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Cumulative myelosuppression is the main limiting factor for administration of repeated cycles of chemotherapy. We present
a case series of 0ve pediatric patients with high-risk solid malignancies who received small split peripheral blood stem cells
(PBSC) doses of less than 1 ×106/kg CD34+ cells obtained after a single leukapheresis procedure and given after repeated cycles
of ICE (ifosfamide, carboplatin, and etoposide) chemotherapy. Mean duration to absolute neutrophil count (ANC) recovery
to >1000/mm3 and platelet recovery to >50 ×103/mm3 was 17.1 and 24.3 days. Using split doses of PBSC prevented prolonged
neutropenia after repeated cycles of submyeloablative chemotherapy.

1. Introduction

Cumulative myelosuppression is the main limiting factor for
administration of repeated cycles of intensive chemotherapy
such as ICE when patients can tolerate only a limited
number of full-dose chemotherapy cycles even with the use
of growth factors [1].

One strategy to reduce hematological toxicity is the
infusion of autologous PBSC after chemotherapy. +e
minimal recommended dose of hematopoietic progenitors
for successful transplantation after myeloablative chemo-
therapy was described as 2 to 2.5×106/kg of CD34+ cells [2].

Less is known about theminimal doses of CD34+ cells that
would still support enhanced hematopoietic reconstitution
after nonmyeloablative conventional therapy regimens. PBSC
support at doses exceeding 2×106/kg allowed maintaining
dose intensity of nonmyeloablative conventional chemo-
therapy in patients with solid tumors [3–12]. Patients required
multiple leukapheresis procedures to provide more than
2×106/kg of CD34+ cells per cycle to support several che-
motherapy cycles. Here, we report a retrospective analysis of

our clinical experience where we used split doses of less
than 1 ×106/kg CD34+ cells obtained after one leukaphe-
resis procedure to support repeated cycles of chemotherapy
in pediatric patients with solid tumors.

2. The Case Series

Five patients were treated at the N.N. Blokhin Russian
Cancer Research Center (Moscow, Russia) and the Chil-
dren’s Hospital of Michigan (Detroit, MI). We obtained
informed consents for chemotherapy and PBSC collection
from all patients included in this analysis. +e patients
received repeated cycles of ICE (ifosfamide 9000mg/m2,
carboplatin 500mg/m2, and etoposide 500mg/m2) chemo-
therapy supported by autologous PBSC. +ree patients had
a single leukapheresis procedure following 2nd to 4th cycle
of chemotherapy and G-CSF stimulation, and the product
was split into four equal doses. In two patients (patients 2
and 4, Table 1), we used PBSCs obtained after leukapheresis
procedures that did not collect required numbers of CD34+
cells to support myeloablative chemotherapy and otherwise
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would be discarded. +e PBSCs were reinfused 24 hours
after completion of consolidation chemotherapy cycles
followed by G-CSF or GM-CSF stimulation. We used the
number of days from the start of chemotherapy to ANC
recovery to> 1000/mm3 to evaluate hematopoietic toxicity.
We compared these data to induction chemotherapy cycles
administered without PBSC support in the same patients.
We used the Student’s t-test to determine the signi0cance of
diIerences.

+e following is a short description of each patient’s case:
Patient 1 was a 2-year-old male with stage 4 anaplastic

Wilms’ tumor whose metastatic lung disease was refractory to
the 0rst line of chemotherapy, and he was switched to ICE. He
subsequently received 4 cycles of ICE chemotherapywith PBSC
support after cycles 3 and 4. He had partial radiological re-
sponse (PR) to chemotherapy and subsequently received high-
dose melphalan with PBSC support; however, he developed
a second disease recurrence 3 months after transplant.

Patient 2 was a 17-year-old female with stage 4 favorable
histologyWilms’ tumor who developed both pulmonary and
abdominal recurrence 10 months after initial therapy. She
was treated with abdominal tumor resection and 4 cycles of
ICE chemotherapy with PBSC support after cycle 3 (an
infusion of 0.3×106 CD34+ cells/kg from apheresis that did
not collect required dose for myeloablative therapy was
given). She had PR to chemotherapy. She then received high-
dose thiotepa and melphalan with autologous bone marrow
transplant. She developed recurrent disease 4 months after
transplant.

Patient 3 was a 9-year-old male with stage 3 favorable
histology Wilms’ tumor who had pulmonary recurrence 13
months after his initial therapy and was treated with 6 cycles
of ICE chemotherapy with PBSC support after cycles 3
through 6. He had PR to chemotherapy and was alive
without signs of disease more than 10 years oI therapy at the
time of this report.

Patient 4 was a 1.5-year-old male with stage 3 Wilms’
tumor abdominal recurrence. He underwent complete ab-
dominal tumor resection and then received ICE chemotherapy
as a consolidation with PBSC support after cycle 3 (an infusion
of 1.8×106 CD34+ cells/kg from apheresis that did not collect
required dose formyeloablative therapy was given).+e patient
was still under therapy at the time of this report.

Patient 5 was a 20-year-old female with metastatic PNET
with primary abdominal tumor and multiple metastases to
the lungs, lymph nodes, and vagina. She underwent ab-
dominal surgeries and received ICE chemotherapy. She
had very good partial response after the 0rst two cycles
but developed signi0cant hematological toxicities after
cycles 3 and 4 even with 30% chemotherapy dose reduc-
tions. She received her ICE cycles 5 and 6 at full dose
followed by 0.82 ×106/kg CD34+ cells support per cycle
and tolerated them well with significant reduction of
hematological toxicity. +e ANC recovery to > 1000/mm3

was on day 26 after cycle 4 and on day 17 after cycles 5
and 6. Platelet count recovery to > 50,000/mm3 was on
day 29 after cycle 4 and on day 26 after cycles 5 and 6.
She subsequently remained in remission for 7 months
but developed metastatic recurrence thereafter and died
of disease.

Severe myelosuppression was the main toxicity observed
in all patients receiving ICE chemotherapy. +e doses of
infused CD34+ cells ranged 0.3 to 1.8×106/kg (mean
0.76×106/kg), and in 9 out of 10 PBSC infusions, the dose of
CD34+ cells was below 1×106/kg (Table 1). In patients who
started to receive PBSC support after their 3rd and sub-
sequent cycles, there were no signi0cant diIerences in ANC
recovery between the 0rst 2 induction cycles and the sub-
sequent cycles given with PBSC support (17.6 days after
cycles 1 and 2 versus 17.1 days after cycle 3 and subsequent
cycles, p � 0.28). All PBSC-supported cycles were given at
the full planned doses.

Table 1: PBSC support and hematopoietic recovery after postinduction cycles of ICE; comparison of induction and postinduction cycles.

Pts. no. Cycle no. Chemotherapy Number of CD34+ cells× 106/kg Days to ANC> 1000/mm3 Days to Plt> 50×109/L Fever

1 3 ICE+GM-CSF 0.35 18 20 ND
4 ICE+GM-CSF 0.35 23 34 Yes

2 3 ICE 0.3 17 21 No

3

3 ICE+G-CSF 0.8 16 22 No
4 ICE+G-CSF 0.8 16 22 No
5 ICE+G-CSF 0.8 16 25 No
6 ICE+G-CSF 0.8 16 25 Yes

4 3 ICE+GM-CSF 1.8 15 22 ND

5 5 ICE+G-CSF 0.82 17 26 No
6 ICE+G-CSF 0.82 17 26 Yes

Mean — — 0.76 17.1 24.3 —
Hematopoietic
toxicity

ICE cycles 1
and 2 (n� 10) ICE cycle 3 and subsequent cycles with PBSC support (n� 10) p

Mean days to
ANC> 1000/mm3 17.6 17.1 0.28

Mean days to
Plt> 50×109/L 21.8 24.3 0.053

ND, no data available.
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3. Discussion

ICE chemotherapy is one of the eIective regimens in
pediatric solid tumors [13–16]. However, dose intensity of
repeated cycles decreases due to hematological toxicity:
multiple publications report the necessity to de-escalate
chemotherapy dosing after the third and subsequent cycles
of ICE regimen [1, 13, 15, 16], and while median days to
ANC and platelet recovery after the 0rst 2 cycles were
reported around 18 and 22 days, respectively [1, 13, 14],
recovery times signi0cantly increase after subsequent
cycles. +us, Yankelevich et al. [14] reported 26 and 30
median days to ANC and platelet recovery following the
second two cycles of ICE. In this report, we demonstrate
that split PBSC doses obtained from one leukapheresis
procedure and containing less than 1 ×106 CD34+ cells per
kg provide suLcient support for ANC recovery after repeat
cycles of ICE chemotherapy. Several reports described
PBSC support at a traditional dose range of >2.5 ×106/kg.
Hawkins et al. [6] and Bensimhon et al. [8] used at least
2–2.5 ×106/kg CD34+ cells per cycle after several cycles of
intensive chemotherapy similar to ICE in children with
solid tumors. To collect these cell numbers, patients had to
have multiple (up to 6) leukapheresis procedures. +e
average number of days to ANC recovery to > 500/mm3

was 15–17 [6]. Bensimhon et al. showed that after giving
4.9 to 10 ×106/kg of stem cells after 3rd cycle of
cyclophosphamide/carboplatin, the median time to ANC
recovery to > 750/mm3 ranged from 14 to 16 days [8]. +ese
parameters of hematological recovery are similar to our
data obtained with much smaller doses of CD34+ cells
(Table 1).

Leukapheresis is an expensive procedure commonly
requiring central line placement and additional use of
growth factors to mobilize stem cells. It takes multiple
leukapheresis procedures over several days to collect the
desired CD34+ cell dose [6–8, 10]. Using small split doses of
PBSC may provide eIective support for multiple cycles of
conventional chemotherapy. CD34+ stem cell doses below
2×106/kg are safe and may be eLcient after conventional
cycles of chemotherapy providing protection from cumu-
lative myelotoxicity.
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