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Endothelial cell apoptosis is an important pathophysiology in many cardio-

vascular diseases. The gasotransmitter nitric oxide (NO) is known to regulate

cell survival and apoptosis. However, the mechanism underlying the effect of

NO remains unclear. In this research, by targeting cytosolic copper/zinc

superoxide dismutase (SOD1) monomerization, we aimed to explore how NO

inhibited endothelial cell apoptosis. We showed that treatment with the NO

synthase (NOS) inhibitor nomega-nitro-L-arginine methyl ester hydrochloride

(L-NAME) significantly decreased the endogenous NO content of endothelial

cells, facilitated the formation of SOD1 monomers, inhibited dismutase activ-

ity, and promoted reactive oxygen species (ROS) accumulation in human

umbilical vein endothelial cells (HUVECs); by contrast, supplementation with

the NO donor sodium nitroprusside (SNP) upregulated NO content, pre-

vented the formation of SOD1 monomers, enhanced dismutase activity, and

reduced ROS accumulation in L-NAME-treated HUVECs. Mechanistically,

tris(2-carboxyethyl) phosphine hydrochloride (TCEP), a specific reducer of

cysteine thiol, increased SOD1 monomer formation, thus preventing the NO-

induced increase in dismutase activity and the decrease in ROS. Furthermore,

SNP inhibited HUVEC apoptosis caused by the decrease in endogenous NO,

whereas TCEP abolished this protective effect of SNP. In summary, our data

reveal that NO protects endothelial cells against apoptosis by inhibiting

cysteine-dependent SOD1 monomerization to enhance SOD1 activity and

inhibit oxidative stress.

Endothelial cell apoptosis triggers vascular endothelial

injury [1] and is the pathophysiological basis of numer-

ous cardiovascular diseases, including atherosclerosis,

hypertension, aneurysm, and pulmonary hypertension

[2–6]. In endothelial cells, nitric oxide (NO) predomi-

nantly synthesized by endothelial nitric oxide synthase

(eNOS) has an anti-apoptotic effect, and therefore, it

is a crucial vascular protective gasotransmitter [7]. The

regulatory effect of NO on cell apoptosis involves the

activation of guanylyl cyclase signaling, a decrease in

intracellular Ca2+ levels, and a decrease in mitochon-

drial cytochrome c release [8,9]. However, the molecu-

lar mechanism by which NO inhibits endothelial cell

apoptosis has not been fully elucidated.

As one of the common mechanisms of endothelial

dysfunction, the increase of reactive oxygen species

(ROS) level is related to the occurrence of endothelial

cell apoptosis [10]. Copper/zinc superoxide dismutase
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(SOD1) is the main antioxidant enzyme, which can

scavenge superoxide anions. The upregulation of

SOD1 activity leads to the elimination of superoxide

anions, thereby increasing the resistance of endothelial

cells to pro-apoptotic stimuli, such as tumor necrosis

factor a and oxidative damage, suggesting that SOD1

activation is a significant defense mechanism of

endothelial cells [10,11]. Previous studies have shown

that NO levels are decreased in elderly hypertensive

patients, accompanied by reduced SOD1 activity [12].

The left ventricle of spontaneously hypertensive rats

treated with an alcohol-free red wine extract exhibited

increased NOS and SOD1 activities [13]. Treatment

with the NO inhibitor nomega-nitro-L-arginine methyl

ester hydrochloride (L-NAME) reduced the activity of

SOD1 in the lungs of rats with acute lung injury and

hyperbaric oxygen preconditioning [14]. These findings

led us to hypothesize that NO might regulate SOD1

activity, which might be vital of the anti-apoptotic

effect of NO. While the mechanism by which NO reg-

ulates SOD1 activity is unclear.

The formation of SOD1 monomer leads to a

decrease in its activity and is an early step in SOD1

aggregation, which causes familial amyotrophic lat-

eral sclerosis (fALS) [15,16]. NO can promote the a-
and b-subunit of soluble guanylyl cyclase monomer to

form heterodimer to activate it [17]. However,

whether NO acts on SOD1 monomers remains

unclear. Thus, we examined possible function of NO

on SOD1 monomerization to clarify the mechanism

for SOD1 activation on endothelial cell apoptosis in

our study.

Materials and methods

Western blotting

The level of SOD1 dimer and monomer in human umbilical

vein endothelial cells (HUVECs) was detected as follows.

The treated cells and the control cells were lysed in buffer

(pH 7.5, 20 mM Tris, 1 mM EDTA with 0.5% Triton X-

100). After centrifugation, the supernatants were mixed with

loading buffer (B1033, Applygen, Beijing, China), which

contains 0.2% SDS without any reducing agent, incubated

at room temperature, and loaded onto a 12.5% SDS/PAGE

gel for protein electrophoretic separation. Before transfer

onto nitrocellulose membrane (Amersham, USA), the pro-

tein was subjected to in-gel reduction by incubating with

transfer buffer including 2% b-mercaptoethanol for 10 min

[18].

The membrane was probed with primary antibodies

against SOD1 dimer and monomer (1 : 1000; Cat No.

ADI-SOD-100-D; Enzo, Farmingdale, New York, USA)

and b-actin (1 : 3000; ZSGB-Bio, Beijing, China). Then,

the membrane was incubated with horseradish

peroxidase-conjugated corresponding secondary antibod-

ies. The FluorChem M Multifluor System (ProteinSimple,

San Francisco, California, USA) was used to visualize

protein bands.

Cell culture and treatment

Dulbecco’s modified Eagle’s medium/nutrient mixture

F12 (DMEM/F12), which contains 10% fetal bovine

serum (FBS), 1% penicillin, 1% streptomycin, and 1%

glutamine (Gibco, Grand Island, NY, USA), was used

to culture HUVECs at 37 °C in an environment contain-

ing 5% CO2. DMEM/F12 without FBS was used for

synchronization. The NO donor SNP (100 µM) [19], the

NOS inhibitor L-NAME (500 µM), and the cysteine

thiol-reducing agent Tris(2-carboxyethyl) phosphine

hydrochloride (TCEP; 2 mM) were used to process cells.

Dismutase activity assay

The dismutase activity was detected with a total SOD assay

kit (Solarbio, Beijing, China) by colorimetric assay. The

dismutase enzyme activity with an inhibitory rate of 50%

in the xanthine oxidative coupling reaction system is

defined as the enzyme activity unit [20].

Measurement of the intracellular NO content

Diaminofluorescein-FM diacetate (DAF-FM DA Cat:

S0019; Beyotime, Shanghai, China) was used to determine

the NO content in HUVECs [21]. Treated cells were

loaded with DAF-FM DA (5 µM) at 37 °C for 20 min.

An excitation wavelength of 495 nm and an emission

wavelength of 515 nm were used to observe the fluores-

cence with the confocal laser scanning microscope (Olym-

pus, Tokyo, Japan).

Terminal deoxynucleotidyl transferase-mediated

dUTP nick-end labeling (TUNEL) assay

The in situ apoptosis detection kit (Roche, Basel, Switzer-

land) was used to detect endothelial cell apoptosis [22].

After discarding the medium, cells were fixed with 4%

paraformaldehyde for 15 min. Then, permeabilization solu-

tion (0.125 g of BSA, 2.5 mL of PBS, and 7.5 lL of Triton

X-100) was used to incubate the cells at 37 °C for 30 min.

The TUNEL reaction mixture was used to incubate cells in

the darkness at 37 °C for 1 h and washed. Finally, the

nuclei were stained by 40,6-diamidino-2-phenylindole-

containing antifluorescence quencher (Zhongshan Golden

Bridge, Beijing, China). An excitation wavelength of 450–
500 nm and an emission wavelength of 515–565 nm were

539FEBS Open Bio 12 (2022) 538–548 ª 2022 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

H. Peng et al. NO inhibits apoptosis by stabilizing SOD1



used to observe the fluorescence of cells with the confocal

laser scanning microscope. The nuclei of apoptotic cells

exhibited green fluorescence.

Dihydroethidine (DHE) staining

Treated HUVECs were stained with DHE (10 µM; Bey-

otime, Shanghai, China) at 37 °C in the darkness for

30 min and fixed with 4% paraformaldehyde [23]. The con-

focal laser scanning microscope was used to observe cells

with an excitation wavelength of 535 nm and an emission

wavelength of 610 nm.

Bioinformatics analysis of S-nitrosoproteome

Using S-nitrosylation as the keyword to search the

human S-nitrosoproteomics literature in the PubMed, a

total of 5 related references were selected, namely, Chen

et al. identified 717 S-nitrosylated proteins [24], Koo

et al. [25] identified 84 S-nitrosylated proteins, Zhang

et al. identified 213 S-nitrosylated proteins [26], Ben-Lulu

et al. identified 511 S-nitrosylated proteins [27], and

Mnatsakanyan et al. [28] identified 3632 S-nitrosylated

proteins. In the 5 articles 676 S-nitrosylated proteins

appeared more than 2 times. The enrichment analysis of

the 676 proteins was performed by g:profiler (https://biit.

cs.ut.ee/gprofiler). The apoptotic pathway was enriched in

the KEGG database.

Biotin switch assay for protein S-nitrosylation

detection

The HUVECs were divided into 3 groups: control, SNP,

and SNP+TCEP. After treated with SNP or SNP+TCEP
for 2 h, cells were washed with precooled PBS for 3 times,

and 50 µL of Hens 1 solution (0.25 M Hepes, 100 µM neo-

cuproine, 1 mM EDTA, 1& SDS, 1% Triton X-100, 1%

protease inhibitors, 1% phosphatase inhibitors, and 1%

PMSF) were added. Then, cells were incubated on ice for

20 min, and 10 lL of the supernatant was retained as total

protein. The remaining supernatant was incubated with

MMTS (20 mM) for 20 min at 50 °C, and then, 900 lL of

precooled acetone were added and incubated for 20 min at

�20 °C. The mixture was centrifuged at 14,000 g for

10 min at 4 °C, and the supernatant was poured off.

The precipitation was resuspended with 85 lL of Hens 1

solution, 5 lL of ascorbic acid (5 mM), and 10 lL of

Biotin-HPDP (1 mM) and incubated for 90 min at room

temperature. Subsequently, 30 lL of NeutrAvidinTM was

added into the mixture and incubated at 4 °C overnight.

The beads were rinsed 3 times with Hens 2 solution (1 mM

EDTA, 20 mM Hepes, 100 mM NaCl, and 0.5% Triton X-

100). Proteins eluted from beads were subjected to western

blotting to detect protein S-nitrosylation [29].

Fluorescent probe assay for in situ detection of

total S-nitrosylated proteins

Total S-nitrosylated protein level was detected by cellular

protein S-nitrosylation modification detection kit (Cayman,

Ann Arbor, MI, USA) following the manufacturer’s

instructions. The S-nitrosylated protein was observed under

confocal microscopy with excitation wavelength of 490 nm

and emission wavelength of 610 nm.

SOD1 shRNA transfection

At 50% confluence, HUVECs were transfected with a scram-

bled shRNA or lentivirus-delivered SOD1 shRNA (Cyagen

Bioscience, Guangzhou, China) at the concentration of

7 9 105 TU�mL�1 and supplemented with 5 mg�mL�1 poly-

brene. After 24 h of infection, the cells were cultured in fresh

medium for another 48 h. HUVECs were treated with

3 lg�mL�1 puromycin for 2 weeks to screen the stable SOD1

knockdown cell line.

Statistical analysis

The SPSS18.0 software (SPSS Inc., Chicago, IL, USA) was

used for statistical analysis. Multiple groups were compared

using one-way analysis of variance followed by Bonferroni

tests for data with equal variances or the Dunnett T3 test

for data with unequal variances. P < 0.05 was statistically

significant.

Results

NO inhibits cysteine-dependent SOD1

monomerization

In order to reveal the effect of NO on SOD1

monomerization, HUVECs were treated with a NOS

inhibitor L-NAME to downregulate the endogenous

eNOS/NO pathway. The results revealed that

HUVECs treated with L-NAME exhibited a decrease

in NO content (Fig. 1A), and an increase in SOD1

monomer form (Fig. 1B) when compared with con-

trols. While, SNP supplementation to upregulate the

NO content reduced the level of SOD1 monomer form

in L-NAME-treated HUVECs (Fig. 1A,B). These data

suggested that NO inhibited the monomerization.

To explore whether NO inhibited SOD1 monomer-

ization by acting on cysteine residues, L-NAME-

treated HUVECs in the presence of SNP were

incubated with TCEP, a specific reducer of cysteine

thiol. The results showed that TCEP abolished the

downregulation of SOD1 monomer level caused by

SNP (Fig. 1B), demonstrating that NO inhibited

cysteine-dependent SOD1 monomerization.
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Cysteine-dependent SOD1 monomer inhibition

by NO upregulates dismutase activity and

inhibits oxidative stress

We next investigated the potential effect of NO-

induced inhibition of cysteine-dependent SOD1

monomerization on dismutase activity and oxidative

stress. In the NOS activity inhibitor L-NAME-treated

HUVECs, dismutase activity was significantly reduced,

and ROS levels were increased when compared to

those cells in control group. SNP treatment elevated

the decreased dismutase activity and suppressed the

increase in ROS, whereas TCEP abolished these effects

of SNP (Fig. 2A,B). These results suggested that NO

increased SOD1 activity and inhibited oxidative stress

by inhibiting SOD1 monomerization.

The inhibition of cysteine-dependent SOD1

monomerization by NO inhibits endothelial cell

apoptosis

To explore the potential function of cysteine-

dependent SOD1 monomer inhibition on SOD1 activa-

tion, we detected the apoptosis index in HUVECs.

Compared with control group cells, the cell apoptosis

index was increased in the NOS activity inhibitor L-

NAME-treated cells (Fig. 3). The SNP exerted an

anti-apoptotic effect on HUVECs. Notably, SNP failed

to protect L-NAME-treated HUVECs from apoptosis

after TCEP treatment (Fig. 3). These data suggested

that NO inhibited cysteine-dependent SOD1 monomer-

ization to protect against HUVEC apoptosis.

NO S-nitrosylated SOD1, and the apoptosis-

associated proteins caspase3 and TUBA4A

To further explain why NO exerted these abovemen-

tioned effects, we evaluated the level of protein

S-nitrosylation in HUVECs. The results showed that

S-nitrosylated protein level in the L-NAME-treated

HUVECs was decreased compared with the control

group (Fig. 4A). Of note, SNP significantly promoted

S-nitrosylation of SOD1 protein, which was blocked by

TCEP treatment in HUVECs (Fig. 4B). Furthermore,

the bioinformatic study was conducted by analyzing 5

published human S-nitrosoproteomics literatures

(Fig. 4C). The result showed that there were 18 proteins

in apoptosis pathway enriched by KEGG database,

such as caspase3, TUBA1B, TUBA1C, and TUBA4A

(Table 1). Therefore, we chose caspase3 and TUBA4A

for further verification. Biotin switch assay showed

that SNP facilitated S-nitrosylation of caspase3 and

TUBA4A, which was blocked by TCEP treatment in

(A)

(B)

Fig. 1. NO inhibits cysteine-dependent

SOD1 monomerization. (A) Fluorescence

images of NO measured by DAF-FM

staining in L-NAME-treated HUVECs

(n = 6). Scale bar = 30 lm. (B)

Representative western blots of SOD1 in

HUVECs treated with L-NAME and

quantitative analysis of the ratio of SOD1

dimer to monomer (n = 9). Data were

expressed as the mean � SD and were

analyzed using one-way ANOVA.

**P < 0.01.
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HUVECs (Fig. 4D,E). These results suggested that NO

could induce S-nitrosylation of SOD1, and the

apoptosis-associated proteins caspase3 and TUBA4A;,

which might be involved in the anti-apoptotic mecha-

nism for NO.

SOD1 is required for the inhibitory effect of NO

on endothelial cell apoptosis

To further confirm the importance of SOD1 in the reg-

ulatory role of NO in endothelial cell apoptosis, we

Fig. 2. Cysteine-dependent SOD1

monomer inhibition by NO upregulates

dismutase activity and inhibits oxidative

stress. (A) Quantification of dismutase

activity in L-NAME-treated HUVECs

(n = 6). Data were expressed as the

mean � SD and were analyzed using one-

way ANOVA. **P < 0.01. (B) Detection of

superoxide in HUVECs treated with

L-NAME by DHE staining (n = 6). Scale

bar = 30 lm.

Fig. 3. The inhibition of cysteine-dependent SOD1 monomerization by NO inhibits endothelial cell apoptosis. TUNEL staining of apoptotic

cells in HUVECs treated with L-NAME (n = 9). Scale bar = 30 lm. Data were expressed as the mean � SD and were analyzed using one-

way ANOVA. **P < 0.01.
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knocked down SOD1 by shRNA in HUVECs. Com-

pared with scramble group, SOD1 shRNA transfection

reduced SOD1 protein expression (Fig. 5A) and

induced apoptosis in HUVECs (Fig. 5B). Of note, SNP

treatment could no longer protect SOD1 knocked down

endothelial cells against apoptosis (Fig. 5B). These

results confirmed that SOD1 was required for the inhi-

bitory effect of NO on endothelial cell apoptosis.

Discussion

In this study, we firstly demonstrated that NO inhib-

ited cysteine-dependent SOD1 monomerization to pro-

mote dismutase activity and inhibit oxidative stress,

thereby protecting endothelial cells from apoptosis.

Pharmacologic inhibition of endogenous NO content

resulted in the increase of monomers, leading to the

decreased dismutase activity, enhanced oxidative stress

and eventually endothelial cell apoptosis. Thus, our

findings revealed that the inhibition of cysteine-

dependent SOD1 monomerization was a novel mecha-

nism by which NO inhibited endothelial cell apoptosis.

Excessive apoptosis of endothelial cells severely

interferes with endothelial integrity and endothelial

function, resulting in endothelial damage, which is clo-

sely associated with the occurrence and the develop-

ment of various cardiovascular diseases [2–6]. NO,

which is predominantly synthesized by eNOS in

endothelial cells, is a vasoactive substance secreted by

endothelial cells [7]. NO has many beneficial effects,

such as relaxing blood vessels, preventing platelet

aggregation, inhibiting leukocyte adhesion, and con-

trolling the proliferation of vascular smooth muscle

cells [30–33]. NO displays pro-apoptotic or anti-

apoptotic effects [34] depending on its effective concen-

tration, cell types, and microenvironment. High

(A) (B)

(C)

(D) (E)

Fig. 4. NO S-nitrosylated SOD1, and the

apoptosis-associated proteins caspase3

and TUBA4A. (A) Total protein S-

nitrosylation in L-NAME-treated HUVECs

(n = 6). Scale bar = 25 lm. (B) S-

nitrosylation of SOD1 in HUVECs treated

with or without SNP or SNP plus TCEP

(n = 10). Data were expressed as the

mean � SD and were analyzed using one-

way ANOVA. (C) Bioinformatics analysis of

apoptotic proteins in human

S-nitrosoproteomics literatures. (D, E)

S-nitrosylation of caspase3 (D) and

TUBA4A (e) in HUVECs treated with or

without SNP or SNP plus TCEP (n = 10).

Data were expressed as the mean � SD

and were analyzed using one-way ANOVA.

*P < 0.05, **P < 0.01.
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concentration of NO produced by iNOS induced

apoptosis in macrophages [35]. Excessive extracellular

superoxide anion derived from neutrophils under

inflammatory conditions could react with NO to form

high level of peroxynitrite, which led to a rapid apop-

tosis of neutrophils [36]. In contrast, low concentra-

tion of NO and peroxynitrite was reported to inhibit

apoptosis in endothelial cells [37] and hepatocytes

[38]. The physiological concentration of NO produced

by eNOS has anti-apoptotic and cytoprotective effects

[39,40]. Andrographolide, hydrogen sulfide, and oxy-

matrine were reported to inhibit endothelial cell apop-

tosis through upregulating Akt/eNOS pathway [41–
43]. Moreover, eNOS deficiency increased endothelial

cell apoptosis and aggravated renal injury in mice

with remnant kidney [44]. In our study, the treatment

with NOS inhibitor L-NAME markedly induced

apoptosis in HUVECs, whereas NO supplementation

protected HUVECs against apoptosis, suggesting that

eNOS/NO had protective effect against endothelial

cell apoptosis.

Nitric oxide affects cell apoptosis through diverse

signaling pathways, which increases the complexity of

NO action. This stimulated us to explore the unknown

mechanism underlying NO signaling. In spinal

cord motor neurons, SOD1 blocks iNOS-mediated

apoptosis [45]. Furthermore, NO upregulates SOD1

expression in vascular smooth muscle cells to inhibit

neointimal hyperplasia [46]. These findings imply that

SOD1 might be a potential target of NO signaling.

SOD1 activity is not only determined by protein

expression but also regulated by post-translational

modifications. The homodimer is the most stable exis-

tence and active form of SOD1. The dissociation of

SOD1 dimer into monomers which were more likely to

misfold and aggregate could inhibit SOD1 activity

[47]. NO can induce post-translational modification of

specific cysteines to regulate the biological activity of

target proteins. However, little has been known about

the post-translational modification of SOD1 by NO.

In the present study, we found that NO inhibited

SOD1 monomerization and promoted dismutase activ-

ity in HUVECs. Suppression of the eNOS/NO path-

way in HUVECs resulted in the increase of SOD1

monomers, downregulated dismutase activity, and

increased ROS accumulation, whereas NO supplemen-

tation rescued these effects. These findings demon-

strated that NO inhibited SOD1 monomerization to

promote SOD1 activity.

The SOD1 homodimer structure is stabilized by an

intrasubunit disulfide bond between Cys57 and

Cys146. The cleavage of the intramolecular disulfide

can predispose the SOD1 dimer to dissociate and

downregulate SOD1 activity [48]. Among the other

two free cysteines, Cys6 is located inside the SOD1

structure, which is not easily accessible for reaction.

Due to the strong activity of Cys111 and the proximity

of Cys111 residues in adjacent SOD1 monomers, the

thiol-disulfide bond exchange between these two adja-

cent cysteines restores the monomer–dimer equilibrium

[49]. NO modifies the thiol group on the cysteine resi-

dues of some enzymes (such as matrix metallopro-

teases) by disulfide bond formation and other

modifications, thus increasing the enzyme activity

[50,51]. Based on the above findings, we speculated

that NO inhibited SOD1 monomerization by acting on

the cysteine residues of SOD1. To prove this hypothe-

sis, we used TCEP, the specific reducing agent of cys-

teine thiols. TCEP successfully abolished NO-induced

inhibition of SOD1 monomerization in HUVECs, indi-

cating that NO inhibited monomeric SOD1 by acting

on cysteine thiol. Furthermore, TCEP eliminated NO-

induced dismutase activity and its inhibitory effect on

ROS and endothelial cell apoptosis. These data suggest

that the inhibition of cysteine-dependent SOD1

monomerization mediates the protective effect of NO

on endothelial cells, including the activation of SOD1

to antagonize oxidative stress and apoptosis.

NO can S-nitrosylate cysteine to form protein S-

nitrosothiols, thereby regulating protein structure and

Table 1. The apoptosis-related proteins with S-nitrosylation site.

ID

Gene

name Protein name Reference

O14920 IKBKB Inhibitor of nuclear factor

kappa-B kinase subunit beta

[24,28]

P02545 LMNA Prelamin-A/C [24,26,28]

P07339 CTSD Cathepsin D [27,28]

P07384 CAPN1 Calpain-1 catalytic subunit [27,28]

P07711 CTSL Procathepsin L [24,28]

P07858 CTSB Cathepsin B [24,27,28]

P17655 CAPN2 Calpain-2 catalytic subunit [24,27,28]

P19838 NFKB1 Nuclear factor NF-kappa-B p105

subunit

[24,28]

P42574 CASP3 Caspase-3 [24,28]

P60709 ACTB Actin, cytoplasmic 1 [24,25,27]

P63261 ACTG1 Actin, cytoplasmic 2 [25,27]

P68363 TUBA1B Tubulin alpha-1B chain [24,27]

P68366 TUBA4A Tubulin alpha-4A chain [24,28]

P98170 XIAP E3 ubiquitin-protein ligase XIAP [24,27,28]

Q04206 RELA Transcription factor p65 [24,28]

Q99683 MAP3K5 Mitogen-activated protein

kinase kinase kinase 5

[24,27]

Q9BQE3 TUBA1C Tubulin alpha-1C chain [27,28]

Q9UKK3 PARP4 Protein mono-ADP-

ribosyltransferase PARP4

[27,28]
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function. Previous study showed that the S-

nitrosylation of b-arrestin1/2 by NO mediates homod-

imerization [52]. However, it is still unclear whether

NO S-nitrosylates SOD1 protein. Our study showed

that SNP could promote SOD1 S-nitrosylation, while

TCEP blocked this effect, indicating that S-

nitrosylation of sulfhydryl group at SOD1 cysteine by

NO might be related to the inhibition of SOD1

monomerization. Schonhoff et al [53] showed that mis-

folded SOD1 mutants caused S-nitrosothiol depletion,

disrupting the function and/or subcellular localization

of proteins regulated by S-nitrosylation, among which

some were related to the apoptosis induction. In the

present study, we found that S-nitrosylated protein

level in the L-NAME-treated HUVECs was decreased,

while supplementation of SNP increased it. Moreover,

SNP facilitated the S-nitrosylation of caspase3 and

TUBA4A that were enriched in the apoptosis pathway

by the KEGG database based on a collective human S-

nitrosoproteome. Furthermore, we knocked down SOD1

in HUVECs and found that SNP could no longer pro-

tect cells against apoptosis, suggesting that SOD1 is

required for the inhibitory effect of NO on endothelial

cell apoptosis.

In summary, our data showed a novel mechanism

by which NO protected the endothelial cell against

oxidative stress-induced apoptosis and found that NO

inhibited cysteine-dependent SOD1 monomerization

and thereby blocked the inactivation of SOD1. Con-

sidering the pivot role of SOD1 in the balance of

(A)

(B)

Fig. 5. SOD1 is required for the inhibitory effect of NO on endothelial cell apoptosis. (A) Representative western blots of SOD1 in HUVECs

transfected with scramble or SOD1 shRNA (n = 3). (B) TUNEL staining of apoptotic cells in HUVECs treated with transfected with scramble

or SOD1 shRNA in the presence or absence of L-NAME or SNP (n = 9). Scale bar = 25 lm.
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anti-/pro-oxidative system, the inactivation of SOD1 is

considered to be an important pathogenesis of many

diseases such as cardiovascular disease, aging, and can-

cer. Therefore, the present study might elucidate a new

therapeutic principle behind NO in the treatment of

oxidative stress-related diseases and promote the

design and the clinical application of NO-related drug.
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