China), and mouse
PGE2 was purchased from Jianglai Biotechnology Co Ltd.
(Shanghai, China). Mouse macrophage RAW264.7-cell lines
were obtained from ATCC (Passage 20−25, American Type
Culture Collection, Rockville, MD, USA). Liquid chromatog-
raphy (LC)/mass spectrometry (MS)-grade methanol was
acquired from Merck (Merck KGaA, Darmstadt, Germany).
All other used reagents were of analytical grade and were
obtained from commercial sources.
4.2. Preparation of JQG Extract. JQG powder (10 kg)

was extracted with 80% ethanol (80 L) three times at ambient
temperature, and the filtrate was concentrated under reduced
pressure to obtain the EE residue. Then, the residue was
dissolved in water and successively partitioned by petroleum
ether, chloroform, ethyl acetate, and n-butanol (2.5 L). Then,
the organic phase was removed by a rotary vacuum evaporator,
and the extract was dried by a vacuum freeze drier. Finally,
800.28 g of EE, 18.21 g ofPEE, 12.95 g of CE, 41.43 g of EAE,
and 19.39 g of NBE were obtained.
4.3. Screening of Bioactive Partition of JQG Extract.

RAW264.7 cells were seeded on 24-well plates (7 × 104 cells/
well) in Dulbecco’s modified Eagle’s medium (DMEM) for 24
h. Extracts partitioned by ethanol, petroleum ether, chloro-
form, ethyl acetate, and n-butanol extraction were added to the
medium, and the cells were incubated for 1 h before
stimulation with LPS (1 μg/mL) for 23 h. After the treatment,
the cell supernatant was collected and centrifuged at 4 °C and
20,817 g for 10 min. Then, the supernatant was collected to
detect the concentration of NO, IL-6, TNF-α, and PGE2 using
ELISA kits. By comparing the effects of these partitioned
extracts on inflammatory mediators, the partition with the best
efficacy was selected for the following study.
4.4. Anti-Arthritis Effects of JQG Extract. In this study,

the animal experiment was approved by the Ethics Review
Committee for Animal Experimentation of Anhui Medical
University. AIA of rats was induced according to a previous
study.57 Briefly, 0.1 mL of heat-killed Bacillus Calmette−
Gueŕin in liquid paraffin was intradermally injected into the
right hind paw of Sprague Dawley rats (male, 160−180 g). The
EAE of JQG was dissolved in sodium carboxymethyl cellulose
(CMC-Na). Prior to the onset of AIA, animals were randomly
divided into four groups (n = 5), including the normal group
(CMC-Na as a vehicle), model group (CMC-Na as a vehicle),
EAE group (200 mg/kg/day), and aspirin group (50 mg/kg/
day). Rat paw volumes were measured on day 0 and day 9.
Then, paw volumes were measured every 6 days. On day 28
after treatment, animals were killed, and a rat ankle joint was
used for histological examination. Rat serum was used for the
measurement of inflammatory cytokines, including TNF-α, IL-
6, and IL-1β, according to the manufacturer’s instructions.
4.5. Qualitative Analysis of Phytochemical Constitu-

ents in EAE of JQG. Qualitative analysis of phytochemical
constituents was performed on a UPLC system coupled with
an Orbitrap Exploris 120 mass spectrometer (Vanquish,
Thermo Fisher Scientific). Constituent separation was
achieved on a Waters UPLC BEH C18 column (2.1 mm ID
× 100 mm, 1.7 μm). The mobile phases consisted of A (0.1%
formic acid) and B (methanol-containing formic acid), with a
flow rate of 0.5 mL/min, using a gradient elution of 15−75% B
at 0−11 min, 75−98% B at 11−12 min, 98% B at 12−14 min,
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98−15% B at 14−14.1 min, and 15% B at 14.1−16 min. An
Orbitrap Exploris 120 mass spectrometer was used to analyze
the MS and MS/MS data under IDA (information-dependent
acquisition) mode in both positive and negative modes. The
optimal parameters are as follows: sheath gas = 35 Arb; aux gas
flow = 15 Arb; ion transfer tube and vaporizer temperature =
350 °C; full ms resolution = 60,000 and MS/MS resolution =
15,000; 16/32/48 voltage collision energy in NCE mode; and
spray voltage = 5.5 kV in ESI+ mode or −4 kV in ESI− mode.
The constituents were identified by matching their average
retention times, molecular ions, and product ions with the
developed database by Biotree Biotech (Shanghai, China).
4.6. Construction of the Active Constituent-Target-

RA Network. PubChem (https://pubchem.ncbi.nlm.nih.gov)
was used to obtain the structures of the active constituents of
JQG, which were imported into Swiss Target Prediction
(http://www.swisstargetprediction.ch) to predict the corre-
sponding targets of the active components. The OMIM
database (https://www.omim.org), GeneCards database
(https://www.genecards.org), and TherapeuticTarget database
(http://db.idrblab.net/ttd) were used to screen RA-relevant
target genes by setting the species as Homo sapiens (H.
sapiens). Finally, target genes obtained from the three
databases were sorted to remove duplicates to obtain the
final targets. The obtained targets of JQG and the relevant
target genes of RA were intersected, and a Venn diagram was
drawn. The intersection targets were regarded as potential
action targets of the core active constituents of JQG in RA
treatment. The intersection targets were imported into
Cytoscape 3.7.1 software to construct an active constituent-
target-RA network. The obtained intersection targets were also
imported into the String database (https://www.string-db.org)
for predicting PPIs with species set as H. sapiens, and the
targets with a binding score of ≥0.9 were screened out. Then,
the screened targets were imported into Cytoscape 3.7.1
software to obtain a visual PPI network diagram.
4.7. Enrichment Analysis. The obtained intersection

targets were imported into the Bioconductor database (http://
www.bioconductor.org) for gene ontology (GO) and KEGG
analysis. GO analysis included MF, BP, and CC, and a p of
<0.05 was regarded as the screening criterion. The top 20
items from GO biological function analysis and KEGG
pathway enrichment analysis were plotted into a histogram
and bubble picture for visual analysis, respectively.
4.8. Molecular Docking. The molecular operating plat-

form software MOE (molecule operating environment) was
used for docking. The three-dimensional structure of the target
protein was downloaded from the RCSB-PDB database
(http://www.pdb.org). The corresponding ligands were
prepared from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov). Using the MOE-Dock module, semiflexible
docking between the ligand and the receptor was performed.
The triangle matcher scoring function was selected as the
placement function, and London dG was selected as the
scoring function. Additionally, the smaller the score value
achieved, the more stable the ligand−receptor binding would
be.
4.9. Mechanism Validation Based on Immunofluor-

escence. RAW264.7 cells were seeded on 24-well plates
containing glass coverslips at a density of 7 × 104 cells/well in
DMEM overnight. Then, the medium containing EAE or
Bay11-7082 was added, and the cells were incubated for 1 h
before stimulation with LPS (1 μg/mL) for 23 h. After the

treatment, the cells were fixed with paraformaldehyde for 15
min, permeabilized with Triton X-100 for 20 min, and
incubated with 5% bovine serum albumin for 30 min. Next,
the cells were incubated with primary antibodies overnight at 4
°C, secondary antibodies for 30 min at room temperature, and
DAPI for 5 min. Finally, the cells on the glass coverslip were
visualized by a fluorescence microscope.
4.10. Statistical Analysis. All results were displayed as the

mean ± standard deviation, and a one-way analysis of variance
was used between groups by GraphPad Software (Prism 9, San
Diego, CA, USA). A p of <0.05 was considered statistically
significant.

5. CONCLUSIONS
EAE yielded the best anti-inflammatory effects in vitro and in
vivo among JQG extracts. By UPLC coupled Orbitrap mass
spectrometer analysis, a total of 58 constituents were identified,
and 17 constituents were regarded as the core constituents for
the anti-inflammatory effects. The therapeutic efficacy of EAE
in RA might be achieved by blocking the NF-κB signaling
pathway. The inspiring results presented above indicated that
core constituents represent a promising herbal product for RA
treatment and is worth further investigation.
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