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Abstract: Water is a scarce, but essential resource in the Sahel. Rainfed ephemeral ponds and lakes
that dot the landscape are necessary to the livelihoods of smallholder farmers and pastoralists who
rely on these resources to irrigate crops and hydrate cattle. The remote location and dispersed nature
of these water bodies limits typical methods of monitoring, such as with gauges; fortunately, remote
sensing offers a quick and cost-effective means of regularly measuring surface water extent in these
isolated regions. Dozens of operational methods exist to use remote sensing to identify waterbodies,
however, their performance when identifying surface water in the semi-arid Sahel has not been
well-documented and the limitations of these methods for the region are not well understood. Here,
we evaluate two global dynamic surface water datasets, fifteen spectral indices developed to classify
surface water extent, and three simple decision tree methods created specifically to identify surface
water in semi-arid environments. We find that the existing global surface water datasets effectively
minimize false positives, but greatly underestimate the presence and extent of smaller, more turbid
water bodies that are essential to local livelihoods, an important limitation in their use for monitoring
water availability. Three of fifteen spectral indices exhibited both high accuracy and threshold stability
when evaluated over different areas and seasons. The three simple decision tree methods had mixed
performance, with only one having an overall accuracy that compared to the best performing spectral
indices. We find that while global surface water datasets may be appropriate for analysis at the global
scale, other methods calibrated to the local environment may provide improved performance for
more localized water monitoring needs.
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1. Introduction

In the Sahel, a semi-arid region spanning across northern sub-Saharan Africa, pastoralists and
smallholder farmers rely heavily on rain-fed ponds and lakes for hydrating their cattle and irrigating
small fields [1,2]. Many surface water bodies in the region are ephemeral and heavily dependent
on precipitation, reaching capacity during the rainy season, which spans from May to October, and
disappearing completely during the dry season [1–3]. In response to severe droughts in the 1970s
and 1980s, the Nigerien government has implemented laws, regulations, and policies that dictate the
interactions of pastoralists and smallholder farmers with surface water resources [4]. To better inform
these policies, there is a need for more effective surface water monitoring; however, many of these
features are remote and dispersed, often located in areas with low population densities, making them
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difficult to monitor via conventional methods, such as gauges or with total data stations. Remote
sensing provides a means of monitoring these scattered waterbodies across time and over vast areas.

There are many operational methods used to identify inland surface water using remotely sensed
data. In addition to pre-calculated global surface water datasets, algorithms for detecting surface water
from remote sensing data also have been created and applied at global, regional, and local scales. These
include the thresholding of single bands and spectral indices [5–12]; simple decision trees relying on
knowledge of the spectral properties of water compared to other land cover types [13–15]; spectral
mixture analysis (SMA) [16–18], and supervised and unsupervised classification schemes (including
machine learning algorithms) [19,20].

The most common and simple method of identifying surface water using remotely sensed data is
calculation of spectral indices. Many indices have been developed specifically to exploit the unique
spectral signature of water compared to other land cover types [5–10,12,13]. While each index has
strengths and weaknesses, it is not apparent which works best in a semi-arid environment, such as the
Nigerien Sahel. Additionally, many of these methods require identifying an optimal threshold, which
may vary across space and time due to relative land cover, atmospheric effects, and water quality [10].
Some methods have been specifically developed for threshold stability [3] or to avoid thresholding at
all [21], however they have not been programmatically assessed for the Sahel.

Previous studies are limited in their comparison of surface water detection methods, typically
comparing relatively few indices, or simply presenting new methods without comparing them to
existing ones (see [10,12,21–25] for examples). These comparisons offer little agreement over which
spectral index performs the best. Relatively few of these comparison studies address surface water
identification in the Sahel, which has unique land cover and water body characteristics considerations,
e.g., high seasonal variability in the extent of surface water, large seasonal changes in relative land
cover (including vegetation), and a great variety of water body types, ranging from clear to extremely
turbid. One recent exception is Campos and colleagues’ [23] comparison of spectral index performance
in Mauritania, which encompasses the Sahara-Sahel transition zone. While their study only looked
at the capabilities of three spectral indices to determine the seasonality of surface water (permanent,
non-water, and seasonal), the authors did note the poor performance of the Normalized Difference
Water Index (NDWI) compared to the Normalized Difference Moisture Index (NDMI) and the Modified
Normalized Difference Water Index (MNDWI) [23]. A more comprehensive comparison of potential
methods along with their strengths and weaknesses, is necessary to guide water resource managers in
using remote sensing to monitor these important features in the Sahel.

In addition to spectral indices, preexisting global surface water datasets are also used to assess
the distribution of surface water. These datasets leverage the global availability of many sources of
remotely sensed data, such as Landsat and MODIS, to calculate surface water extent across the globe.
These datasets can be static, representing a single moment in time or a summary statistic over a long
period of time, or dynamic, providing time series information on surface water extent [26,27]. However,
global datasets are often insufficient for mapping the small ephemeral water bodies scattered across
the Nigerien Sahel, either because the dataset consists of static maps that do not capture the extreme
seasonal dynamism of water bodies in the region or, if dynamic, they fail to detect the large number
of small, turbid, spectrally complex ephemeral water bodies that many pastoralists and smallholder
farmers regularly rely on and which might not make it into algorithm training datasets. While those
omitted water bodies may not be significant in the context of wider, global-scale hydrologic processes,
they are essential to local lifeways.

This paper evaluates two commonly used 30-m-resolution global surface water datasets: the
Joint Research Centre’s Global Surface Water (JRC GSW) [26] dataset and the Landsat QA water mask
dataset [27]. Additionally, fifteen spectral indices developed for detecting surface water from remotely
sensed data are calibrated and evaluated to determine which is best suited for identifying water bodies
across space and time in the Sahel. Simple decision tree methods of surface water detection that have
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been developed specifically for water detection in a semi-arid environment are also applied and the
strengths and weaknesses of each are discussed.

2. Materials and Methods

2.1. Study Area

Niger is a large landlocked country in west Africa, bordered by Mali and Burkina Faso to the
west, Algeria and Libya to the north, Chad to the east, and Nigeria and Benin to the south (Figure 1).
The study area is the Tahoua Region of Niger (Figure 2), which is located in the southwest of Niger and
is crosscut by the Sahel, a large ecoregion that spans across Africa and is characterized by a semi-arid
climate with seasonal vegetation and water bodies that are driven by a mono-modal pattern of annual
precipitation that typically peaks in August. Annual precipitation in the Tahoua Region varies from
north to south, with areas in the north receiving as little as 200 mm per year and areas in the southern
portion of the Sahel receiving as much as 600 mm per year [28]. This pattern of precipitation is one
of the main drivers of the filling and drying up of surface water bodies in the region. Vegetation
also varies on this north-to-south axis, with small scale cultivation in the south and dry steppe in the
north. The Tahoua Region on Niger is an important area for migrating pastoralists [1,2,4] who rely on
dispersed water bodies for hydration throughout their journey.
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2.2. Data

The recently released JRC GSW dataset [26] is one of the first global surface water datasets to
attempt to capture the dynamism of surface water extent at a monthly time scale using high resolution
(30 m) Landsat data. This dataset consists of various global surface water characteristics at 30 m
resolution, including occurrence, occurrence change intensity, seasonality, recurrence, transitions, and
maximum water extent. Additionally, monthly surface water extent maps, from which all of the other
products are derived, can be found in the Google Earth Engine (GEE) [29] version of the JRC GSW
database. The JRC GSW monthly surface water extent data, used for this study, were derived from
the Landsat 5–8 series of satellites, spanning March 1984 to October 2015. The dataset was calculated
on the GEE platform using a complex decision tree, including “expert systems, visual analytics, and
evidential reasoning” [26]. For this study, only the October 2015 monthly surface water extent map
was used to compare to reference data derived from the very high-resolution October 2015 Digital
Globe (DG) data.

The Landsat surface reflectance product produced by the United States Geological Survey (USGS)
contains a quality control band which provides some land cover information, such as water, ice, and
snow. This information is used in deriving the surface reflectance product using the Landsat Surface
Reflectance Code (LaSRC), based on the Second Simulation of a Satellite Signal in the Solar Spectrum
(6S) radiative transfer model. The pixel_qa band, generated by the CFMask algorithm, was used to
generate surface water extent because it “is likely to present more accurate results than the internal tests
LaSRC uses for cloud, cloud shadow, snow/ice, and water” [30,31]. The pixel_qa band was reclassified
so that water pixels (values of 324, 388, 836, 900, and 1348) were reclassified with a value of 1; all other
pixels were assigned a value of 0.
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Landsat 8 surface reflectance data derived from the LaSRC were used to calculate the surface
water extent from the spectral indices and simple decision trees. This method of atmospheric correction
was used because in preliminary studies it had little impact on the accuracy of surface water masks
derived from spectral indices in the Sahel [32]. These data were procured through GEE from the United
States Geological Society’s (USGS) LaSRC, which uses the 6S radiative transfer model [30,31].

High-resolution top-of-atmosphere reflectance imagery from the DG WorldView-2 and
WorldView-3 satellites were used as reference data to assess the accuracy of the existing global
surface water datasets to represent surface water in the Nigerien Sahel and for calibration and
validation of the water masks derived from spectral indices. Table 1 presents all the specific images
and dates used in this analysis.

Table 1. Landsat and DG imagery used.

Satellite/Sensor Data Source Image Resolution Image ID Date

Landsat 8 OLI USGS ESPA 30 m

LC81910492015294LGN01 21 October 2015
LC81910502017364LGN01 29 December 2017
LC81910492017268LGN01 24 September 2017
LC81910492016121LGN01 30 April 2016

WorldView-3 Digital Globe 2 m (pansharpened
to 0.5 m)

1040010012220E00 21 October 2015
10400100356E6500 29 December 2017

WorldView-2 Digital Globe 2 m (pansharpened
to 0.5 m)

1030010070CF0800 24 September 2017
10300100547AA300 30 April 2016

2.3. Methods

Creating the reference dataset: Calibration and validation of the surface water extraction methods
were based on four very high-resolution images, totaling 6951.43 km2, from DigitalGlobe’s WorldView-2
and WorldView-3 satellites (Table 2). Due to the highly dynamic nature of ephemeral water bodies
within the study area, DG imagery used for calibration and validation was only selected from dates
corresponding to the exact dates of the Landsat imagery used. The coverage of the reference dataset was
limited by the availability of DG data that overlapped spatially and temporally with Landsat imagery.

Table 2. In-situ surface water metrics (dates of the images are provided in Table 1).

DG Scene Scene Area
(km2)

Water Surface
Area (km2)

Water Perimeter
(km)

Rasterized Surface
Area (km2)

1040010012220E00 1463.17 2.08 115.4 1.95
10400100356E6500 1576.51 2.26 58.92 2.23
1030010070CF0800 1923.60 8.78 181.26 8.54
10300100547AA300 1988.15 4.77 19.23 4.77

The 2.5 m resolution WorldView-2 and 3 imagery was pansharpened to 0.5 m resolution using
the Brovey transform in ArcGIS Pro. A 600 m by 600 m grid was placed over each DG scene to
systematically identify surface water across the larger image. Each grid block was closely inspected
and water bodies were visually identified in the DG true color image and hand-digitized in ArcGIS
Pro to serve as the reference surface water extent. The resulting water body outline shapefiles were
then converted to a 30 m resolution raster whereby each 30 m pixel that was covered by more than 50%
water was classified as a water pixel and those with less than 50% water coverage were classified as
a non-water pixel. Two sets of random points were generated for each DG image, stratified across
water and non-water areas identified in the DG imagery, with each point being a minimum of 30 m
apart. The number of sample points varied slightly (max 1300 points, min 1297 points) from scene to
scene because of these constraints. The status of these points as water or non-water was compared
with the values for the same points extracted from the water masks derived via the various surface
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water identification algorithms. Visual inspection revealed that this random selection process for water
points yielded points representing both near-shore and mid-water body locations and for non-water
points included sand, exposed bedrock, and vegetated areas.

Evaluating global surface water datasets: Two existing global surface water datasets were assessed
for their utility in identifying ephemeral water bodies in the Nigerien Sahel, the JRC GSW monthly
surface water extent dataset [26] and the Landsat 8 QA FMask water layer [27]. The JRC GSW dataset
was selected for October 2015 to coincide with the DG high resolution imagery from October 21, 2015.
Data for the JRC GSW dataset are stored as 0, 1, or 2, with 2 being water, 1 being non-water, and 0 being
no data. Four scenes of the Landsat 8 QA FMask water layer were compared to the corresponding
reference dataset. For each global dataset, values for the sample points were compared through OA
and producer and consumer accuracies.

Calculating spectral indices and simple decision trees: Fifteen spectral indices were calculated for
each of the four Landsat 8 OLI surface reflectance scenes. Calculations were automated in ArcGIS Pro.
These indices were selected because they are either traditionally used to monitor surface water extent
or were recently developed to address issues with more common methods. Table 3 provides details of
each index, including spectral bands, equation, and primary source.

In addition to the surface water indices, several methods of water detection have also been
developed specifically for semi-arid regions. These include the simple water index (SWI) [21], a simple
decision tree from Gond et al. [15] that uses the normalized difference vegetation index (NDVI), the
normalized difference water index (NDWI), and the first shortwave infrared band (SWIR1), and a
simple decision tree from Kaptue [14] that used NDVI and the modified normalized difference water
index (MNDWI) (Table 3).

Simple Water Index (SWI): The SWI method was developed by Malahlela [21] to avoid the problem
of identifying optimal thresholds, and to maximize the differences between water and land cover types
commonly confused with water such as green vegetation, shadows, and built-up areas. Non-water
values are automatically nullified in the equation and the resulting values that are greater than five are
classified as land cover types that have a similar response to water, while those values below five are
classified as water. This method was derived specifically for an arid/semi-arid region in South Africa.
The original study found that SWI had superior performance to the AWEI and MNDWI methods,
however it is not widely used outside of the original paper.

Gond Method: Gond and colleagues [15] developed a simple decision tree method using the
VEGETATION instrument for identifying water bodies in the Sahel. This method was developed
specifically to address the wide range of water body types and the variation in the surrounding
landscape associated with seasonal changes in the region. First, the difference between NDVI and
the normalized difference moisture index (NDMI) is calculated and the average is computed using
a moving window of 45 pixels-squared. Next, the difference between this average and the original
difference is calculated and pixels with a value greater than 0.08 are kept as potential water bodies.
Then, a moving average of 45 pixels-squared is calculated for SWIR1 and the difference between the
average and the original SWIR1 band is calculated. Pixels with a value of 0.05 or greater are kept as
potential water bodies. Finally, the two outputs are combined using an “AND” function, and any
pixels that satisfy both are classified as water. One potential source of error identified in the original
paper is confusion of clouds for water; the authors suggest using a separate cloud mask to address
this issue. Additionally, they suggest that this method may not work on water bodies that are large
enough to impact the regional average of the moving window average. The Gond [15] simple decision
tree does not perform well in areas with dense or moist vegetation because the contrast with water is
diminished. This method was developed explicitly for dryland surface water detection.
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Table 3. Methods of surface water detection.

Name Citation Equation Bands Used
B G R NIR SWIR1 SWIR2

Near Infrared - NIR - - - X - -
SWIR 1 - SWIR 1 - - - - X -
SWIR 2 - SWIR 2 - - - - - X

NIR-Red Ratio 13 NIR/RED - - X X - -
Red-Green Ratio 13 RED/GREEN - X X - - -

Normalized Difference Water Index (NDWI) 5 NDWI = (GREEN − NIR)/(GREEN + NIR) - X - X - -
Normalized Difference Moisture Index (NDMI) 6 NDMI = (NIR − SWIR)/(NIR + SWIR) - - - X X -
Modified Normalized Difference Water Index

(MNDWI) 7 MNDWI = (GREEN − SWIR)/(GREEN + SWIR) - X - - X -

Normalized Difference Pond Index (NDPI) 13 NDPI = (SWIR − GREEN)/(SWIR + GREEN) - X - - X -
Water Ratio Index (WRI) 8 WRI = (GREEN + RED)/(NIR+ SWIR) - X X X X -

Tasseled Cap Wetness (TCW) 9 TCW = 0.1511 × BLUE + 0.1973 × GREEN + 0.3283 × RED +0.3407 ×
NIR − 0.7117 × SWIR1 − 0.4559 × SWIR2 X X X X X X

Automated Water Extraction Index (AWEIsh) 10 AWEI(sh) = BLUE + 2.5 × GREEN − 1.5 × (NIR+SWIR1) − 0.25 × SWIR2 X X - X X X
Automated Water Extraction Index (AWEInsh) 10 AWEI(nsh) = 4 × (GREEN − SWIR1) − (0.25 × NIR + 2.75 × SWIR1) - X - X X -
Normalized Difference Vegetation Index (NDVI) 11 NDVI = (NIR − RED)/(NIR + RED - - X X - -

WI2015 12 1.7204 + 171(GREEN) + 3(RED) + 70(NIR) + 45(SWIR1) + 71(SWIR2) - X X X X X
MNDWI and NDVI 14 Water where NDVI < 0 and MNDWI > 0 - X X X X -

Simple Water Index (SWI) 21 SWI = 1/
√
(BLUE− SWIR1), values <5 are classified as water X - - - X -

NDWI, NDVI, SWIR1 15

(1) NDVI − NDWI;
(2) Average moving window of (1)
(3) (1) − (2)
(4) (3) > 0.8 kept as potential water
(5) Average moving window of SWIR1
(6) (5) − SWIR1
(7) (6) > −0.1 kept as water

- X X X X -
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Sahel Water Body Product (SWBP): Kaptue and colleagues [14] developed a simple decision
tree method for identifying water across the entire Sahel using 250-m MODIS imagery. The authors
aimed to create a fast, efficient, and automatic means of identifying surface water. NDVI was used to
distinguish waterbodies from dry soil and vegetation, however, since it may not distinguish water
from snow, clouds, and bare land [3], MNDWI is also included to suppress bare land and built up areas.
Pixels that had an NDVI value less than zero and an MNDWI value greater than zero are classified
as water.

Calibrating spectral indices: The primary methods of determining optimal thresholds of
spectral indices include: the logical, programmatic threshold initially suggested in the literature
proposing the index [5–7]; the eyeball approach, which relies on a subjective visual inspection
of the classification [13,33]; the static optimal threshold method, which relies on in situ/reference
calibration data and statistics [10,23]; and the dynamic threshold method which relies on image
statistics and histograms [25,34]. In this study, for algorithms requiring a threshold, a Receiving
Operator Characteristic (ROC) curve was generated using the pROC package in R. The ROC curve
illustrates how different optimal threshold impact the sensitivity and specificity of the classification.
It also allows for the calculation of the Area Under the Curve (AUC) which is an indicator of the overall
utility of a given method as a classifier. The first set of random points was used for this calibration step.
The optimal threshold was defined as the index value that minimized the specificity (true negative rate)
and sensitivity (true positive rate), with equal weighting of each [35,36]. In other cases, differential
weighting of different types of errors in the optimal threshold selection process may be appropriate
depending on the purpose and goals of the analysis. The sensitivity and specificity were compared for
each threshold using the following equation applied in R:

D = ((1− Se)2 + (1− Sp)2)
1
2 , (1)

where D is the distance to (0,1), Se is sensitivity or true positive rate (TP = true positives/positives) and
Sp is the specificity or true negative rate (TN = true negatives/negatives). The optimal threshold was
selected as the index value with the lowest value for D. This calibration step was not applied for the
three simple decision tree methods.

Validating and comparing methods: The second set of random points was used to calculate the
overall accuracy (OA) and the user’s and producer’s accuracy of all data after each image had been
classified using the OT derived above. OA was calculated in R using the following equation:

OA =
TP + TN

TSS
, (2)

where TP is the number of true positives, TN is the number of true negatives, and TSS is the total
sample size. The user’s accuracy (UA) presents the accuracy from the user’s perspective and is also
called the false positive rate, which indicates how many points were classified as water when they
should have been classified as non-water. The producer’s accuracy provides the accuracy from the
producer’s perspective and is also called the false negative rate, which indicates how many points
were classified as non-water when they should have been classified as water. Figure 3 provides a
flowchart of the methods and data used in this analysis.
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3. Results

3.1. Results of Existing Global Surface Water Dataset Assessment

Both the JRC GSW and Landsat QA datasets practically eliminate false positive (FP) water
identifications (Table 4). However, in doing so they underestimate the extent of surface water for the
study area. For October 2015, the JRC GSW dataset had an OA of 0.84, with an FP rate of less than
one percent but a false negative (FN) rate of 0.15. The Landsat QA water masks demonstrated similar
results to the JRC GSW dataset, with OA ranging from 0.77 to 0.93, FP rate ranging from 0 to less
than one percent, and the FN rate ranging from 0.02 to 0.22. The FN points for both global surface
water datasets primarily consisted of water bodies that were small and turbid, as identified visually in
the DG higher resolution imagery. The spectral signature of these water bodies can appear similar
to certain soils and exposed rock, which may lead to misclassification if they are not included in the
training dataset. Figure 4 illustrates underestimation of surface water extent provided by the JRC
monthly surface water dataset compared to the reference dataset for the same month.

Table 4. Accuracy results for global datasets.

Dataset Date OA FP FN

Landsat 8 QA band

21 October 2015 0.82 <1% 0.18
29 December 2017 0.78 0 0.22
24 September 2017 0.93 0 0.07

30 April 2016 0.77 0 0.20

JRC GSW October 2015 0.84 <1% 0.15
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Figure 4. Sample results of JRC GSW dataset comparison. White arrows indicate water bodies identified
in the JRC dataset. Grey arrows indicate water bodies not identified in the JRC dataset.

3.2. Results of Spectral Index Assessment

Of the 15 spectral indices and bands tested, nine indices (SWIR1, SWIR2, NDMI, MNDWI/NDPI,
WRI, TCW, AWEIsh, AWEInsh) had the best performance, with an OA across all scenes greater than
0.95 (Table 5). While all indices demonstrated some variability in the optimal threshold, six indices had
optimal thresholds that varied less than 10% of the possible range of values for the given index. These
included the NDMI, TCW, AWEIsh, NIR/R Ratio, NDWI, and NDVI. There were three indices that
demonstrated both a high OA and a stable threshold: NDMI, TCW, and AWEIsh. The application of a
single optimal threshold for these three indices would be appropriate for classifying water across space
and time in the Sahel. NDWI, one of the most commonly used methods of surface water detection
had relatively poor performance, with an OA of 0.88. NDWI was able to distinguish water from
surrounding vegetation, but false positives were mainly due to confusion between water and bright,
exposed bedrock. Additionally, NDWI failed to detect many smaller, more turbid water bodies.
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Table 5. Accuracy results for indices.

Algorithm

Scene 1
(Calibrated to

Scene 1)

Scene 2
(Calibrated to

Scene 2)

Scene 3
(Calibrated to

Scene 3)

Scene 4
(Calibrated to

Scene 4)

All Scenes
(Calibrated to

All Scenes)

Optimal
Threshold OA Optimal

Threshold OA Optimal
Threshold OA Optimal

Threshold OA Optimal
Threshold OA

NIR 0.2965 0.70 0.4104 0.49 0.1659 0.89 0.2193 0.79 0.2338 0.75
SWIR 1 0.3032 0.96 0.3450 0.98 0.2110 0.99 0.2750 0.99 0.2522 0.97
SWIR 2 0.2035 0.95 0.2440 0.98 0.1210 0.99 0.2090 0.99 0.1652 0.97
NIR/R
Ratio 1.2857 0.73 1.1587 0.96 1.1205 0.95 1.1754 0.63 1.1859 0.82

R/G
Ratio 1.3935 0.84 1.4621 0.83 1.2413 0.94 1.2600 0.99 1.3774 0.84

NDWI −0.2817 0.83 −0.2548 0.96 −0.2329 0.96 −0.1976 0.96 −0.2498 0.88
NDMI −0.0365 0.96 0.0158 0.98 0.0149 0.98 −0.0753 0.99 0.0149 0.98

MNDWI −0.3378 0.97 −0.2082 0.98 −0.3335 0.99 −0.3300 0.99 −0.3350 0.98
NDPI 0.3378 0.97 0.2080 0.98 0.3340 0.99 0.3300 0.99 0.3350 0.98
WRI 0.6056 0.97 0.7320 0.98 0.5799 0.97 0.6253 0.99 0.6250 0.97
TCW −0.1047 0.96 −0.0555 0.98 −0.0803 0.99 −0.1410 0.99 −0.1118 0.98

AWEIsh −0.4187 0.96 −0.4455 0.98 −0.3893 0.98 −0.4040 0.99 −0.4078 0.98
AWEInsh −1.4701 0.96 −1.4995 0.98 −1.0600 0.99 −1.4200 0.99 −1.3835 0.98

SWI -* 0.81 -* 0.95 -* 0.80 -* 0.77 -* 0.83
NDVI 0.1250 0.73 0.0735 0.96 0.0568 0.95 0.0806 0.63 0.0850 0.82

WI2015 80.0887 0.79 98.5396 0.90 52.8095 0.94 63.4000 0.97 66.6648 0.69
Kaptue -* 0.87 -* 0.91 -* 0.95 -* 0.77 -* 0.88
Gond -* 0.93 -* 0.97 -* 0.95 -* 0.97 -* 0.96

* optimal thresholds not calculated for simple decision tree methods.

3.3. Results of Decision Tree Assessment

The three simple decision trees created specifically for semi-arid regions had varied performance.
Gond’s method using NDWI, NDVI, and SWIR1 had the best performance with an OA of 0.96. Kaptue’s
method using MNDWI and NDVI had relatively poor performance with an OA of 0.88 and Malhala’s
SWI had the worst performance with an OA of 0.83.

4. Discussion

Three indices performed extremely well and had high threshold stability, making them excellent
indices to apply for surface water detection in the Sahel: NDMI, TCW, and AWEIsh. While other
indices exhibited high accuracies for individual scenes (SWIR1, SWIR2, NDPI/MNDWI, and WRI)
they did not demonstrate optimal threshold stability. A stable optimal threshold indicates that a
single threshold value is appropriate to use over multiple scenes across space and time, rather than
having to generate a new threshold for each scene in order to maintain the highest accuracy. Optimal
thresholds and OA varied greatly across time and space for other indices, suggesting that the static,
simple thresholding of spectral indices may not be sufficient for mapping the variety of water body
types in the Sahel. Additionally, simple decision trees developed specifically for the Sahel did not
perform as well as these spectral indices.

The worst performing indices were WI2015, with an OA of 0.69 and the NIR band with an OA
of 0.75. WI2015, band ratios, and the NIR band also had the most unstable optimal threshold from
scene to scene, indicating that these indices are not appropriate for monitoring surface water extent
over space and time with a single threshold. These indices would require a new optimal threshold be
generated for each Landsat scene in order to maintain the highest accuracy.

AWEIsh and AWEInsh were developed in part to solve the optimal threshold problem [10].
Previous work [10] demonstrated these two indices had high threshold stability across time and space,
removing the need to identify an optimal threshold for each new scene. However, in this study, only
AWEIsh demonstrated threshold stability, while optimal thresholds for AWEInsh varied greatly.
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One of the most widely used water detection indices, NDWI, is known to confuse built up
areas for water bodies and such was the case for this study [7]. Other studies comparing commonly
used methods of surface water detection in the Sahel and other semi-arid regions also found poor
performance of the commonly used NDWI [23], likely due to the spectral similarity between built
up areas, a known limitation of NDWI and certain landcover types in the region such as sand and
exposed bedrock. MNDWI, another commonly used method of surface water detection, consistently
confused vegetated areas with water bodies. This is a known issue related to the inability of MNDWI
to distinguish between vegetation and inundated vegetation or vegetated water [14].

In many cases, differences in accuracy between the indices are very small, and may not be
significant at the resource management level. The practical implications of differences in accuracies are
an understudied topic that future work could address.

Due to limitations in the overlap of high-resolution DG data and Landsat scenes, a non-probabilistic
sample was used, whereby the chance of any given point within the Tahoua Region being selected
was not equal across all points. Additionally, the sample datasets included mixed pixels, which may
have decreased the accuracy of the algorithms. Studies that have separated mixed pixel from pure
pixel classifications report an increase in accuracy once mixed pixels are removed from the study
area [12]. The coefficients to calculate TCW were derived specifically for TOA reflectance and not
surface reflectance, however, this index has been applied to surface reflectance products to identify
surface water with some success [12]. Additionally, the method of deriving the reference dataset could
have introduced errors as well. Future work could test for reproducibility in order to quantify the
amount of error that might be introduced by using high-resolution imagery as a proxy for in-situ data.

Finally, the JRC GSW dataset for the study area for October 2015 contained patterns of No Data
that may have been due to the Landsat-7 SLC failure, however documentation for this dataset does
not note this as a potential source of error. These areas of No Data may have contributed to the
underestimation of surface water, however a visual inspection of areas with data present suggests
there are still many areas of surface water in the reference dataset that are not present in the JRC GSW
dataset. Future studies should expand the study area or time period to allow for additional overlap
between the JRC GSW dataset and the high-resolution reference data.

5. Conclusions

The results from this analysis demonstrate that existing global surface water datasets are not
sufficient to address the limited availability of surface water in the Nigerien Sahel. The JRC GSW and
Landsat QA datasets greatly underestimate the surface water extent for the study area, likely due
to insufficient classification schemes for the Sahel or a training dataset that does not account for the
spectral complexity of smaller, ephemeral water bodies in the Sahel. Algorithms calibrated specifically
for the study area demonstrate a marked improvement in performance over these global datasets.
Three spectral indices exhibited high accuracy and stable thresholds: NDMI, TCW, AWEIsh, indicating
their appropriateness for monitoring changes in the extent of surface water in the Nigerien Sahel.
NDWI, a commonly used index, had relatively poor performance and low threshold stability, along
with WI2015, band ratios, and the NIR band.

This paper provides a comprehensive comparison of fifteen spectral indices and three decision
trees used to identify surface water from remote sensing data. An assessment of two global surface
water datasets was also presented. Future work should expand this comparison in the Sahel beyond
the Tahoua Region of Niger and could incorporate additional datasets, such as Sentinel-2 and other
sources of high-resolution optical data, such as Planet. While spectral indices are the simplest and
most commonly used methods of mapping surface water, analyses using machine learning approaches
have also demonstrated their ability to more accurately map surface water over space and time in other
regions [20]. These approaches should be included in future comparisons of water detection strategies
in the Sahel.



Sensors 2020, 20, 431 13 of 14

Author Contributions: Conceptualization, K.H., E.C., and R.G.; methodology, K.H.; validation, K.H. and R.M.;
formal analysis, K.H.; investigation, K.H.; writing—original draft preparation, K.H.; writing—review and editing,
K.H., R.M., E.C., and R.G.; visualization, K.H.; supervision, E.C. and R.G. All authors have read and agreed to the
published version of the manuscript.

Funding: Funding for this research provided by NASA SERVIR through NASA Cooperative Agreement
NNM11AA01A.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Snorek, J.; Renaud, F.G.; Kloos, J. Divergent adaptation to climate variability: A case study of pastoral and
agricultural societies in Niger. Glob. Environ. Chang. 2014, 29, 371–386. [CrossRef]

2. Snorek, J.; Moser, L.; Renaud, F.G. The production of contested landscapes: Enclosing the pastoral commons
in Niger. J. Rural Stud. 2017, 51, 125–140. [CrossRef]

3. Verdin, J.P. Remote sensing of ephemeral water bodies in western Niger. Int. J. Remote Sens. 1996, 17, 733–748.
[CrossRef]

4. Snorek, J.; Terasawa, K.; Stark, J. Climate Change and Conflict in the Sahel: A Policy Brief on Findings from Niger
and Burkina Faso; USAID African and Latin American Resilience to Climate Change Project: Burlington, VT,
USA, 2014.

5. McFeeters, S.K. The use of normalized difference water index (NDWI) in the delineation of open water
features. Int. J. Remote Sens. 1996, 17, 1425–1432. [CrossRef]

6. Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens. Environ. 1996, 58, 257–266. [CrossRef]

7. Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely
sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]

8. Shen, L.; Li, C. Water body extraction from Landsat ETM+ imagery using Adaboost algorithm. In Proceedings
of the 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4.

9. Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasseled cap transformation based on Landsat 8
at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [CrossRef]

10. Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for
surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [CrossRef]

11. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens.
Environ. 1979, 2, 127–150.

12. Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification
in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [CrossRef]

13. Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of ponds from high-spatial
resolution remote sensing: Application to Rift Valley Fever in Senegal. Remote Sens. Environ. 2007, 106,
66–74. [CrossRef]

14. Kaptue, A.T.; Hanan, N.P.; Prihodko, L. Characterization of the spatial and temporal variability of surface
water in the Soudan-Sahel region of Africa. J. Geophys. Res. Biogeosci. 2013, 118, 1472–1483. [CrossRef]

15. Gond, V.; Bartholeme, E.; Ouattara, F.; Nonguierma, A.; Bado, L. Surveillance et cartographie des plans d’eau
et des zones humides et inondables en regions arides avel l’instrument VEGETATION embarque sur SPOT-4.
Int. J. Remote Sens. 2004, 25, 987–1004. [CrossRef]

16. Halabisky, M.; Moskal, L.M.; Gillespie, A.; Hannam, M. Reconstructing semi-arid wetland surface water
dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984–2011). Remote
Sens. Environ. 2016, 177, 171–183. [CrossRef]

17. Huang, C.; Chen, Y.; Zhang, S.; Li, L.; Shi, K.; Liu, R. Spatial downscaling of Suomi NPP-VIIRS image for
lake mapping. Water 2017, 9, 834. [CrossRef]

18. Liu, X.; Deng, R.; Xu, J.; Zhang, F. Coupling the Modified Linear Spectral Mixture Analysis and Pixel-Swapping
Methods for Improving Subpixel Water Mapping: Application to the Pearl River Delta, China. Water 2017, 9,
658. [CrossRef]

19. Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Machine Learning Algorithms for Surface Water Extraction
in a Landsat 8 Scene of Nepal. Sensors 2019, 19, 2769. [CrossRef]

http://dx.doi.org/10.1016/j.gloenvcha.2014.06.014
http://dx.doi.org/10.1016/j.jrurstud.2017.01.015
http://dx.doi.org/10.1080/01431169608949041
http://dx.doi.org/10.1080/01431169608948714
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.1080/01431160600589179
http://dx.doi.org/10.1080/2150704X.2014.915434
http://dx.doi.org/10.1016/j.rse.2013.08.029
http://dx.doi.org/10.1016/j.rse.2015.12.055
http://dx.doi.org/10.1016/j.rse.2006.07.012
http://dx.doi.org/10.1002/jgrg.20121
http://dx.doi.org/10.1080/0143116031000139908
http://dx.doi.org/10.1016/j.rse.2016.02.040
http://dx.doi.org/10.3390/w9110834
http://dx.doi.org/10.3390/w9090658
http://dx.doi.org/10.3390/s19122769


Sensors 2020, 20, 431 14 of 14

20. Isikdogan, F.; Bovik, A.C.; Passalacqua, P. Surface water mapping by deep learning. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2017, 10, 4909–4918. [CrossRef]

21. Malahlela, O.E. Inland waterbody mapping: Towards improving discrimination and extraction of inland
surface water features. Int. J. Remote Sens. 2015, 37, 4574–4589. [CrossRef]

22. Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open surface water mapping
algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [CrossRef]

23. Campos, J.C.; Sillero, N.; Brito, J.C. Normalized difference water indexes have dissimilar performances in
detecting seasonal and permanent water in the Sahara-Sahel transition zone. J. Hydrol. 2012, 464, 438–446.
[CrossRef]

24. Ji, L.; Zhang, L.; Wylie, B.K. Analysis of dynamic thresholds for the normalized difference water index.
Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [CrossRef]

25. Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water
mapping using the normalized difference water index from TM, ETM+, and ALI. Remote Sens. 2013, 5,
5530–5549. [CrossRef]

26. Pekel, J.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its
long-term changes. Nature 2016, 540, 418–422. [CrossRef]

27. USGS. Product Guide: Landsat Surface Reflectance Code (LaSRC) Product v. 4.3; USGS: Sioux Falls, SD, USA, 2018.
28. Nicholson, S.E. The West African Sahel: A review of recent studies on the rainfall regime and its interannual

variability. ISRN Meteorol. 2013, 2013, 453521. [CrossRef]
29. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:

Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
30. Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of the Satellite Signal in

the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [CrossRef]
31. Vermote, E.F.; Saleous, N.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle

infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [CrossRef]
32. Herndon, K.E. Applications of Remote Sensing for the Monitoring of Surface Water Dynamics in the Sahel.

Master’s Thesis, The University of Alabama in Huntsville, Huntsville, AL, USA, 2018.
33. Soti, V.; Tran, A.; Bailly, J.S.; Puech, C.; Seen, D.L.; Begue, A. Assessing optical Earth observation systems for

mapping and monitoring temporary ponds in arid areas. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 344–351.
[CrossRef]

34. Donchyts, G.; Schellekens, J.; Winsemius, H.; Eisemann, E.; van de Giesen, N. A 30 m resolution surface water
mask including estimation of positional and thematic differences using Landsat 8 SRTM and OpenStreetMap:
A case study in the Murray-Darling Basin, Australia. Remote Sens. 2016, 8, 386. [CrossRef]

35. Metz, C.E. Basic principles of ROC analysis. Seminars Nucl. Med. 1978, 8, 283–298. [CrossRef]
36. Vermont, J.; Bosson, J.L.; Francois, P.; Robert, C.; Rueff, A.; Demongeot, J. Strategies for graphical threshold

determination. Comput. Methods Programs Biomed. 1991, 35, 141–150. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSTARS.2017.2735443
http://dx.doi.org/10.1080/01431161.2016.1217441
http://dx.doi.org/10.3390/w9040256
http://dx.doi.org/10.1016/j.jhydrol.2012.07.042
http://dx.doi.org/10.14358/PERS.75.11.1307
http://dx.doi.org/10.3390/rs5115530
http://dx.doi.org/10.1038/nature20584
http://dx.doi.org/10.1155/2013/453521
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1109/36.581987
http://dx.doi.org/10.1016/S0034-4257(02)00089-5
http://dx.doi.org/10.1016/j.jag.2009.05.005
http://dx.doi.org/10.3390/rs8050386
http://dx.doi.org/10.1016/S0001-2998(78)80014-2
http://dx.doi.org/10.1016/0169-2607(91)90072-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Methods 

	Results 
	Results of Existing Global Surface Water Dataset Assessment 
	Results of Spectral Index Assessment 
	Results of Decision Tree Assessment 

	Discussion 
	Conclusions 
	References

