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Drug prioritization using the 
semantic properties of a knowledge 
graph
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peter A. C. ‘t Hoen1,5, erik M. van Mulligen  2 & Kristina M. Hettne  1

Compounds that are candidates for drug repurposing can be ranked by leveraging knowledge available 
in the biomedical literature and databases. this knowledge, spread across a variety of sources, can be 
integrated within a knowledge graph, which thereby comprehensively describes known relationships 
between biomedical concepts, such as drugs, diseases, genes, etc. our work uses the semantic 
information between drug and disease concepts as features, which are extracted from an existing 
knowledge graph that integrates 200 different biological knowledge sources. RepoDB, a standard drug 
repurposing database which describes drug-disease combinations that were approved or that failed in 
clinical trials, is used to train a random forest classifier. The 10-times repeated 10-fold cross-validation 
performance of the classifier achieves a mean area under the receiver operating characteristic curve 
(AUC) of 92.2%. We apply the classifier to prioritize 21 preclinical drug repurposing candidates that 
have been suggested for Autosomal Dominant polycystic Kidney Disease (ADpKD). Mozavaptan, a 
vasopressin V2 receptor antagonist is predicted to be the drug most likely to be approved after a clinical 
trial, and belongs to the same drug class as tolvaptan, the only treatment for ADpKD that is currently 
approved. We conclude that semantic properties of concepts in a knowledge graph can be exploited to 
prioritize drug repurposing candidates for testing in clinical trials.

Drug discovery is a time-consuming and costly process. Despite the exponential advancements in biological 
and information technologies, the number of new drugs introduced in the clinic has failed to advance similarly1. 
However, it is commonly known that some drugs can be used to treat multiple diseases. Identifying new indica-
tions for approved drugs, also known as drug repurposing, provides a relatively cheap and fast alternative to de 
novo drug discovery.

Smalheiser and Swanson were the first to demonstrate that the knowledge published in the biomedical lit-
erature could be computationally analyzed to identify and prioritize new drug therapies for diseases2. From the 
literature, Swanson had previously discovered that the pathological changes caused by Raynaud’s syndrome could 
be countered by the physiological changes caused by digesting fish oil, thereby suggesting a new treatment3. While 
Swanson’s original work was based on a relatively modest body of literature, the number of published research 
articles has continued to grow exponentially, making it even more costly and difficult for humans to obtain a 
comprehensive overview of the published knowledge that is relevant to their research4,5.

Beside the literature, biomedical databases provide another source of knowledge that can be analyzed. Their 
size and number have also shown an overwhelming growth. To improve reusability and interoperability between 
biomedical databases, their contents are increasingly being published as subject-predicate-object triples, which 
describe the relationships between the biological concepts represented in these databases. By semantically inte-
grating the triples from different databases, biomedical knowledge can be connected across different sources in a 
knowledge graph. Knowledge graphs thereby enable computational analyses on a comprehensive representation 
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of biomedical knowledge, supporting multiple stages of pharmacological research. While in early stages of phar-
macological research new gene-disease associations may be suggested6, thereby facilitating the search for new 
targets, in a final stage the knowledge graph may be used to prioritize a list of drug candidate compounds.

Many knowledge-graph methods have already been developed to identify new drug therapies for diseases7–14. 
Most of these methods are based on similarity between drugs or diseases7–10. These methods count the number 
of concepts in the indirect paths, which are defined as sequences of two triples between two drugs, two diseases, 
or between a drug and a disease. The underlying assumption is that a high number of intermediate concepts indi-
cates similarity between drugs, which are therefore likely to treat the same disease. For example, Yu et al. proposed 
a method that relied on overlapping networks of drug side effects and disease symptoms14. The networks were 
clustered to identify drug and disease modules, after which all drug-disease module pairs were connected. Based 
on known drug-disease combinations and local connectivity of modules, potential new drug therapies were pre-
dicted. A drawback of this method is that the suggested drug-disease combinations cannot distinguish between a 
drug-treatment relationship, a drug-side effect relationship, or a “does not treat” type of relationship.

Similarity-based methods often only include concepts from a limited number of semantic types, e.g. only 
proteins or side effects, thereby limiting their scope. Furthermore, Guney15 demonstrated that the performance 
of similarity-based methods is highly dependent on the availability of the drug in both the training set and the test 
set. If a drug is only represented in the test set, which could be the case for new or poorly characterized drugs, the 
performance of these methods drops drastically.

In other work, Guney et al.11 measured the distance in the graph between the target proteins of a drug, and dis-
ease proteins (i.e. the proteins coded for by the genes that are associated with a disease). The underlying assumption 
was that a short distance between drug targets and disease proteins meant that the drug was likely to treat the dis-
ease. Although this provided a coherent and plausible mechanism by which the efficacy of drugs could be explained, 
the study only used protein information, and the performance in determining the efficacy of drugs was moderate, 
with an area under the receiver operating characteristic curve (AUC) of 66%. Himmelstein et al.12 extracted paths 
of varying lengths between drugs and diseases from their knowledge graph. The predicates and semantic properties 
of the concepts in these paths were combined to create so-called metapaths (e.g. “Drug–binds to–Gene–is associated 
with–Disease”). Each metapath was represented as a binary feature, on which a machine-learning classifier was 
trained to classify whether a drug treats a disease. Alshahrani et al.13 transformed individual concepts and predicates 
in their graph to numeric vector representations with the RDF2vec tool, which were then used to train a classifier. 
However, due to the complexity of the transformation performed by the RDF2vec tool, it is impossible to reconstruct 
the relevant information that underlies a suggested relationship between a drug and a disease.

Here we leverage the semantic properties of concepts intermediate to drugs and diseases as features to clas-
sify and prioritize drug candidates. We utilize two kinds of semantic properties, both from the Unified Medical 
Language System (UMLS, https://www.nlm.nih.gov/research/umls/): semantic types, which are concept cat-
egories such as “Enzyme” or “Sign or Symptom”, and semantic groups, which are higher level abstractions of 
the semantic types (e.g. “Physiology”)16. The developed classifier is used to prioritize 21 candidate drugs for 
Autosomal Dominant Polycystic Kidney Disease (ADPKD), an inherited progressive kidney disease that leads to 
the growth of multiple cysts within the kidney and ultimately renal failure.

Methods
Knowledge Graph. We used the Euretos Knowledge Platform (EKP, https://www.euretos.com), a commercial 
knowledge graph that semantically integrates 200 biomedical knowledge sources. Three types of knowledge sources 
can be distinguished: (1) life-science databases, (2) textual and publication sources, and (3) semantic and ontological 
sources (http://www.euretos.com/files/EuretosSources2018.pdf). Please note that RepoDB is not one of these 200 
sources. Mappings between the concepts in the different knowledge sources underlying the knowledge graph were 
made by matching their identifiers. All biomedical concepts in these knowledge sources, such as proteins, drugs, 
and diseases, are represented as vertices in a large graph. The edges represent relationships between the vertices, 
and specify the predicate and provenance information about the relationship. The knowledge graph represents each 
triple as two vertices, indicating the subject and the object, connected by an edge, indicating the predicate.

One of the knowledge sources within the EKP is the UMLS. The UMLS integrates the concepts and relation-
ships from numerous biomedical terminologies, and assigns each concept to one or more of 137 semantic types. 
Each EKP concept has also been assigned to one of the 15 semantic groups defined by Bodenreider et al.16. For 
those concepts that were added to the EKP from other knowledge sources, semantic types and groups were man-
ually assigned by Euretos based on the descriptions of their contents (e.g. the proteins in Uniprot were assigned 
the “Amino Acid, Peptide, or Protein” semantic type).

RepoDB. We used RepoDB17 as a training and test set for our classifier. RepoDB consists of drug-disease com-
binations that have been approved or that have failed in clinical trials. The “Approved” drug-disease combinations 
in RepoDB (n = 6677) are obtained from DrugCentral, and are based on drug labels. RepoDB’s failed drug-disease 
combinations are based on unsuccessful clinical trials from the ClinicalTrials.gov database, which are subdivided in 
three categories: withdrawn (n = 648), indicating that the trial has been stopped before enrolling its first participant, 
suspended (n = 483), indicating that the trial has been stopped early but may be resumed at a later point, and termi-
nated (n = 2754), indicating that the trial has been stopped and will not be resumed. To ensure that our negative subset 
only contained drug-disease combinations that have been tested in patients and that will not be re-examined in the 
foreseeable future, we decided to only use the “Terminated” subset and not the “Suspended” or “Withdrawn” subsets.

RepoDB represents drugs by DrugBank identifiers and diseases by UMLS concepts. A DrugBank identifier 
may have been mapped to multiple UMLS concepts (and therefore EKP concepts), e.g. for its active ingredient or 
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its brand names. To ensure that we only extracted knowledge about the active ingredient of a drug from the EKP, 
the DrugBank identifiers from RepoDB were mapped to the UMLS concepts of their active ingredient.

Duplicate entries in RepoDB, including those caused by deprecated identifiers, were removed. In this study we 
focused on drug-disease combinations from RepoDB for which a direct path exists between the drug and the disease 
(e.g. drug A-treats-disease C), or for which the drug and the disease are indirectly connected via one intermediate 
concept (e.g. drug A-interacts with-protein B-is associated with-disease C). If the knowledge graph did not contain 
direct or indirect paths between a drug and a disease, the drug-disease combination was excluded from the set.

Feature set and machine learning. For each drug-disease combination in our reference set the following 
features were extracted from the knowledge graph:

•	 A binary feature that indicates whether there was a triple which has the drug and the disease as subject and 
object (direct path);

•	 Numeric features that indicate the frequencies of the UMLS semantic types and semantic groups of the inter-
mediate concepts (indirect paths);

For the frequency features, it is important to note that concepts can have multiple semantic types, but always 
belong to a single semantic group (Fig. 1). An overview of the feature creation and classification process using 
RepoDB is depicted in Fig. 2. All paths underlying the features were extracted via the EKP REST API.

We compared the classification performance of different machine learning algorithms on our feature set, 
based on multiple commonly used performance metrics. To provide insight into the variation of the classifi-
cation performance we report the mean and standard deviation of the metrics based on 10 repeats of a 10-fold 
cross-validation experiment.

Because the majority of the diseases in RepoDB’s terminated combinations are cancers, and the majority of 
the diseases in the approved cases are not, we investigated whether our method was affected by this imbalance by 
training classifiers for cancers and non-cancers separately, for different class balances.

Use case: Drug prioritization for ADpKD. ADPKD is an inherited progressive chronic kidney disease 
that leads to renal failure before the age of 60 in the majority of patients. It is a genetic disorder that causes renal 
tubules to become structurally abnormal, resulting in the development and growth of multiple cysts within the 
kidney. Currently, tolvaptan is the only approved drug treatment for this disease, and the tolvaptan-ADPKD com-
bination is therefore included in RepoDB as a positive case. However, because tolvaptan has proven to be suitable 
for only a subset of ADPKD patients and has unfavorable side-effects, alternative drug treatments are searched 
for18. Furthermore, with clinical trials that test alternative drugs being scheduled or currently running, ADPKD 
is a suitable use case for candidate drug prioritization19–24.

Drug repurposing candidates for ADPKD that have been tested in preclinical studies were selected based on 
a manual review of the literature by two of the authors (T.B.M. and D.J.M.P, an ADPKD disease expert). Only 
review papers were included in the literature search19–24. These candidate drugs were subsequently prioritized 
using the classifier trained on RepoDB.

Results
RepoDB feature set. After removal of duplicate entries and drug-disease combinations for which no direct 
or indirect path was available, our set consisted of 8065 instances, out of the 9431 entries in RepoDB (86%). In 
total, there were 130 features based on the semantic properties of the intermediate concepts between the drugs 
and the diseases. Out of these 130, 13 were semantic groups, and 117 were semantic types.

One might hypothesize that the existence of a direct path between a drug and a disease would be predictive 
of an approved drug-disease combination. To test this hypothesis, we counted the number of direct paths in the 
knowledge graph for the terminated and approved subsets. In the approved subset 50% of the combinations had a 

Figure 1. Example of correspondence between concepts, semantic types, and semantic groups. In total, 
the knowledge graph contains over 7 million concepts, each of which has been assigned one or more of 137 
semantic types, and one of 15 semantic groups.
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direct path, while in the terminated subset 45% of the combinations had a direct path. These results indicate that 
the presence of a direct path has very limited discriminative value if used as a single feature. Table 1 shows the 
properties of the different subsets within our dataset.

RepoDB cross-validation performance and feature importance. We created a feature set of the 
direct and indirect paths between the drugs and diseases present in the EKP using binary and numeric fea-
tures for the approved and terminated subsets. Using this feature set, the classification performance of multiple 
machine learning algorithms was compared (Table 2). The random forest classifier achieved the best performance 
for all reported metrics, and was therefore chosen to perform further experiments with. Figure 3 shows the ROC 
curve for the random forest classifier, which achieved a mean AUC of 92.2% with a standard deviation of 1.2%. 
The repeated cross-validation experiments required 35 minutes at most, using 20 computing threads.

Figure 2. Overview of the feature creation process. RepoDB, which was used to train the classifier, contains 
drug-disease combinations whose status have been set to “Approved” or “Terminated” based on the results of 
clinical trials. Both the direct and the two-step indirect paths between the drugs and diseases are extracted 
from the knowledge graph. Based on the availability of a direct path between the drug and the disease, a 
binary feature is created. For the indirect paths, the frequencies of the semantic types and semantic groups 
of the intermediate concepts (IC) are used to create the features. In this figure, IC 1 has the semantic type 
pharmacologic preparation (i.e. a drug), IC 2 & 4 has Sign or Symptom, and IC 3 has Enzyme. Their semantic 
groups are Chemicals & Drugs for IC 1 and 3, and Phenomena for IC 2 and 4. Based on the extracted features, 
the classifier is trained/cross-validated to classify the status of each drug-disease combination as “Approved” (A) 
or “Terminated” (T).

Approved Terminated All

No. of Drugs 1407 373 1452

No. of Diseases 1111 719 1681

No. of non-cancers 787 226 933

No. of cancers 324 493 751

No. of drug-disease combinations 6044 2021 8065

No. of direct paths 3010 906 3916

Table 1. Number of unique drugs and diseases in the “Approved” and “Terminated” datasets. Each drug or 
disease could be part of multiple drug-disease combinations.

https://doi.org/10.1038/s41598-019-42806-6
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The importance of individual features was determined with the standard feature importance calculation func-
tion of the random forest algorithm. The semantic type “Cell” was the most important individual feature, followed 
by “Disease or Syndrome”, “Neoplastic process”, “Chemicals & Drugs”, and “Chemical Viewed Structurally”. Figure 4 
lists the top-20 most important features. The binary feature for a direct path between a drug and a disease fell 
outside this top-20.

Area under the 
ROC curve

Area under the 
precision-recall curve F1 Accuracy Kappa

Logistic Regression 81.6 (1.9) 90.8 (0.1) 87.6 (0.1) 79.8 (0.1) 35.4 (0.3)

Neural Network 89.1 (1.7) 95.0 (0.3) 90.9 (0.2) 86.0 (0.3) 60.7 (1.0)

SVM 88.4 (1.8) 94.8 (0.2) 90.6 (0.1) 84.7 (0.2) 51.1 (0.9)

CART 81.5 (2.0) 89.9 (0.0) 90.3 (0.1) 84.9 (0.1) 56.7 (0.3)

k-NN 88.2 (1.3) 94.2 (0.1) 90.7 (0.1) 85.5 (0.2) 57.9 (0.4)

Naïve Bayes 68.2 (1.8) 82.8 (0.1) 82.8 (0.1) 72.8 (0.1) 18.0 (0.2)

Random Forest 92.2 (1.3) 96.4 (0.1) 92.9 (0.0) 89.1 (0.1) 68.7 (0.2)

Table 2. Performance metrics achieved by each machine learning algorithm. Values indicate mean and 
standard deviation (in %) of 10 repeats of a 10-fold cross-validation experiment.

Figure 3. ROC curve of the 10-times repeated 10-fold cross-validation.

Figure 4. Individual feature importance scores, as calculated with the standard feature importance calculation 
function of the random forest algorithm. The scale of the scores have been normalized.
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Classification of cancer and non-cancer subsets. We attempted to determine the impact of the imbal-
ance of cancer and non-cancer disease classes in the approved and terminated subsets on classification perfor-
mance. Separate cross-validation experiments were performed for the cancer drug-disease combinations and for 
the non-cancer drug-disease combinations. The classifier trained on only non-cancers (AUC 84.2%) achieved a 
lower performance than the classifier trained on only cancers (AUC 91.6%). This performance difference may 
be caused by the different positive/negative ratios and sample sizes in the cancer and non-cancer subsets for the 
approved and terminated drug-disease combinations. When we subsampled the cancers (1519 approved com-
binations and 1590 terminated combinations) to get the same positive/negative ratio as the non-cancers (4525 
approved combinations and 431 terminated combinations, for a 10:1 ratio), performance dropped to an AUC 
of 87.7%. The remaining 3.5 percent point difference may be caused by the fact that cancers on average are con-
nected by more intermediate concepts than non-cancers: 662 and 466 respectively.

prioritization of drug candidates for ADpKD. We used the classifier that was trained on RepoDB to 
prioritize drugs which have been tested for ADPKD in preclinical studies. Based on a literature review, the experts 
identified 25 drug repurposing candidates for ADPKD. Table 3 shows a list of all candidates, along with a descrip-
tion of their mechanism of action and the review from which they were obtained. Three candidate drugs, teri-
flunomide, Genz-123346 and S31–201, were represented in the EKP, but were excluded because they did not have 
a direct or indirect path with ADPKD in the graph. Two candidate drugs, bosutinib and SKI-606, were included 
as separate results of the literature review, but because SKI-606 has bosutinib as its active ingredient, both drugs 
were represented by the concept for bosutinib during the prioritization of the drug candidates.

The random forest classifier assigns a pseudoprobability (prediction score) between 0 and 100% to each can-
didate drug-ADPKD combination. Prediction scores close to 100% indicate a high confidence that a combination 
belongs to the approved class, whereas scores close to 0% indicate very low confidence. The cutoff between the 
approved and the terminated classes was set at 50%. The results are shown in Table 4.

The classifier predicted that 17 out of the 21 drug candidates would be approved as treatment for ADPKD (predic-
tion scores >50%). Mozavaptan achieved the highest prediction score (100%), followed by satavaptan (93.0%), HET-
0016 (92.6%), and pasireotide (90.6%). Mozavaptan and satavaptan are vasopressin V2 receptor antagonists, as is the 
approved drug tolvaptan. Pasireotide is a somatostatin analogue. Another somatostatin analogue, octreotide, achieved 
a score of 67.2%. Mozavaptan, satavaptan, tolvaptan, pasireotide and octreotide all target cAMP signaling, which has a 
central role in ADPKD pathogenesis, with varying reported success20. The 20-HETE synthesis inhibitor HET-0016 has 
been suggested to mediate the proliferation of epithelial cells in the formation of renal cysts25.

The Raf kinase inhibitor sorafenib and two FK506-binding protein 1 A inhibitors, everolimus and siroli-
mus, had the lowest prediction scores (all below 40%). Sorafenib has been shown to block cAMP-dependent 

Identifier Name Mechanism of action
Selected recent 
reference (PMID)

UMLS C0077274 Triptolide intracellular calcium homeostasis 24560027

UMLS C2975283 Mozavaptan Vasopressin V2 receptor antagonist 27578560

UMLS C2607958 Satavaptan Vasopressin V2 receptor antagonist 18945944

UMLS C0028833 Octreotide Somatostatin receptor agonist 26844873

UMLS C1872203 Pasireotide Somatostatin receptor 2 agonist 24994926

UMLS C1174836 SKI-606 c-Src inhibitor 18385429

UMLS C1516119 Sorafenib Raf kinase inhibitor 20810616

UMLS C0755562 U0126 MEK Inhibitor 18263604

UMLS C1831731 Bosutinib Src/Bcr-Abl tyrosine kinase inhibitor 28838955

UMLS C0541315 Everolimus FK506-binding protein 1 A inhibitor 25424440

UMLS C0072980 Sirolimus FK506-binding protein 1 A inhibitor 29880342

UMLS C0025598 Metformin Mitochondrial complex I (NADH dehydrogenase) inhibitor 21262823

UMLS C0071097 Pioglitazone Peroxisome proliferator-activated receptor gamma agonist 28191533

UMLS C0289313 Rosiglitazone Peroxisome proliferator-activated receptor gamma agonist 28191533

UMLS C0536217 Roscovitine CDK inhibitor 23032260

UMLS C0025270 Menadione Cdc25A 22155366

UMLS C0717758 Etanercept TNF-alpha inhibitor 18552856

UMLS C0034283 Pyrimethamine Stat3 inhibitor 21821671

ChemSpider 221421 S3I-201 Stat3 inhibitor 21821671

UMLS C1718383 Teriflunomide Stat3 inhibitor 22155366

UMLS C1957685 Genz-123346 glucosylceramide synthase inhibitor 20562878

UMLS C0968934 HET-0016 20-HETE synthesis inhibitor 19129252

UMLS C0916207 TRAM-34 KCa3.1 inhibitor 18547995

UMLS C0010467 Curcumin Multiple 21345977

UMLS C2935082 EX-527 SIRT1-specific inhibitor 23778143

Table 3. Overview of drugs pre-clinically suggested for ADPKD.
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7Scientific RepoRts |          (2019) 9:6281  | https://doi.org/10.1038/s41598-019-42806-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

proliferation of human ADPKD cyst epithelial cells, but results in preclinical studies were ambiguous26. Sirolimus 
and everolimus were effective in preclinical studies, but had dose-limiting side effects in patients27.

Correlation of drug connectivity with prediction score. To investigate the role that the connectivity of a drug con-
cept might have on its prioritization we calculated the correlations between (1) the prediction score and the num-
ber of drug-ADPKD intermediate concepts, and (2) the prediction score and the total number of concepts with 
which the drug concept was connected in the whole EKP (see Table 4). We found a strong significant negative 
correlation for the first comparison (Kendall’s rank correlation tau: −0.73, p < 0.001) and a moderate significant 
correlation for the second comparison (Kendall’s rank correlation tau: −0.52, p < 0.001). The negative correla-
tions indicate that the classifier assigns lower prediction scores to drug-disease combinations with many interme-
diate concepts. The mean higher connectivity between cancers and drugs might contribute to this phenomenon.

Investigation of inclusion and exclusion of specific drugs in the training set. The tolvaptan-ADPKD combination 
is part of the “Approved” subset of RepoDB. To investigate the influence of this combination on the prioritization 
of the pre-clinically suggested candidate drugs, we excluded it from the set and trained a new classifier. With 
this classifier, tolvaptan achieved a prediction score of 79.2%, which was comparable with its prediction score on 
the full set (77.6%). These prediction scores of tolvaptan were lower than the classifier’s prediction scores of the 
other two vasopressin V2 receptors, mozavaptan (100%) and satavaptan (93.0%) (Table 4). Although this score is 
lower than for the other vasopressin V2 receptor antagonists, it shows that our method can confidently identify 
tolvaptan as an approved treatment for ADPKD. When tolvaptan was excluded from the training set, mozavaptan 
and satavaptan remained the top-two ranking drugs, with prediction scores of 100% and 95.0%, respectively. 
Based on these results, the high scores of mozavaptan and satavaptan cannot be explained by the clinical trial 
information available for the tolvaptan-ADPKD combination in RepoDB.

We performed a similar experiment for everolimus and sirolimus. Their poor prediction scores may be 
explained by the presence of sirolimus and everolimus in the “Terminated” RepoDB subset in combination with 
the generic form of ADPKD, “Polycystic Kidney Diseases”. We therefore excluded these combinations from the 
set and trained a new classifier. Everolimus and sirolimus then achieved prediction scores of 37.8% and 38.0% 
respectively, as compared with 35.0% and 27.0% on the full set, and retained their place in the ranking. The low 
scores of sirolimus and everolimus therefore cannot be explained by the clinical trial information in RepoDB 
about their combination with “Polycystic Kidney Diseases”.

Qualitative analysis. The connection between mozavaptan and ADPKD in the EKP went through one 
intermediate concept: Rattus norvegicus. Two intermediate concepts, kidney and argipressin, connected ADPKD 
to satavaptan. Four intermediate concepts connected HET-0016 and ADPKD: VEGFA, hypertensive disease, 
renal blood flow, and systolic pressure, which suggests that HET-0016 may be used to treat the hypertensive 
component of ADPKD. Inhibition of 20-HETE production by HET-0016 has been shown to prevent and reverse 
adrenocorticotrophic hormone-induced hypertension but not dexamethasone-induced hypertension28, reduce 

Name
Prediction 
score (%)

No. of intermediate 
concepts to ADPKD

No. of concepts the drug is 
connected to in the whole EKP

Mozavaptan 100.0 1 12

Satavaptan 93.0 2 17

HET-0016 92.6 4 67

Pasireotide 90.6 2 28

Bosutinib 88.6 9 1088

EX-527 73.8 6 75

Pioglitazone 68.2 53 1994

Octreotide 67.2 257 2133

Roscovitine 65.8 58 1027

Pyrimethamine 65.0 88 1062

TRAM-34 65.0 25 109

Etanercept 64.2 163 521

Triptolide 60.2 135 4128

Rosiglitazone 59.4 316 666

U0126 55.2 188 5891

Menadione 52.2 138 2822

Curcumin 46.0 359 2653

Metformin 42.4 343 3616

Everolimus 35.0 174 986

Sirolimus 27.0 376 5621

Sorafenib 19.0 205 1446

Table 4. The prediction scores of our random forest classifier for the ADPKD drug repurposing candidates.
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cerebrovascular inflammation and oxidative stress, and improve vasomotor function in spontaneously hyperten-
sive rats29. Figure 5 shows a simplified graph of the paths in the EKP between these drugs and ADPKD.

Discussion
Our work demonstrates that the frequencies of semantic properties of intermediate concepts between drugs and dis-
eases are powerful features to classify drug-disease combinations as “Approved” or “Terminated”. When evaluated with 
a repeated cross validation, our classifier achieved an excellent AUC of 92.2%. In our ADPKD use case we were able to 
rank 21 out of the 25 preclinical drug repurposing candidates that resulted from our literature review. When we prior-
itized these candidate drugs for ADPKD with our classifier, mozavaptan achieved the highest prediction score of 100%.

The comparison of drug prioritization methods is often impeded by the tendency of authors to only evaluate 
their methods on a locally available reference set. RepoDB was meant to remedy this, by being a publicly available 
gold-standard reference set against which all methods could be evaluated. To our knowledge, we are the first to use both 
its positive and negative cases to evaluate our method. Therefore, our results can only be indirectly compared to the 
work of Himmelstein et al.12. They used the approved drug-disease combinations from DrugCentral and ClinicalTrials.
gov, the same databases underlying RepoDB, as external validation sets for their classifier, with which they obtained 
AUCs of 85.5% and 70.0%, respectively. Instead of the frequencies of the semantic types and groups of intermediate 
concepts, their binary features indicated the presence or absence of metapaths, which consisted of combinations of 16 
unique predicates and 11 unique concept categories. These metapaths could vary in length, whereas we limited our-
selves to indirect paths that contained a single intermediate concept. Both methods analyzed a wide range of biomedical 
knowledge, ranging from knowledge about diseases to cells to genes and proteins. Furthermore, both methods analyzed 
knowledge that was obtained from biomedical databases as well as the literature. However, whereas Himmelstein et al. 
integrated 29 knowledge sources with each other specifically for their drug prioritization task, we were able to save a 
considerable amount of time and effort by using an existing knowledge graph.

Two candidate drugs for ADPKD, bosutinib and SKI-606, were included as separate results of the literature 
review, even though they contain the same active ingredient. Because we only used concepts of active ingredients 
of drugs, we considered both of them to represent a single candidate. However, their separate inclusion in the lit-
erature review results may indicate that information about different variations of a drug is considered relevant by 
users. To accommodate such distinctions, our experiments could be repeated with the concept for a specific vari-
ation of a drug. Alternatively, all the concepts that represent the different variations of a drug could be grouped to 
repeat our experiments at a coarser granularity. Such groupings of concepts at different granularities are referred 
to as “scientific lenses”30. A different scientific lens could also be applied to ADKPD by grouping it with concepts 
for other variations of polycystic kidney disease. An obvious drawback of grouping concepts is that the details of 
specific variations of a drug or a disease are lost.

An important drawback of our machine learning method is the lack of straightforward comprehensibility 
of the classifier that is trained. Although the performance of the classifier is high, its use of the features may be 
counter-intuitive upon closer inspection. We encountered this phenomenon when we prioritized drug candi-
dates for ADPKD. The top-ranked drug candidate, mozavaptan, was only supported by a minimal amount of 
information in the EKP, making it difficult to explain its prioritization. Nevertheless, mozavaptan was considered 
to be a viable candidate by the ADPKD expert. Overall, we found a significant negative correlation between 

Figure 5. Simplified graph of the network of intermediate concepts between ADPKD and the top 3 drugs 
mozavaptan, satavaptan and HET-0016 (n-hydroxy-n’-(4-butyl-2-methyl phenyl)formamidine). The thickness 
of the arrows indicates the amount of underlying evidence (database entry or publication from the literature). 
For the sake of clarity, some paths were removed when creating the figure. The complete set of paths can be 
found at the github repository mentioned in the Data availability section.
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the number of drug-ADPKD intermediate concepts and the prediction score. For example, for the somatostatin 
analogues octreotide and pasireotide, octreotide has a much lower prediction score and many more (n = 257) 
intermediate concepts to ADPKD than pasireotide (n = 2). This negative correlation might reflect the properties 
of the training set, where drugs on average have a higher number of intermediate concepts related to cancers than 
to non-cancers. Nonetheless, one could argue that the performance that is achieved during the cross-validation 
is high enough to rely on the classification results, however idiosyncratic their underlying assumptions may be.

In future research weights could be assigned to intermediate concepts based on network statistics. As was 
shown in the ADPKD use case, sometimes drugs and diseases are only connected by highly generic concepts. 
Assigning each intermediate concept a weight that is inversely proportional to its overall graph connectivity may 
diminish the contribution of generic concepts to the features.

Increasing the path length between the drugs and the diseases may help to substantiate a classification when 
drug-disease combinations are weakly connected. For example, there are seven intermediate concepts between moza-
vaptan and Rattus norvegicus, and 654 between ADPKD and Rattus norvegicus, which may offer further insight why 
mozavaptan was classified as the top candidate. Other potential benefits of including this information in the feature set 
may be an improved classification performance and an increased coverage of drug-disease combinations.

In summary, our method demonstrates that the variation and frequencies of semantic types and categories 
of intermediate concepts between drugs and diseases can be used as highly predictive features for classifying 
drug-disease combinations as “Approved” or “Terminated”. Because this task is a proxy for efficacy, our method is 
likely to be suitable for drug repurposing as well.

Data Availability
All data and scripts can be found in the github repository (https://github.com/Wytz/Drug_repurposing).
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