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Abstract

Annotating protein sequences according to their biological functions is one of the key steps in understanding microbial diversity,
metabolic potentials, and evolutionary histories. However, even in the best-studied prokaryotic genomes, not all proteins can be
characterized by classical in vivo, in vitro, and/or in silico methods—a challenge rapidly growing alongside the advent of next-generation
sequencing technologies and their enormous extension of ‘omics’ data in public databases. These so-called hypothetical proteins (HPs)
represent a huge knowledge gap and hidden potential for biotechnological applications. Opportunities for leveraging the available ‘Big
Data’ have recently proliferated with the use of artificial intelligence (AI). Here, we review the aims and methods of protein annotation
and explain the different principles behind machine and deep learning algorithms including recent research examples, in order to
assist both biologists wishing to apply AI tools in developing comprehensive genome annotations and computer scientists who want
to contribute to this leading edge of biological research.
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Introduction
Bacteria and archaea are the oldest, most abundant, and most
diverse forms of life on Earth (Eme and Doolittle 2015, Louca et
al. 2019). They dominate many functions of the biosphere and
harbour a huge potential for biotechnological applications (Singh
et al. 2020, Pfeifer et al. 2021). However, the task of fully char-
acterizing microbial diversity is almost incomprehensibly vast.
The ‘known unknowns’ (Logan 2009), i.e. the diversity we know
is there, but which we have not characterized yet, have be-
come increasingly apparent in the recent years, while the ex-
tent of ‘unknown unknowns’, i.e. the diversity which remains
completely undiscovered, is still debated. With some approxi-
mates suggesting billions or even trillions (Locey and Lennon
2016, Larsen et al. 2017), another study estimated 0.8–1.6 million
prokaryotic species (Louca et al. 2019) on Earth. Of those, only
∼2% have whole or at least partial genome sequences (Zhang
et al. 2020), many with only the prokaryotic marker gene 16S
rRNA known (Hugenholtz et al. 2021). Approximately, 70% be-
long to the so-called candidate phyla radiation (CPR), which—with
very few exceptions—have no cultured representatives (Hug et
al. 2016). At this point it is, therefore, it is safe to say that ∼99%
of all microbial species from the environment remain uncharac-
terized. They are, therefore, referred to as Microbial Dark Matter
(Bernard et al. 2018).

Strikingly, even todays’ best-studied microorganisms have not
been fully functionally characterized yet. For instance, in the ‘fa-

vorite pet’ of microbiologists for over 100 years—the model or-
ganism Escherichia coli—the function of more than 30% of pro-
teins has not been determined experimentally and more than
2% of protein-encoding genes have no characterization at all
(Ghatak et al. 2019). These so-called hypothetical proteins (HPs),
which have been referred to as ‘functional dark matter’ (Escud-
eiro et al. 2022), are found across all microbial species and repre-
sent an enormous gap in knowledge. In addition to their impor-
tance for the fundamental understanding of biology and evolu-
tion, these proteins might also provide novel solutions for medi-
cal treatments, bioremediation, or bioenergy production, to help
solve 21st century challenges (Rehman et al. 2021, Arslan et
al. 2022). However, recent analysis suggests that only 3% of the
biochemical potential of bacterial genomes has been discovered
(Gavriilidou et al. 2021). Genomes of taxa with no cultured repre-
sentative, archaea and relatively large bacteria with a complex
lifestyle, have a particularly high percentage of HPs (Makarova
et al. 2011, Lobb et al. 2020) (Fig. 1). While some uncharacter-
ized genes are conserved across species or genera, many are tax-
onomically restricted (Yu and Stoltzfus 2012, Tatarinova et al.
2016). Hence, since the majority of microorganisms, proteins, and
products are still uncharacterized, their use for future applica-
tions is heavily constrained in comparison to what is possible
(Kalkreuter et al. 2020).

This biological problem can now be addressed with the help of
AI-based tools, using the large quantities of biological data avail-
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Figure 1. Continued.

Figure 1. (A) Circular tree of archaeal and bacterial phyla, showing the percentage of uncultured genomes in the Genome Taxonomy Database (GTDB)
(archaea = green, bacteria = blue) (Parks et al. 2022) and median percentage of HPs according to AnnoTree data (orange) (Mendler et al. 2019) with at
least 10 (bacteria) or five genomes (archaea); phyla were renamed according to the List of Prokaryotic names with Standing in Nomenclature (LSPN)
and visualized with GraPhlAn (Asnicar et al. 2015). (B) Numbers of characterized and uncharacterized (hypothetical) proteins in bacteria and archaea.
Numbers after clustering to an identity of <50% are ‘unique’ proteins. Among unique proteins HPs include more sequence diversity than annotated
proteins.

able in public databases from high-throughput experiments. A
number of reviews on AI in relation to protein function prediction,
genomics, or biology more generally, have recently been published
(Greener et al. 2022, Whalen et al. 2022), however, all have focused
on human proteins or eukaryotic model organisms (Bonetta and
Valentino 2020, Mahood et al. 2020, Ofer et al. 2021). Our review
particularly concentrates on the functions of proteins in bacteria
and archaea, the data and algorithms available, and the difficult

conceptual issues underlying the task of predicting protein func-
tion.

Functional analysis and categorization of
proteins
Annotating protein-encoding genes is the process of assigning
functional labels to protein products. This can be approached
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from different biological perspectives and the best approach to
use is often simply taken for granted according to the norms of a
biological subdiscipline. The concept of function is, however, mul-
tifaceted, and each aspect of function has become associated with
particular experimental methods, whether in vivo, in vitro, in sil-
ico, or in combination. While different approaches can be comple-
mentary and integrated, they are distinct and need to be under-
stood.

Biochemical and biophysical phenotypes
The classic microbiological account of function pertains to the
phenotype of a gene. Here, researchers can either study what hap-
pens if the gene is taken away from or added to the genome, at the
level of DNA or the level of protein expression. In addition, one can
also study the properties of a protein in isolation. This is a subset
of the causal role view, assessing the difference that the presence
or absence of the protein makes to the operation of the cell, as
measured for instance by population growth under different con-
ditions, or in terms of biochemical reactions in which the protein
is involved. In early molecular genetics research, gene knockouts
were often achieved by transposon mutagenesis, leading to dis-
tinct phenotypes (Handfield and Levesque 1999) and multiple high
throughput versions of this technique have now been developed
(Cain et al. 2020). Other new technologies include CRISPR gene
editing (Liu et al. 2020) and gene silencing with CRISPR interfer-
ence (Zhang et al. 2021). Other traditional approaches for char-
acterizing proteins include 2D electrophoresis for separating pro-
teins by mass and isoelectric point, enzyme assays to determine
catalytic abilities, and analysis of the 3D structure using X-rays
or electron microscopy, which can help to clarify mechanisms of
action (Aslam et al. 2017). These classical methods are often ex-
perimentally challenging and very time-consuming since they re-
quire bacterial cultures with sufficient biomass or means for over-
expression of the protein of interest. This can be complicated or
even impossible due to the aforementioned problem of not having
cultures available for the majority of microbial phylotypes. New
technologies using membrane diffusion, cell-sorting, or microflu-
idics and the use of cocultures to cultivate interacting microbes
in combination are trying to circumvent some of the problems
(Lewis et al. 2021). There are also ongoing developments in lab-
oratory assays, e.g. using a high throughput system to assess the
kinetic effects of more than 1000 mutations in an esterase enzyme
(Markin et al. 2021).

Gene expression and regulation
Another ‘causal role’ approach to function, is determining under
what conditions a gene is expressed. This approach assumes that
regulation in relation to an environmental condition or stimulus
implies a functional role in that condition. Condition-dependent
protein expression and interactions between proteins capture dif-
ferent dimensions of protein function (Morcinek-Orłowska et al.
2021). The transcriptional regulatory network to a large extent de-
termines the gene expression responses to environmental and cel-
lular conditions. There are multiple levels of control of expression,
including post-transcriptional and post-translational factors. In
general, correlations between expression of genes indicate coreg-
ulation, which may imply a functional relationship (Junier and
Rivoire 2016). The genes expressed under different environmental
conditions are largely determined by transcription factor binding
sites. These sites can be discovered either through experimental
detection of binding or computational comparisons for the spe-

cific motifs associated with particular transcription factors (Gao
et al. 2018). Direct interactions between proteins similarly imply a
functional relationship, with the underlying implicit assumption
that interactions are specific, as nonspecific interactions tend to
be toxic (Bhattacharyya et al. 2016). Protein–protein interactions
can be detected with methods such as affinity purification mass
spectrometry (Morris et al. 2014).

Evolution
Evolutionary considerations have a complex relationship with
function. Some have proposed that to be functional simply is to
be (or have recently been) a subject of natural selection (Neander
1991, Graur et al. 2013). Evolutionary biologists are interested in
questions regarding historical or population dynamics processes.
This gives an account of what is functional and what is not if
one can detect the effects of selection; however, given our gen-
eral lack of access to historical evolutionary forces, it is of lit-
tle use determining what a biological entity’s particular function
was or is. More relevant to assigning a specific function is pro-
tein conservation across species, where it is typically assumed
that the function is likewise conserved. Technically, homology—
as originally used by Richard Owen (Cooper and Owen 1843), and
in evolutionary theory since—refers only to a biological structure,
such as a protein sequence, but it is now widely applied to func-
tions as well (Love 2007). A related source of microbial functional
insights lies in pangenomes—i.e. the patterns of gene diversity
across strains within a species, genus, or other monophyletic clade
(Golicz et al. 2020). This approach overlaps with the classic pheno-
type method—again gene presence/absence is used to infer func-
tion, but via presence/absence across natural strains rather than
genetic manipulation in the laboratory. This kind of analysis pre-
sumes that patterns of evolution in functionally related versus
functionally unrelated genes will differ. The extent to which this
is the case will depend on the role of natural selection in shaping
the pangenome. This topic is controversial, but there have been
many cases where functional relationships between genes have
been shown to leave genomic footprints (Chen et al. 2013). Other
approaches integrate some of these diverse information sources
to find functional clusters of genes, for instance those relating to
specific metabolic processes (Psomopoulos et al. 2020).

Categorization labels
The functional concepts described above do not, however, map di-
rectly onto useful labels or gene categories for scientists to work
with. Given that the concept of function is contentious and plu-
ral, many kinds of categories or labels can be assigned to proteins,
each with various advantages and disadvantages, based on in-
formation from diverse sources including high throughput gene
knockout or silencing, biochemical assays or biophysical studies,
‘omics’ expression studies, and/or evolutionary analyses. Perhaps
the most popular hierarchical system for gene function annota-
tion with a controlled vocabulary is the use of ‘gene ontology’
(GO) terms (Ashburner et al. 2000). The GO terms comprise three
different classification systems: cellular components (e.g. an or-
ganelle), molecular functions (e.g. a particular enzyme activity),
and biological processes (e.g. mismatch repair). Methods for au-
tomated function prediction using GO terms have recently been
reviewed (Makrodimitris et al. 2020). Another widely used compre-
hensive hierarchical system is the system of enzyme commission
(EC) numbers, a numerical classification scheme for enzymes with
biochemical evidence (Bairoch 2000), which classify proteins into
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seven major types of enzymes and 6646 entries of different cat-
alyzed reactions (as of March 2022) (Gasteiger et al. 2003). These
EC numbers are very useful for well-understood enzyme families
and other genes with characterized homologs. Every EC number is
associated with a recommended name for the respective enzyme.
If different enzymes (for instance from different organisms) cat-
alyze the same reaction, then they receive the same EC number
(Fleischmann et al. 2004). Furthermore, through convergent evo-
lution, completely different enzymes can catalyze an identical re-
action and, therefore, would be assigned an identical EC number
(Omelchenko et al. 2010). Protein structures are grouped into fam-
ilies or folds in databases such as Pfam, SCOP, and CATH (Fox et al.
2015). Typically, members of the same protein family perform sim-
ilar functions, but some ancient families or super families have
significantly diverged in sequence and/or function (Jaroszewski et
al. 2009).

Standard bioinformatics methods for
function prediction
Many in silico methods have been developed for functional predic-
tion of proteins using bioinformatics tools for classification and
annotation. However, they are not high-throughput and require
quite extensive computing power and time, can often only find
what is already known, and do not make use of the full metadata
available, such as linking gene expression data with environmen-
tal parameters. In addition, the predicted functions are usually
not experimentally verified, raising the possibility of untrue an-
notations.

Sequence-based annotations
Comparative genomics, based on evolutionary theory, allows for
the propagation of annotations across genomes (König et al.
2018). The use of ‘BLAST’ (Basic Local Alignment Sequence Tool)
(Altschul et al. 1990) is nearly ubiquitous in biology, and for some
synonymous with bioinformatics. This approach is so powerful
because only a few model organisms have been probed in depth
in laboratory studies, but many proteins are conserved across di-
verse taxonomic groups. Homology inference is applied in many
annotation tools (Mahlich et al. 2018), which can also be used
to identify associations between protein domains and functions
(Rojano et al. 2022). However, even when a conserved domain
is predicted, the function itself may not be conserved (Punta
and Ofran 2008). On the other hand, proteins with different se-
quences/domains might be able to catalyze the same chemical
reaction. In addition, characterized domains are often simply not
found in HPs (Goodacre et al. 2013). Further, it is a known problem
that many annotations in databases are simply wrong or suffer
from ‘over’-annotation (Moreno-Hagelsieb and Hudy-Yuffa 2014).
Any errors in the initial assignment of function is, therefore, prop-
agated outwards across genomes with no ‘proofreading’ if only the
criterion of homology is used.

Structure-based annotations
Similarly, a protein’s structure may be highly similar even when
there is no trace of higher-than-chance similarity at the sequence
level (Rost 1999). The function of a putative protein can be pre-
dicted by so called ‘homology modelling’ (David and Andrej 2001),
in which the protein has to align with a known protein sequence
whose 3D structure is known or using protein signatures, which
classify proteins into families and domains based on sequence

models such as hidden Markov models, with various confidence
levels (Zohra Smaili et al. 2021). Further approaches include de-
termination of protein 3D structure by structural genomics ini-
tiatives, understanding the nature and mode of prosthetic groups
or metal ion binding, fold similarity with other proteins of known
functions and annotating possible catalytic and regulatory sites
(Myers et al. 2015). Another promising approach is structure pre-
diction followed by biochemical function assessment by in silico
screening for various substrates (Mills et al. 2015).

Transcription-based annotations
The transcriptional network within which a gene is located is in-
formative of its function within the cell. These networks are cur-
rently only available in databases for a few model organisms, but
in principle can now be predicted for a wider range of organisms,
using high throughput data on RNA expression and transcription
factor binding. The main functional units here are the operon and
the regulon. The operon has been classically thought of as a clus-
ter of colocated genes on the same strand controlled by a regula-
tory region (Jacob and Monod 1961), which may include positive
or negative regulation. There are many additional complexities
that have since been discovered, for instance recently an example
of a noncontiguous operon has been proposed, where genes situ-
ated in antisense to each other are coregulated (Sáenz-Lahoya et
al. 2019). Functional groupings of genes (operons and higher-level
groupings) have been inferred from correlations between the ex-
pression levels of different genes in bacterial populations grown
under diverse environmental conditions (Chen et al. 2018). Mul-
tiple operons can together be coregulated, and together grouped
into a regulon, which can coceivably be inferred from either tran-
scriptomic or pangenomic data. Because operons and regulons
are relatively discrete functional units (Sastry et al. 2019), they
may avoid some of the common pitfalls which other approaches
such as GO classes face due to their complex hierarchical rela-
tions (Gaudet and Dessimoz 2017).

Pangenome-based annotations
New evolutionary or comparative genomic analyses have also
been developed on genome data available across related strains
and species. Differing gene content across strains mean that there
is a large ‘pangenome’ for each species (Brockhurst et al. 2019).
Studying patterns of copresence and coabsence allows for infer-
ring functional networks of genes, which have been termed ‘com-
ponents’ in this kind of analysis (Hall et al. 2021). Information
on gene–gene relationships and combining evolutionary informa-
tion with transcriptomic/translatomic data has the potential to
greatly increase our knowledge of regulatory networks and gene
functions.

The development of next-generation and third-generation
‘long read’ sequencing technologies has resulted in huge amounts
of data (Fig. 1), and currently almost 200 million HPs are listed
in public databases. The aforementioned in vivo, in vitro, and/or
in silico methods of assigning functions to sequences are thus no
longer able to catch up with the exponentially growing number of
sequencing data and, hence, the number of HPs, leaving an enor-
mous potential for biotechnological application uncovered (Ijaq et
al. 2015). The amount of information nowadays available in pub-
lic databases, however, creates opportunities for new ‘Big Data’-
based approaches beyond traditional analyses.
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The era of Big Data
‘Omics’ datasets have become one of the main examples of ‘Big
Data’ in the last few years. In general, the characteristics of Big
Data can be summarized by the 6 Vs: Value, Volume, Velocity, Va-
riety, Veracity, and Variability (Emmanuel and Stanier 2016). Aside
from the possibility to obtain genomes, transcriptomes and pro-
teomes from individual species in cultures or single cells (Dam et
al. 2020, Kaster and Sobol 2020, Wiegand et al. 2021) shotgun se-
quencing approaches such as metagenomics and metatranscrip-
tomics have now become the methods of choice for studying mi-
crobes from various habitats and researching phylogenetic groups
that currently lack cultured representatives (Aguiar-Pulido et al.
2016). Shotgun proteomics can also be applied to whole microbial
communities for metaproteomics (Karaduta et al. 2021), and the
translated portion of RNA has begun to be examined via meta-
translatomics (Fremin et al. 2020). All this data could in theory
be used to improve gene annotation, but it has been argued that
the application of methods designed for smaller datasets to this
new wealth of data has in fact reduced the quality of annotations
(Salzberg 2019).

Application of Big Data in biology therefore requires integration
and analysis of complex heterogeneous data, including metadata
for each dataset (Subramanian et al. 2020). This demands cost-
effective, innovative forms of information processing. The quality
and reliability of data are important and vary significantly across
datasets, which is why maintaining curated public databases is
paramount. The most widely used database for depositing se-
quencing and metadata is the National Center for Biotechnology
Information database (NCBI), which includes GenBank (Benson et
al. 2018) and RefSeq (Li et al. 2021). In addition, there are databases
from the European Bioinformatics Institute (EBI), including the
ENA (European Nucleotide Archive) repository (Park et al. 2017),
EggNOG (Huerta-Cepas et al. 2019), and Ensembl Genomes (Howe
et al. 2021). Protein sequences are stored in databases such as In-
terPro (Blum et al. 2021), Pfam (hosted by the Sanger Institute)
(Mistry et al. 2021), or UniProtKB/Swiss-Prot (hosted by the Swiss
Institute of Bioinformatics) (Bateman et al. 2021). Metabolic path-
way and protein function databases include KEGG (maintained by
the University of Kyoto) (Kanehisa et al. 2017) or BioCyc (main-
tained by SRI International) (Karp et al. 2019). The journal Nu-
cleic Acid Research regularly publishes special issues on biolog-
ical databases and currently, there are over 1640 databases listed
with different purposes, some being complementary (Rigden et al.
2021). It has been estimated that the amount of omics data will
double every 9–12 months (Stephens et al. 2015). Large-scale com-
parisons of genomes and transcriptomes have already been used
for diverse analyses such as biosynthetic gene clusters (Navarro-
Muñoz et al. 2020), the relative expression of different mRNAs and
noncoding RNAs (Ireland et al. 2020) or ‘ribosome profiling’ (Steizt
1969). CHiPseq (Furey 2012) can be used to discover transcription
factor binding sites, and thereby bacterial regulons (Myers et al.
2015) and a modification of IPOD-HR gives an overview of all pro-
tein binding to DNA, giving a fuller picture of gene regulation and
functional components (Freddolino et al. 2021).

The next step: using artificial intelligence to
characterize the proteome
With the breakthrough of technological advances over the last
decades, the ‘educated guesses’ that had been previously used for
creating specific scientific hypotheses are rapidly being replaced
by the knowledge provided through untargeted high-throughput

methods. Artificial intelligence (AI) provides novel opportunities
to use large quantities of high-quality data on another level with
a wide range of rational processes, including reasoning, learning,
decisions, language processing, and perception (Oliveira 2019). We
can think of AI, machine learning (ML) and deep learning (DL) as
a set of concentric circles where DL is a subset for ML and ML is a
subset for AI.

The massive, complex, and rapid evolution of datasets as well
as computational mathematics make it now possible for AI appli-
cations to learn, make intelligent decisions, and improve pattern
recognition capabilities (Perakakis et al. 2018). Manual interven-
tion in data management and analytics are still needed, but pro-
cesses that might take days or weeks (or longer) or which were
not humanly possible, are now quickly achieved (Serres et al. 2001)
(Fig. 2). Table 1 provides a glossary of generally used terms regard-
ing AI, to help guide the reader through the next sections.

Traditional classifiers
ML includes a wide range of methods, which can be divided
into supervised, unsupervised, semisupervised, semiunsuper-
vised, and reinforcement-based learning approaches (Alloghani et
al. 2020). There are several algorithms that can be used for the task
of categorization—assigning functional labels to putative genes,
which have already been predicted to encode a protein (Fig. 3). The
technique of classification has long been used for function pre-
diction by identifying suitable features using feature engineering
and generating numeric vectors to subsequently develop suitable
models.

Support vector machine (SVM) (Vapnik 1995) a supervised
learning approach, which performs binary classification, with lin-
ear or nonlinear functions. It establishes a maximum-margin hy-
perplane within the n-dimensional space of the data, which sep-
arates the data into two classes. The ML algorithm achieves this
by determining an appropriate kernel function (e.g. linear, poly-
nomial, or radial basis) (Kulkarni-Kale et al. 2014).

k-nearest-neighbor (KNN) (Altman 1992) is a supervised learn-
ing algorithm that tries to classify each data point by locating the
nearest ‘k’ neighbors with known labels and subsequently assigns
a class label, i.e. determined by a majority vote among neighbours.
Traditional KNN-based methods are easy to use but involve higher
computation times (Borah et al. 2020).

Decision tree (DT) (Quinlan 1986) is a branch-test-based clas-
sifier, supervised algorithm, which recursively partitions the data
based on its attributes, until some stopping condition is reached.
This recursive partitioning gives rise to a tree-like structure. The
route undertaken for classification of data can be traced from the
root node to each leaf node in the tree (Schietgat et al. 2010).

Random forest (RF) (Breiman 2001) uses an ensemble of DTs
to obtain a majority vote on the correct classification. Classifica-
tion trees are constructed by randomly selecting from training
datasets. Results from each tree can then be gathered to give a
prediction for each observation.

Some studies also mention regression-based protein function
annotations, which are now used as ensemble methods along with
other classifiers (You et al. 2018). Although ML has gained im-
mense popularity over the last decade, DL methods are now in-
creasingly being explored. Unlike traditional ML algorithms that
require a lot of domain expertise and human intervention, DL al-
gorithms automatically learn from raw input data, therefore, de-
scribing highly nonlinear and complex patterns more effectively
(Lv et al. 2019). DL is widely associated with artificial neural net-
work (ANN) architectures having numerous hidden layers for fea-
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Figure 2. Annotation of data using classical methods and AI. AI surpasses the traditional methods from data curation to data annotation. ML-based
techniques have now paved the way for DL neural networks. AI can be used directly on data acquired from experimental or publicly available
repositories and extract meaningful features, ensuring a reduction in total number of dimensions, which translates to reduction in the number of
input variables for training datasets, hence, reducing computational load.

ture extraction. Unlike ML, which is limited to predicting discrete
outputs obtained by counting the data or continuous outputs ob-
tained by measuring input data, DL-based methods are able to
learn data representations i.e. feature learning (Fig. 3). These mod-
els often have the capability to automatically obtain useful infor-
mation from input datasets and bypass traditional feature engi-
neering and selection processes (Bonetta and Valentino 2020).

ANNs (Mcculloch and Pitts 1943) can be simply described as be-
ing similar to biological neurons where the learning process is due
to synaptic connections. The data passes through input, hidden,
and output layers. The input layer feeds in the data, from which
meaningful information is extracted by hidden layers, which lead
to the prediction of data for the classification problem in hand.
All the layers comprising this network architecture are together
known as a Deep neural network (DNN). ANNs can process non-
linear data and handle noisy data but are prone to overfitting
(Kulkarni-Kale et al. 2014). ANNs include RNNs, CNNs, and GCNs
(see below).

Recurrent neural networks (RNN) (Sperduti and Starita 1997)
can be used for supervised learning with artificial neurons hav-
ing one or more feedback loops. These loops are recurrent cycles
over data. Input-target pairs are provided by the user. RNNs are
expected to optimize the networks by minimizing the difference
between the target-output pairs (Salehinejad et al. 2018).

Convolutional neural networks (CNN) (Lecun et al. 1998) are
comprised of convolutional, pooling, and fully connected layers.
They can identify relevant features without human supervision

and resemble a feedforward NN. The pooling layer is involved in
dimension reduction and the results are forwarded into the fully
connected layers. Its massive parallelism yields a great amount of
computational efficiency (Alzubaidi et al. 2021).

Graph convolutional networks (GCN) (Miller et al. 1989) have
numerous spectral or spatial convolutional layers. Input data fea-
turization and elaborate architectures render them suitable for
complicated problems. The graphs can extract meaningful infor-
mation from their own structures (Zhou et al. 2022).

Transformers are novel neural network architectures based on
self-attention mechanism, which are most widely used in the
field of natural language processing (NLP). When performing text
translation tasks, these DL models are not required to process
each sentence from the beginning but refer to the context of each
word in a sentence, which improves parallelization of the classifi-
cation task. These, however, suffer from the problem of sequential
computation (Vaswani et al. 2017).

Ensemble classifiers (Dietterich 2000) ensembles make individ-
ual decisions by different classifiers, which are combined either by
weighted or unweighted voting for classification of new instances.
Multiple learning algorithms make the classification model more
robust. Methods like this increase efficiency but can be biased
as performance heavily depends on weights in a weighted voting
(Gokalp and Tasci 2019). These can involve a combination of any
of the classifiers described above.

Clustering-based methods are capable of exploiting the direct,
as well as the indirect, interaction proteins of the unannotated



10 | FEMS Microbiology Reviews

Figure 3. A workflow for functional annotation of proteins using AI. Specific features from sequence and/or structure data are extracted and used as
training data. Apart from classification-based tasks, ML algorithms can also perform tasks pertaining to regression that predict the relationship
between two known variables. Other methods involve algorithms that group the input data into specific clusters, the output data. A validation dataset
is then used to test the efficiency of the model. Test datasets (in this case HPs) are then fed to the optimized model. An experimental feedback loop
could also be used for the validation of correct assignment for function. Partially adapted from (Mahood et al. 2020).

protein to predict functions, and of more effectively interpret-
ing the protein interaction relationships in the prediction process
(Hou 2017). One of the oldest and most used techniques is the k-
means clustering. This clustering algorithm follows an unsuper-
vised approach and does not require the user to define the output
clusters.

Reinforcement learning (RF) or reward-based approaches have
often been utilized in DL techniques. The famous AlphaFold2 soft-
ware (Jumper et al. 2021), developed by DeepMind, has used this
approach to identify protein structures, which has aided in deci-
phering how a protein folds in its natural environment (also see
below). RF also finds its use in data augmentation, i.e. generating
artificial data points or sequences, which helps in balancing the
datasets by compensating the lack of adequate protein sequences
as described in a recent study (Eftekhar 2020) for the prediction of
subcellular localization of proteins.

By using traditional ML or DL classifiers, it is possible to pre-
dict the function of HPs without using homology information (Han
et al. 2006). There are several other data clustering algorithms
such as DBSCAN (density-based spatial clustering of applications
with noise) (Ester et al. 1996), which along with ICA (independent
component analysis) (Bell and Sejnowski 1995)—a blind-source
separation algorithm—help in computing context-specific activ-
ities (e.g. metadata) of gene modules, determining their relative
strengths, followed by an unsupervised approach and do not re-
quire a predetermined number of clusters to perform classifica-
tion. As an example, DBSCAN and ICA for clustering gene expres-

sion data into so called i-modulons (Sastry et al. 2019). Summary
aspects and usage of each classifier is given in Table 2, where also
the pros and cons for each type of method are listed.

Current computational challenges and
resources
One of the biggest challenge in AI is the cost of algorithm training,
which scales up with the number of parameters and data points
while the computational requirements grow exponentially with
number of data points. In order to address the problem emanating
with Big Data processing, scientists require dedicated servers with
high computing power (Central and Graphics Processing Units)
(Thompson et al. 2020).

For research groups with no or very limited funding in terms of
computational infrastructure, there are some free services avail-
able such as Amazon Web Services (https://aws.amazon.com/m
achine-learning/ai-services/), which provide processing power for
ML-based models but are rather ineffective for training DL mod-
els when using the free tier which currently allows 750 hours
total computing time for 1 month with two cores, but excludes
GPUs required for faster computing. Google cloud (https://cloud.
google.com/products/ai) and Azure (https://azure.microsoft.com/
en-us/solutions/ai/) are other options but have similar limited ca-
pabilities for free accounts. Researchers might also be interested
in GPU-based Jupyter notebook servers to train their ML/DL mod-
els. These include some freely available platforms like Google Co-

https://aws.amazon.com/machine-learning/ai-services/
https://cloud.google.com/products/ai
https://azure.microsoft.com/en-us/solutions/ai/
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Table 2. Aspects and usage of classifiers. All classifiers/methods used for classification or clustering of protein sequence or structure
data. Each classifier is listed with pros, cons, and problem-specific usages, to guide researchers in choosing a method, which is best suited
to their datasets and biological question.

Classifier/Method Task Pros Cons Usage

Support Vector Machine
(SVM)

Classification/Regression Efficient when classes are
distinctly separable,
relatively memory efficient,
suited for binary
classification and for data
with very high dimensions

Not suitable for large
datasets or noisy data, data
preprocessing required,
overfitting risk,
computation can be costly,
interpretability of output is
low

Protein-protein
interaction prediction
using sequence data
(Ma et al. 2020)
Identification of intrinsically
disordered proteins using
sequence data (Kandemir
Cavas and Yildirim 2016)

k-nearest-neighbor (k-NN) Classification/Regression Easy to implement for
multi-class problems,
selected Hyperparamerter
remains the same,
non-parametric algorithm

Slow algorithm, works well
with small number of input
variables, not ideal for
imbalanced data, sensitive
to outliers

Protein structure
classification into distinct
classes by using structure
data (Mirceva et al. 2020)
Discrimination of Membrane
Transporters using sequence
data (Zuo et al. 2015)

Decision Tree
(DT)

Classification/Regression Data pre-processing is easy
and does not require scaling
or normalization, good for
visual representation of
output, can utilize
numerical and categorical
features

Higher training times,
overfitting, inadequate
prediction for large complex
datasets, not ideal for
imbalanced datasets

Classification of proteins
from PDB into families based
on surface roughness using
structure data (Satpute and
Yadav 2019)
Protein-protein interaction
prediction using different
physicochemical properties
by utilising protein sequence
data (Zhou et al. 2017)

Random Forest
(RF)

Classification/Regression Scaling and transformation
of input variables is not
required, ideal for working
with large number of
features, lower overfitting
risk, works well with
non-linear data

Not easily interpretable,
computationally intensive,
training is slow, limited
performance with
regeression while dealing
with linear varibales

Prediction of small encoded
proteins and their functions
in a species-specific context
by protein sequence data
(Miravet-Verde et al. 2019).
Prediction of protean
segments from sequence of
an Intrinsically disordered
protein (Basu et al. 2017)

Recurrent Neural Network
(RNN)

Classification/Regression Dynamic neural network,
computationally powerful,
useful for non-linear
systems

Rough to train long
sequences due to gradient
vanishing problem and
exploding gradient problem,
slow and complex training

Antibiotic resistance class
prediction using protein
sequences (Hamid and
Friedberg, 2020)
Prediction of essential
proteins by integrating
information from
protein-interaction networks,
gene expression profiles and
subcellular localization (Zeng
et al. 2021)

Convolutional Neural
Network
(CNN)

Classification/Regression Unsupervised learning, high
accuracy, weight sharing,
reduce dimensionality in
neural network

Long training period,
requires large datasets, fails
to encode the position and
orientation of objects

Prediction of metal binding
sites using structure data
(Mohamadi et al. 2022)
Identification of efflux
proteins in transporters using
sequence data (Taju et al.
2018)

Graphical Neural Network
(GCN)

Classification/Regression
/Clustering

Uses same parameters in
the training iteration,
inexpensive data storage,
adaptively learn the
importance of neighbours
in a graph-based system

The ‘Black Box‘ problem,
which makes algorithm’s
processes untraceable,
computation cost

Graph based prediction of
PPIs using raw sequence data
(Yang et al. 2020)
Protein-protein interactions
prediction using structure
data (Pancino et al. 2020)
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Table 2. Continued

Classifier/Method Task Pros Cons Usage

Ensemble Classifier Classification/Regression
/Clustering

Higher predictive accuracy
than individual models, can
handle both linear and
non-linear data,
Bias/overfitting can be
reduced, less noisy and
more stable

Model that is closest to the
‘true’ data generating
process beats other
methods, lack of
interpretability,
computationally expensive,
memory intensive

Sequence-based classification
of antioxidant proteins by RF
and SVM (Meng et al. 2019)
Protein function prediction
using Sequence, taxonomic,
structural domains and
amino acid index based
classification by CNN and RF
(Hakala et al. 2022)
Protein secondary structure
prediction from sequence
data by DT and SVM (Afify et
al. 2021)
Complex data clustering
using General adversial
networks for assigning
proteins to different
sub-families by RNN and
Clustering (Bitard-Feildel,
2021)

Transformer Model Classification/Regression
/Clustering

Self-attention, universal
and flexible architecture, do
not provide specific
structure to input data (for
eg. The need for specifying
nodes and edges as in GCN)

Limited to higher level
representation to data,
limited memory span,
overfitting

Utilization of sequence
statistics, chemical and
biological features to
generate biologically active
sequences (Rives et al. 2020)
Structure, remote homology
prediction and protein
engineering using sequence
data (Rao et al. 2019)
Protein Language model for
prediction of secondary
structure and subcellular
localization (Heinzinger et al.
2019)

Clustering Model k-means
Mean shift
DBSCAN

Gaussian mixture
Hierarchical clustering

Fast, few computations
No pre-set clusters, intuitive
No pre-set clusters,
identifies outliers
More flexible than k-means
Not sensitive to the choice
of distance metric, visualize
hierarchy

Inconsistent, outliers
Selection of a clusters
Inconsistent for high
dimensions
Uses all available data
points
Lower efficiency, time
complexity

Construction of protein
networks using sequence
data (Keel et al. 2018)
Unsupervised clustering
based prediction of protein
structure and function using
relative solvent accessibility
of amino acid residues
(Teletin et al. 2018)
Identification of antibiotic
and virulence resistance
genes in pathogenic bacteria
using genomic sequence data
(Li et al. 2018a)

lab (Bisong 2019) and Kaggle (https://www.kaggle.com), again with
limitations for storage and processing power. For instance, Col-
lab has a space limitation of 15 GB and allows users to run their
notebooks for 12 hours per day after which the user is required
to pay for additional hours. Amazon Sagemaker (https://aws.am
azon.com/sagemaker/) is another option for large-scale training
of ML models. It is time efficient, having built-in algorithms and
optimized frameworks making it easier to use, but currently re-
quires an hourly fee of $1.125 to train large datasets. Other con-
siderable platforms are DataCrunch (https://datacrunch.io) and
Paperspace (https://www.paperspace.com), which have lower GPU
costs of $1.1 and $0.18 per hour, respectively as compared to Sage-
maker (https://vitalflux.com/deep-learning-top-5-online-jupyter
-notebooks-servers/).

Examples of AI used in protein function
prediction of prokaryotes
Table 3 gives an overview of all tools/software that are used for
prokaryotic protein function prediction, with the type of input
data required by the model and the generated output. Tables 2
and 3 can, therefore, aid researchers in choosing the model best
suited for their data and biological question. Based on the most
cited tools, we here, discuss a few examples, using methods in-
cluding KNN, ensemble approaches, DL, and NLP.

NetGO (You et al. 2019) is a GO-term prediction tool, which
builds on a previous ensemble learning framework, GOLabeler
(You et al. 2018), by adding a module using KNN, a supervised clas-
sification algorithm. The protein features used for learning are

https://www.kaggle.com
https://aws.amazon.com/sagemaker/
https://datacrunch.io
https://www.paperspace.com
https://vitalflux.com/deep-learning-top-5-online-jupyter-notebooks-servers/
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Table 3: Machine and Deep Learning-based tools/software forprotein function prediction. ARGs, antibiotic resistance genes; BGCs,
bacterial gene clusters; CS, contribution scores; DBP, DNA binding protein; EC, enzyme commission IDs; emb, embeddings; EP/NEP,
essential/non-essential proteins; FD, fingerprint descriptors; func, functional classes; GA, gene annotations; GE, gene expression data; GC,
gene cluster; Ge, genome; GO, gene ontology annotations; HbL, haemoglobin; Kace/Non-Kace, lysine acetylation site/non-lysine acetyla-
tion site; LBS, ligand binding sites; Nt seq, nucleotide sequences; ORF, open reading frame; PC, protein clusters; Pfams, protein families;
PI, protein interactions; PS, probability scores; PSC/PRS, per sequence/per residue scores, RP, ribosomal profiling data; SA, species abun-
dance; Sbfam, subfamily; Seq, protein sequence data; SB; source biome; Sdr, short DNA reads; Strc, protein structure data; SL, subcellular
localizations; TA: taxonomic abundance score.

Tool/Software Classifier /method Type of Input(s) Type of Output(s) References

SVMProt
BacHbpred
iProEP

Support Vector Machine Seq, Strc
Seq
Seq

Pfams
HbL
Pfams

Li et al. (2016)
Krishnan et al. (2016)
Lai et al. (2019)

GrAPFI
PseAAC

k-Nearest Neighbour Seq
Seq

EC
SL

Sarker et al. (2020)
Jiang et al. (2019)

CrowdGO Decision Trees GO GO Reijnders and Waterhouse
(2021)

PPI & Gabor filter
P2Rank
FEAST

Random Forest
Seq
Seq
TA

PI
LBS
SB

Zhan et al. (2020)
Krivák and Hoksza (2018)
Shenhav et al. (2019)

DEEPred
UDSMProt
ProDec-BLSTM
PARROT
DeepBGC
LookingGlass
UniRep
ProLanGO

Recurrent Neural Network
Seq
Seq
Seq
Seq
Ge
Sdr
Seq
Seq

GO
GO, EC, Pfams
PS
PSC/PRS
BGCs
EC, Emb
Emb
GO

Rifaioglu et al. (2019)
Strodthoff et al. (2020)
Li et. al (2017)
Griffith and Holehouse (2021)
Hannigan et al. (2019)
Hoarfrost et al. (2020)
Alley et al. (2019)
Cao et al. (2017)

MultiPredGO
DeepGOPlus
DeepAdd
Balrog
ProtCNN
DeepHiFam
SmORFinder
DeepEP
MaSIF
ONN4MST
ON4ARG
DeeProtGO
EXPERT
ProteInfer
SeqVec

Convolutional Neural
Network

Seq, Strc
Seq
Seq, PI
Seq
Seq
Nt seq
PI, GE
Str
SA
Seq, ARGs
Seq
SA
Seq
Seq
Seq

GO
GO
GO
Genes
Pfams
CS
EP/NEP
FD
SB
GA
GO
SB
EC
EC, GO
Pfams, Sbfam

Giri et al. (2021)
Kulmanov and Hoehndorf
(2020)
Du et al. (2020)
Sommer and Salzberg (2021)
Bileschi et al. (2019)
Sandaruwan and Wannige
(2021)
Durrant et al. (2020)
Zeng et al. (2019)
Gainza et al. (2020)
Zha et al. (2020)
Zha et al. (2021)
Merino et al. (2022)
Chong et al. (2021)
Sandesron et al. (2021)
Heinzinger et al. (2019)

AlphaFold
DeepFri
PersGNN
PANDA2

Graphical Neural Network
Seq, Strc
Strc
Strc
Seq, GO

Strc
GO
GO
GO

Jumper et al. (2021)
Gligorijević et al. (2021)
Swenson et al. (2020)
Zhao et al. (2022)

DEEPre
ECPred
BioSeq-Analysis
DeepRibo
LargeGOPred
DeepGraphGO
GOLabeler
NetGO
ProPythia
DeepMicrobes
STALLION
Deep_CNN_LSTM_GO
PFmulDL

Ensemble classifiers
Seq
EC
Seq
Seq, RP
Seq
Seq, PI
Seq, PI, GO
Seq
Seq
Nt seq
Seq
Seq
Seq

EC
EC
DBPs
ORFs
GO
GO
GO
GO
EC
Emb
Kace/ Non-Kace
GO
GO

Li et al. (2018)
Dalkiran et al. (2018)
Liu (2019)
Clauwaerts et al. (2018)
Wang et al. (2020)
You et al. (2021)
You et al. (2018)
You et al. (2019)
Sequeira et al. (2022)
Liang et al. (2019)
Basith et al. (2022)
Abdou et al. (2021)
Xia et al. (2022)

TALE
ProteinBERT

Transformer Seq
Seq, GO

GO
GO

Cao and Shen (2021)
Brandes (2022)

iModulonDB
AGNOSTOS DB
PPI-GA

Clustering
GE
Nt seq
PI

GC
GC
PC

Rychel et al. (2021)
Vanni et al. (2021)
Shirmohammady et al. (2019)



14 | FEMS Microbiology Reviews

the networks in which a protein is involved in, as found in the
‘STRING’ database of protein–protein interactions. If the protein
is not present in this database, then data for the closest homolog
is used, if one is available. GO-terms from the closest neighbours
in the (potentially multiple) relevant networks are applied to the
new protein by aggregating weights from different networks fol-
lowed by the kNN approach of plurality voting. Significant limita-
tions of this method are genes, which lack homology to entries in
the STRING database, and examples where homologous proteins
with low similarity have different functions.

Another ensemble approach, SVM-Prot 2016 (Li et al. 2016), an
update to an earlier tool (Cai et al. 2003), aims to predict what it
calls ‘functional families’ from protein sequences without rely-
ing on detectable homology. Physicochemical features of proteins
such as solubility are derived from sequences and used to train a
SVM algorithm to classify sequences into functional classes. The
functional groupings of proteins for training purposes (labels) are
derived from GO and other databases. A negative training set is de-
rived by choosing some Pfam families with no members included
in the positive training set.

There is also a growing set of tools for protein structure pre-
diction which use DL approaches. Two of the most prominent are
AlphaFold2 from Google’s DeepMind (Jumper et al. 2021) and ESM-
fold from Meta AI Research (Lin et al. 2022). Alphafold2 uses in-
formation obtained from a multiple sequence alignment on evo-
lutionary couplings between amino acid residues to infer pairwise
distances between the residues, and from there infers a 3D protein
structure. While the earlier version of AlphaFold used statistics
calculated from multiple sequence alignment input, AlphaFold2
embeds the full sequence information, and uses a transformer
neural network, which is able to take into account relationships
between residues and apply an ‘attention’ mechanism to take into
account those previously learned from training sets to be most
important. The neural network then feeds the information into a
structural model neural network, which uses another attention
mechanism transformer to take into account the most important
pairwise relationships and output a structural model, i.e. the 3D
co-ordinates of each of the residues’ atoms (Jones and Thornton
2022). ESMfold, on the other hand, uses a very large natural lan-
guage model designed for proteins to capture key aspects of an in-
put sequence, which relate to structure as an attention map, pre-
dicts pairwise distances from this, and uses both to predict struc-
tures (Lin et al. 2022). A protein language model is useful here be-
cause structural features are emergent properties of sequences,
which can be learned with large input datasets. The overall ar-
chitecture of the approach is based on Alphafold2, but it replaces
the transformer neural network that Alphafold2 uses to process
a multiple sequence alignment with a protein language model,
which takes a single input sequence. High confidence structures
predicted with Alphafold2 are used as part of the training data.
ESMfold is less accurate than AlphaFold2, but more than an order
of magnitude faster, without the need for building a multiple se-
quence alignment. Protein structures are not identical to protein
functions, but there is often a close relationship between them,
which is why structures can then be used by ML models to pre-
dict protein function. E.g. DeepFRI is a GCN for predicting func-
tions, which uses protein structures as input along with sequence
features derived from a protein language model (Gligorijević et al.
2021).

Major developments have occurred regarding inferring protein
structures from sequence data for function prediction. Neverthe-
less, there are still obstacles, e.g. when applying algorithms for
human HPs to microbial HPs (Suravajhala and Sundararajan 2012)

since these are based on finding specific domains whilst the ma-
jority of the latter have uncharacterized domains. Additionally, al-
most 20% of the total proteins from 944 bacterial species have no
identifiable domains at all (Wang et al. 2019). Feed-forward DNN-
based modelling approaches for large-scale automated protein
function prediction are also probably not a good choice for func-
tional terms with low or moderate number of annotated proteins
and it is currently not feasible to carry out a fold-based cross-
validation analysis, especially when the number of model train-
ing operations are high, since it usually requires extremely high
computational power (Sureyya Rifaioglu et al. 2019). Furthermore,
many state-of-the-art ML and DL models, have not yet been exten-
sively explored for protein function prediction.

Outlook
Accurate prediction of microbial protein functions has the po-
tential to revolutionize multiple fields of biological research. The
accelerating expansion in biological Big Data presents many op-
portunities but also challenges for researchers, such as compu-
tational power and storage limitations and properly integrating
diverse data types. DL algorithms have now paved the way for a
better and more competent prediction of HPs. Furthermore, new
genetic elements and sources of genetic information will open
the door to an unexplored world of coding and noncoding com-
plexity in prokaryote genomes (Grainger 2016, Kirchberger et al.
2020). This new world, if it was included in annotation, would fur-
ther expand the class of ‘hypothetical proteins’. Gene annotation
tools, however, have typically excluded short ORFs and overlap-
ping ORFs, largely as a matter of practicality. In recent years, many
of both kinds have been discovered to be true protein-coding genes
(Storz et al. 2014, Ardern et al. 2020). The number of ‘dual-coding’
RNAs, where there are separate functions for a transcript at the
level of RNA and protein structure, remains unknown. Further, the
phenomenon of ‘proteoforms’ (Smith et al. 2013), i.e. alternative
start sites for genes, has shown the terrain of prokaryotic protein
coding to be yet more complex. Nevertheless, direct laboratory
analysis will still remain the gold standard of functional anno-
tation for the foreseeable future. An experimental feedback loop
is consequently of great importance to further test and train the
models for accurate predictions and progress will come from cre-
ative and efficient integration of existing data with careful exper-
imental validation. Metaservers or servers, which can be used to
input query data simultaneously to extract specific features from
the data keep improving with time, hence facilitating developers
and users alike, by making the training and testing datasets as
well as benchmarking results available in public domain. While
there is a need to refine the methods to achieve higher accuracy,
there is also a growing need to bring various aspects of protein
function prediction under the realm of AI.

One of the key takeaway points from our review of the available
resources and methods is that at least something informative can
be said about essentially all protein sequences. The label ‘unchar-
acterized’ or ‘hypothetical’ is completely uninformative, but for
most proteins it should be possible to derive at least some char-
acteristics from their general sequence properties (e.g. do they
have a transmembrane domain?), whether there is evidence of
expression, their possible cellular location, details of homologs,
and whether they are predicted or demonstrated to be expressed
as part of an operon and/or regulon. New approaches to storing
gene annotation data should take these diverse lines of evidence
into account.
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