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Kunming University of Science and Technology, Kunming, China, 2Department of Radiology, The
First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 3State Key Laboratory
of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical
University, Chongqing, China, 4MR Scientific Marketing, Siemens Healthineers, Shanghai, China
Purpose: The aim of this study was to evaluate the value of different

multiparametric MRI-based radiomics models in differentiating stage IA

endometrial cancer (EC) from benign endometrial lesions.

Methods: The data of patients with endometrial lesions from two centers were

collected. The radiomics features were extracted from T2-weighted imaging

(T2WI), diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC)

map, and late contrast-enhanced T1-weighted imaging (LCE-T1WI). After data

dimension reduction and feature selection, ninemachine learning algorithmswere

conducted to determine which was the optimal radiomics model for differential

diagnosis. The univariate analyses and logistic regression (LR) were performed to

reduce valueless clinical parameters and to develop the clinical model. A

nomogram using the radscores combined with clinical parameters was

developed. Two integrated models were obtained respectively by the ensemble

strategy and stacking algorithm based on the clinical model and optimal radiomics

model. The area under the curve (AUC), clinical decisive curve (CDC), net

reclassification index (NRI), and integrated discrimination index (IDI) were used

to evaluate the performance and clinical benefits of the models.

Results: A total of 371 patients were incorporated. The LR model was the

optimal radiomics model with the highest average AUC (0.854) and accuracy

(0.802) in the internal and external validation groups (AUC = 0.910 and 0.798,

respectively), and outperformed the clinical model (AUC = 0.739 and 0.592,

respectively) or the radiologist (AUC = 0.768 and 0.628, respectively). The

nomogram (AUC = 0.917 and 0.802, respectively) achieved better

discrimination performance than the optimal radiomics model in two

validation groups. The stacking model (AUC = 0.915) and ensemble model
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.939930/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.939930/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.939930/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.939930/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.939930/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.939930/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.939930&domain=pdf&date_stamp=2022-08-05
mailto:khcgz@sina.com
https://doi.org/10.3389/fonc.2022.939930
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.939930
https://www.frontiersin.org/journals/oncology


Bi et al. 10.3389/fonc.2022.939930

Frontiers in Oncology
(AUC = 0.918) had a similar performance compared with the nomogram in the

internal validation group, whereas the AUCs of the stacking model (AUC =

0.792) and ensemble model (AUC = 0.794) were lower than those of the

nomogram and radiomics model in the external validation group. According to

the CDC, NRI, and IDI, the optimal radiomics model, nomogram, stacking

model, and ensemble model achieved good net benefits.

Conclusions:Multiparametric MRI-based radiomics models can non-invasively

differentiate stage IA EC from benign endometrial lesions, and LR is the best

machine learning algorithm. The nomogram presents excellent and stable

diagnostic efficiency.
KEYWORDS

endometrial cancer, magnetic resonance imaging, radiomics, nomogram, benign
endometrial lesions
Introduction

Endometrial cancer (EC) and endometrial hyperplasia and

polyps are the most common malignant and benign uterine

endometrial cavity lesions, respectively (1). In order to avoid

insufficient curing or excessive treatment and to protect the

patient’s fertility, it is necessary to accurately identify benign and

malignant endometrial lesions before operation. Although

endometrial samplings such as dilatation and curettage,

endometrial cytology, and biopsy can preoperatively identify

some endometrial lesions (2), they do not always provide a

definitive diagnosis. Because these procedures are often

performed in a blind manner, they may be subject to sampling

error and cannot properly diagnose focal endometrial lesions

(3). Furthermore, they are difficult to perform in patients with

pelvic organ prolapse and vaginal or cervical stenosis (4). In

addition, endometrial sampling procedures are invasive with

some complications including pain, discomfort, and bleeding.

Hence, it is important to find a noninvasive method to

distinguish benign and malignant uterine lesions.

Magnetic resonance imaging (MRI) with excellent soft tissue

contrast resolution plays an important role in the preoperative

diagnosis and staging of EC in situations where it is difficult to

obtain histologic samples, and is more sensitive than transvaginal

sonography for diagnosing endometrial lesions (1, 5).

Multiparametric MRI, including T2-weighted imaging (T2WI),

contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging

(DWI), and apparent diffusion coefficient (ADC) are increasingly

being applied for diagnosing various endometrial lesions (1).

However, conventional imaging evaluation of the uterine cavity

lesions may present many challenges to the radiologist. The

endometrium structure is susceptible to age, menopausal status,
02
menstrual cycle, and hormonal replacement therapy (6). There are a

variety of appearances and overlapping imaging features of early-

stage EC and benignmimickers (7). Moreover, the experience of the

radiologist usually contributes to high interobserver variation. All of

these factors lead to inaccurate diagnoses.

Radiomics is an emerging field of application of artificial

intelligence in medical imaging by extracting high-throughput

quantitative image features and is a problem-solving tool when

there is a dilemma in conventional imaging diagnosis (8).

Recently, MRI-based radiomics has been gradually applied in

the evaluation of EC including risk stratification (9–11), lymph

node metastasis (12–14), myometrial invasion (15–17),

prognosis and recurrence (18–20), and histological

characteristics (21–23). Chen et al. (24) had confirmed that

MRI-based radiomics was a valuable tool for distinguishing EC

from benign mimics. However, they included stage IB to IV ECs

that were easily distinguishable from benign uterine lesions, and

only one machine learning algorithm model was studied.

Therefore, this study aims to compare the performance of

various multiparametric MRI-based machine learning

radiomics models in differentiating stage IA EC from benign

endometrial lesions, and further assess the potential utility of

diverse integrated models utilizing clinical parameters and

radiomics features.
Materials and methods

Study population

Ethical approval was obtained for this retrospective study, and

written informed consent was waived. Between January 2017 and
frontiersin.org
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June 2021, consecutive patients with endometrial lesions from

center A and center B were collected. Inclusion criteria were as

follows: (1) patients with stage IA EC, endometrial hyperplasia, or

endometrial polyps confirmed by histopathology; (2) underwent

MR examination including T2WI, DWI, and dynamic contrast-

enhanced (DCE-MRI) within 2 weeks prior to treatment; and (3)

complete clinical data. Exclusion criteria were as follows: (1) MRI

quality did not meet the requirement of analysis; (2) received

treatment before the MR examination; (3) the maximum diameter

of the lesion was less than 1 cm; and (4) patients with other pelvic

diseases. Patients from center A were randomly allocated into the

training group and the internal validation group at a ratio of 3:1.

All patients from center B served as the external validation group.

Clinical and histological characteristics of all patients, including

histological subtypes, age, menopause, clinical manifestation,

metabolic syndrome, body mass index (BMI), actual treatment

options, and CA125 and CA199 level, and immunohistochemical

findings such as estrogen receptor (ER), progesterone receptor

(PR), P53, and Ki-67 were collected.
Imaging acquisition and lesion
segmentation

All MR examinations were performed using 1.5/3.0-T

scanners (GE Signa HDXt, Siemens Prisma, and Siemens

Aera) with eight-channel phased-array abdominal coils. Each

patient underwent preoperative MR scanning using the standard

protocol. In the study, uterus-axial T2WI, DWI (b-value = 1,000

s/mm2), ADC map, and late contrast-enhanced T1-weighted

imaging (LCE-T1WI) were acquired for lesion segmentation.

Parameter details are shown in Table 1. Some parameters would

be adjusted according to the individual differences of patients.

The ADC map was automatically reconstructed and generated

after scanning DWI by the Siemens MRI scanners, or manually
Frontiers in Oncology 03
reconstructed on the Functool Software (ADW 4.7 Workstation)

by the GE MRI scanner. CE-T1WI was performed immediately

after administering a standard dose (0.1 mmol/kg) of

gadopentetate dimeglumine (Magnevist; Bayer Healthcare

Pharmaceuticals, Germany) at approximately 2 ml/s via the

elbow vein. Uterus-axial LCE-T1WI was obtained at 240 s into

the examination after the contrast agent injection.

The original MR images of uterus-axial T2WI, DWI, ADC

map, and LCE-T1WI in Digital Imaging and Communications

in Medicine (DICOM) format were loaded into 3D Slicer 4.11.0

software (https://www.slicer.org/). Region of interest (ROI) of

the lesion was manually delineated layer by layer to form three-

dimensional (3D) volume of interest (VOI) by two radiologists

(reader 1 and reader 2, with 3 years and 7 years of experience in

pelvic MRI, respectively), with unknown clinical information

and pathological diagnosis. Reader 1 delineated the boundary of

all lesions on uterus-axial T2WI, DWI, and LCE-T1WI,

respectively. After 2 months, reader 1 and reader 2 randomly

selected the same 50 patients to outline. Care was taken to avoid

including endometrial cavity fluid and hematocele and nearby

normal myometrium, but necrotic, bleeding, and cystic areas

inside the tumor can be included.
Feature extraction and selection

The open-source Python package Pyradiomics (https://pypi.

org/project/pyradiomics/) was used to extract radiomics features

from the VOI of each patient at the 3D Slicer platform. To obtain

isotropic voxels, the VOIs were resampled to 3 × 3 × 3 mm, then

cubic spline interpolation was performed. In order to reduce the

imaging differences among different MRI scanners, image

normalization was performed so that all gray-level values in

the images were distributed in the range of 0–600. A fixed bin

width of 1 was selected to ensure better comparability of MRI
TABLE 1 The parameter details of primary sequences.

Repetition time
(ms)

Echo time
(ms)

Field of view
(mm2)

Matrix Slice thickness
(mm)

Slice gap
(mm)

Siemens Prisma
3.0 T

T2WI 3,200 90 200 × 200 320 × 320 3 3.6

DWI 6,300 75 250 × 134 72 × 134 3 3.6

LCE-
T1WI

2.9 1.19 220 × 200 288 × 262 3 0

GE Signa HDXt
3.0T

T2WI 3,500 104 200 × 200 240 × 240 3 1.5

DWI 4,250 70 200 × 200 240 × 240 3 1

LCE-
T1WI

3.26 1.6 240 × 240 350 × 350 3 1.5

Siemens Aera 1.5
T

T2WI 3,900 90 320 × 320 512 × 512 3 1.5

DWI 5,600 90 200 × 200 256 × 256 4 1

LCE-
T1WI

3.41 1.3 240 × 240 320 × 320 2 1.5
T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; LCE-T1WI, late contrast-enhanced T1-weighted imaging.
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gray values as suggested in a previous study (12). Before feature

extraction, several built-in filters such as gradient, exponent,

logarithm, square, square root, wavelet, and Laplacian of

Gaussian (LOG) filters were applied on the normalized MR

images, and derived images were achieved. The extracted

features were divided into the following categories (25): first-

order features, two-dimensional features, gray-level co-

occurrence matrix (GLCM), gray-level dependence matrix

(GLDM), gray-level size-zone matrix (GLSZM), gray-level run-

length matrix (GLRLM), and neighboring gray tone difference

matrix (NGTDM). A total of 1,781 radiomics features were

extracted from each MRI modality, resulting in 7,124 radiomics

features for each patient in total. All the above features were

standardized by the Z score.

The datasets of the patients with stage IA EC and benign

endometrial lesions were balanced by using the synthetic

minority oversampling technique in the training group. To

ensure repeatability and avoid the subjective difference in

lesion segmentation, the intraclass correlation coefficient (ICC)

of each feature was calculated. Only features with ICC values ≥

0.75 between observers and within observers were retained.

Pearson correlation coefficients were calculated for identifying

redundant features. If the correlation coefficient of two features

was ≥ 0.9, the feature with the largest mean absolute correlation

was deleted. Whereafter, least absolute shrinkage and selection

operator (LASSO) was used to select the most representative

features and 10-fold cross-validation was performed (26).
Model building

On the construction of the clinical model, firstly, univariate

analysis was conducted to compare the clinical characteristics of

benign and malignant endometrial lesions in the training group,

and find out the clinical parameters with statistically significant

difference. Secondly, the individual predictors of stage IA EC were

chosen according to the univariate logistic regression (LR) analysis.

Finally, the clinical model was constructed based on themultivariate

LR, and the efficient clinical predictive parameters were selected.

Different radiomics models were developed and tested

respectively to predict stage IA endometrial cancer based on

the following nine machine learning classification algorithms:

LR, support vector machine (SVM), stochastic gradient descent

(SGD), K nearest neighbor (KNN), decision tree (DT), random

forest (RF), extremely randomized trees (ET), eXtreme Gradient

Boosting (XGBoost), and Light Gradient Boosting Machine

(LightGBM). A fivefold cross-validation strategy was applied

to tune and optimize the model parameter, and assess the

performance of the models. Referring to a recently published

study (27), the machine learning algorithm with the highest

average area under the receiver operating characteristic (ROC)

curve (AUC) of the internal and external validation group was

used to construct the optimal radiomics model. Then, the
Frontiers in Oncology 04
radiomics score (radscore) was calculated. A nomogram based

on the multivariate LR analysis was developed by using the

combination of clinical predictive parameters and radscore in

the training group.

The stacking model is an integrated learning technology,

which can combine the predictions of learned classifiers in order

to create prediction of new instances to improve overall

performance (28). In the study, a two-tier stacking model was

conducted; the first tier was the above clinical model and the

optimal radiomics model, and the second tier used the output of

the first tier as the input of the multivariate LR. The ensemble

algorithm is developed using superlearner (29), and belongs to

an integrated strategy. According to the accuracy weight, the

predictions obtained from the foregoing clinical model and

radiomics model were calculated by the weighted average

method and the new output as the final results.

Through the nomogram, stacking model, or ensemble model,

the clinical and radiomics features were combined, so as to achieve

model fusion. All model building was implemented in Python

(https://www.python.org/getit/), and the detailed process of model

building is shown in Figure 1. The AUC, accuracy, sensitivity,

specificity, and calibration curve were used as metrics to assess the

performance and goodness of fit of the models.
Clinical application of the models

One radiologist (reader 3, with 30 years of experience in

pelvic MRI) who was blind to the clinicopathological

information of the patient independently reviewed the MR

images to diagnose stage IA EC and benign uterine disease in

the training and validation groups. The AUC, accuracy,

sensitivity, and specificity of the radiologist were calculated.

Clinical decisive curve (CDC), net reclassification index (NRI),

and integrated discrimination index (IDI) were performed to

estimate the clinical usefulness and net benefit of different

models and the radiologist by comparing the actual treatment

options of patients.
Correlations between radiomics features
and immunohistochemical findings

In order to explore the correlation between radiomics

information and histological characteristics, Spearman correlation

coefficients were used to evaluate the correlations between the

selected radiomics features and immunohistochemical findings.
Statistical analysis

All statistical tests were performed using SPSS 26.0 (IBM,

New York, USA), R software 4.1.2 (https://www.r-project.org/),
frontiersin.org
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and Python 3.9.7 (https://www.python.org/). Continuous

variables and categorical variables were respectively expressed

as mean value ± standard deviation and counts. The

Kolmogorov–Smirnov test was used to check the normality of

the continuous data distribution. Continuous variables were

analyzed using one-way ANOVA, Mann–Whitney U test, or

Kruskal–Wallis test. Categorical variables were compared using

the Chi-square test or Fisher’s exact test. Univariate and

multivariate LR analyses were used to filtrate the clinical

predictors and model building. A p-value less than 0.05 was

considered statistically significant. Pearson correlation analyses

were performed to assess correlations between continuous

variables, and Spearman correlation analyses were used to

evaluate the correlations between continuous variables and

ranked data. If p < 0.05, there were correlations between

the variables.
Results

Clinical parameters

A total of 371 patients were divided into the training group

(245 patients from center A), the internal validation group (82

patients from center A), and the external validation group (44

patients from centers B). The clinicopathological characteristics

of incorporated patients are listed in Table 2. The 371 patients

included 234 patients with stage IA EC and 137 patients with

benign endometrial lesions. Three hundred and twenty patients

were treated following the protocol for EC and 51 patients for

benign endometrial disease. A total of 112 (30.2%) patients

received inappropriate treatment, including 13 (3.5%) patients

with stage IA EC who were undertreated and 99 (26.7%)

patients with benign endometrial lesions who were
Frontiers in Oncology 05
overtreated. Univariate analysis showed that the mean age of

patients with stage IA EC (51.65 ± 7.94) was significantly older

than that of patients with benign uterine lesions (48.12 ± 8.35) in

the training group (p = 0.001). Compared with benign

endometrial lesions, there were more patients with irregular

vaginal bleeding and menopause in stage IA EC (p < 0.05). No

significant differences in metabolic syndrome, BMI, CA125, and

CA199 between patients with stage IA EC and benign

endometrial lesions were shown (p > 0.05). According to the

univariate and multivariate LR analysis, age and irregular vaginal

bleeding were the valid predictive parameters.
Feature selection and optimal machine
learning algorithm

Among all the extracted features, 3,356 features were

excluded because the ICC values between observers or within

observers were <0.75. There were 847 features retained after the

Pearson correlation analysis. Finally, the LASSO classifier

selected 18 features as shown in Figure 2.

The AUC and accuracy of radiomics models constructed by

nine machine learning algorithms are shown in Table 3, and the

broken line graphs of accuracy for different algorithms in the

training group, internal validation group, and external validation

group are presented in Figures 3A–C. The LR algorithm showed

the highest average AUC (0.854) in the validation groups, and

also had the highest average accuracy (0.802). Therefore, LR was

considered to be the optimal machine learning algorithm for

radiomics model building. The radscore was calculated based on

the coefficients and intercepts obtained from the LR model. The

selected features and weights are shown in Figure 3D. The top

four features that contribute most to the radiomics model were

CE_original_shape_flatness, T2_exponential_GLSZM_zone
FIGURE 1

The overall workflow of this study.
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percentage, DWI_LOG-sigma-6-0-mm-3D_first order_root

mean squared, and ADC_LOG-sigma-2-0-mm-3D_first

order_median, respectively.
Performance and clinical application of
different models

A nomogram was constructed by using the clinical

predictive parameters (age and irregular vaginal bleeding) and

the radscore (Figure 3E). The diagnostic performance of each

model and radiologist is displayed in Table 4. Figure 4 shows
Frontiers in Oncology 06
ROC curves and calibration curves of different models. In the

training group, the AUCs of the clinical model, radiomics model,

nomogram, stacking model, ensemble model, and radiologist

were 0.760, 0.921, 0.922, 0.925, 0.916, and 0.769, respectively. In

the internal validation group, they were 0.739, 0.910, 0.917,

0.915, 0.918, and 0.768, respectively. In the external validation

group, they were 0.592, 0.798, 0.802, 0.792, 0.794, and 0.628,

respectively. According to the calibration curves, the Brier scores

of the clinical model, radiomics model, nomogram, stacking

model, and ensemble model were 0.200, 0.114, 0.114, 0.113, and

0.129, respectively in the training group. They were 0.206, 0.123,

0.118, 0.119, and 0.129, respectively, in the internal validation
A B

FIGURE 2

Feature selection using the least absolute shrinkage and selection operator (LASSO) regression model. The cross-validation plot (A) and the
coefficient profile plot (B).
TABLE 2 Clinical and histological characteristics for patients.

Training group Internal validation group External validation group p

Total number 245 82 44

Patients

Stage IA endometrial cancer 155 53 26 0.824

Benign endometrial lesions 90 29 18

Histological subtypes

Endometrioid adenocarcinoma 155 53 26 0.673

Endometrial hyperplasia 60 21 13

Endometrial polyp 17 5 5

Endometrial hyperplasia+polyp 13 3 0

Age at diagnosis (years) 50.36 ± 8.26 50.52 ± 9.80 54.32 ± 9.34 0.136

Menopause (yes/no) 106/139 33/49 24/20 0.286

Irregular vaginal bleeding (yes/no) 135/110 34/48 36/8 <0.001

Metabolic syndrome (yes/no) 66/179 17/65 13/31 0.468

BMI (kg/m2) 25.11 ± 4.38 24.44 ± 3.54 24.80 ± 4.03 0.485

CA125 (U/ml) 37.29 ± 72.77 34.63 ± 64.67 29.52 ± 27.10 0.292

CA199 (U/ml) 23.86 ± 63.44 26.53 ± 46.34 28.39 ± 45.58 0.037
frontiers
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group, and they were 0.274, 0.188, 0.184, 0.182, and 0.184,

respectively, in the external validation group. The radiomics

model, nomogram, stacking model, and ensemble model

demonstrated good goodness of fit due to their Brier scores

being <0.25.

The CDCs of the different models and the radiologist are

presented in Figure 5, and the NRI and IDI are shown in

Table 3. The results showed that the radiomics model,

nomogram, stacking model, and ensemble model for predicting

stage IA EC added benefit and performed better than the actual
Frontiers in Oncology 07
treatment options in the training and validation groups (p < 0.05).

In the training group, the NRI and IDI of the clinical model,

radiomics model, nomogram, stacking model, ensemble model, and

radiologist were 0.130 and 0.023, 0.414 and 0.393, 0.429 and 0.396,

0.451 and 0.498, 0.410 and 0.397, and 0.319 and 0.242, respectively.

In the internal validation group, they were −0.163 and −0.034, 0.307

and 0.341, 0.395 and 0.362, 0.395 and 0.356, 0.395 and 0.366, and

0.216 and 0.137, respectively. In the external validation group, they

were −0.068 and −0.004, 0.423 and 0.272, 0.368 and 0.234, 0.423

and 0.255, 0.368 and 0.241, and 0.188 and 0.099, respectively.
TABLE 3 The performance of various machine learning algorithms.

Training group Internal validation group External validation group Validation groups

AUC Accuracy AUC Accuracy AUC Accuracy Average AUC Average Accuracy

LR 0.921 0.832 0.910 0.853 0.798 0.750 0.854 0.802

SVM 0.919 0.844 0.902 0.841 0.796 0.727 0.804 0.784

SGD 0.887 0.804 0.854 0.792 0.705 0.636 0.780 0.714

KNN 0.923 0.844 0.881 0.792 0.757 0.727 0.819 0.760

DT 1 1 0.720 0.719 0.795 0.795 0.758 0.757

RF 1 0.991 0.867 0.841 0.700 0.659 0.784 0.750

ET 1 1 0.905 0.841 0.675 0.613 0.790 0.727

XGBoost 1 1 0.889 0.804 0.813 0.727 0.851 0.766

LightGBM 1 1 0.884 0.792 0.795 0.704 0.840 0.748
AUC, area under the curve; LR, logistic regression; SVM, support vector machine; SGD, stochastic gradient descent; KNN, K nearest neighbor; DT, decision tree; RF, random forest; ET,
extremely randomized trees; XGBoost, eXtreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine.
A B

D E

C

FIGURE 3

Different model building. Broken line graphs of accuracy for different machine learning algorithms in the training group (A), the internal
validation group (B), and the external validation group (C). Bar chart of feature weight for the logistic regression model (D). Nomogram of the
training group (E).
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Correlations between radiomics features
and immunohistochemical findings

A heatmap (Figure 6) showed that the selected radiomics

features were not correlated with immunohistochemical findings

(ER, PR, P53, and Ki-67) (all p > 0.05). The selected sequences for

lesion segmentation and pathological and immunohistochemical

pictures are presented in Figure 7.
Frontiers in Oncology 08
Discussion

In the study, age and irregular vaginal bleeding were the

valid predictive parameters in the clinical model. On the basis of

several common machine learning algorithms, the diverse

multiparametric MRI-based radiomics models were developed

to differentiate stage IA EC from benign endometrial lesions, and

the LR algorithm model was selected as the optimal radiomics
A B C

FIGURE 5

Clinical decision curves (CDCs) of different models and the radiologist in the training group (A), the internal validation group (B), and the external
validation group (C).
A B

D E F

C

FIGURE 4

Receiver operator characteristic (ROC) curves (A–C) and calibration curves (D–F) of different models in the training group (A, D), the internal
validation group (B, E), and the external validation group (C, F).
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model with the highest AUC and accuracy. Compared with the

clinical model and the radiologist, the optimal radiomics model

and the compositive models combining clinical parameters with

radiomics features, like the nomogram, stacking model, and

ensemble model, showed better diagnostic performance and

achieved good clinical net benefits. The nomogram had a

higher AUC than the optimal radiomics model, and revealed

more stable discrimination efficiency and better generalization

ability than stacking and ensemble models.

The standard surgery of early-stage EC is total hysterectomy

with bilateral salpingo-oophorectomy with or without

lymphadenectomy/radiotherapy/chemotherapy (30), while the

treatment for benign endometrial lesions is a minimally invasive

approach compared to hysterectomy, such as hysteroscopic

resection or conservative treatment (31, 32). In this study,

3.5% of patients with stage IA EC had undergone inadequate

surgery and 26.7% of patients with benign endometrial lesions

had undergone overtreatment. As a consequence, the

rationalization of treatment options is crucial for patients with

stage IA EC and benign mimickers. The most common

symptom of EC is irregular vaginal bleeding, which often

occurs in the early stage, and the American Cancer Society

recommended that all women older than 65 years should be

advised to seek risk evaluation of EC if bleeding occurs (33).

Therefore, age and irregular vaginal bleeding could be used as

effective clinical predictors of stage IA EC. Benign endometrial

lesions, such as endometrial hyperplasia and polyps, are highly

prevalent in postmenopausal women; symptoms include

abnormal uterine bleeding (31, 32). Due to the overlapping

clinical features of benign endometrial lesions and EC, the AUC
Frontiers in Oncology 09
and the diagnostic accuracy of clinical model on the training

group and validation groups were low.

In radiomics, the digital medical images that hold

information of tumor pathophysiology are transformed into

quantitative high-dimensional data to improve medical

decision-making, and are gaining importance in cancer

research (8). In this study, the radiomics models had high

diagnostic performance, which was consistent with the

research of Chen et al. (24). The models with high efficiency

and reliability are fundamental factors driving the success of

radiomics (34), and the recognition of optimal machine learning

methods for radiomics models is crucial (35); thus, multiple

machine learning algorithms should be employed. We trained

nine common classification algorithms, namely, LR, SVM, SGD,

KNN, DT, RF, ET, XGBoost, and LightGBM, in model

establishment. LR performed best among all classifiers, and the

reason might be that complex models required more training

samples (36). The optimal radiomics model modeled by LR had

higher AUCs and diagnostic accuracies than those of the clinical

model and the radiologist in this study. This result further

confirmed that radiomics could be a problem-solving tool

when there is a dilemma in clinical diagnosis and the

observation of conventional imaging (8).

Unlike the study of Chen et al. (24), CE-MRI was included

and extracted features in our study. The top four vital features in

the optimal radiomics model were from CE-MRI, T2WI, DWI,

and the ADC map, respectively. Due to the differences in

vascular permeability and microvessel density between EC and

benign lesions, most ECs showed early maximal enhancement

and late gradual washout, and frequently showed lower signal
FIGURE 6

Heatmap of the correlations between the selected radiomics features and ER, PR, P53, and Ki-67.
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intensity than the myometrium on LCE-MRI. In contrast,

benign lesions showed delayed persistent enhancement

pattern, and tended to show higher signal intensity than the

myometrium on LCE-MRI (37). The shape of benign and

malignant endometrial lesions might be more clearly shown

on LCE-MRI. Flatness shows the relationship between the

largest and smallest principal components in the ROI shape
Frontiers in Oncology 10
(8). In consequence, CE_original_shape_flatness was the most

contributing feature. Endometrial polyp and hyperplasia are rich

in fibrous stromal structures and endometrial glands (1). Specific

MRI findings such as a fibrous tissue (hypointensity on T2WI)

and intratumoral cysts (hyperintensity on T2WI) might

be useful to differentiate benign endometrial lesions from EC

(1). Additionally, the zone percentage of GLSZM features
A B D

E F G H

C

FIGURE 7

A 46-year-old woman with stage IA endometrial cancer (EC) whose main clinical complication was irregular vaginal bleeding for 3 months. The
selected MR images for lesion segmentation included uterus-axial T2-weighted imaging (T2WI) (A), diffusion-weighted imaging (DWI)
(B), apparent diffusion coefficient (ADC) map (C), and late contrast-enhanced T1-weighted imaging (LCE-T1WI) (D). The estrogen receptor (ER)
(E), progesterone receptor (PR) (F), P53 (G), and Ki-67 (H) immunohistochemical staining (40×) showed 90%, 90%, focal, and 80% positive cells,
respectively.
TABLE 4 Diagnostic efficiency and clinical benefit of different models.

Models AUC Accuracy Sensitivity Specificity NRI (p) IDI (p)

Training group Clinical model 0.760 0.694 0.690 0.700 0.130 (0.082) 0.023 (<0.001)

Radiomics model 0.921 0.833 0.838 0.833 0.414 (<0.001) 0.393 (<0.001)

Nomogram 0.922 0.841 0.877 0.800 0.429 (<0.001) 0.396 (<0.001)

Stacking model 0.925 0.853 0.903 0.800 0.451 (<0.001) 0.498 (<0.001)

Ensemble model 0.916 0.837 0.832 0.833 0.410 (<0.001) 0.397 (<0.001)

Radiologist 0.769 0.816 0.948 0.589 0.319 (<0.001) 0.242 (<0.001)

Internal validation group Clinical model 0.739 0.683 0.528 0.896 −0.163 (0.251) −0.034 (0.523)

Radiomics model 0.910 0.854 0.868 0.862 0.307 (0.011) 0.341 (<0.001)

Nomogram 0.917 0.817 0.887 0.827 0.395 (0.001) 0.362 (<0.001)

Stacking model 0.915 0.841 0.887 0.828 0.395 (0.001) 0.356 (<0.001)

Ensemble model 0.918 0.817 0.887 0.828 0.395 (0.001) 0.366 (<0.001)

Radiologist 0.768 0.780 0.811 0.724 0.216 (0.065) 0.137 (0.018)

External validation group Clinical model 0.592 0.591 0.500 0.611 −0.068 (0.572) −0.004 (0.780)

Radiomics model 0.798 0.750 0.731 0.833 0.423 (0.024) 0.272 (<0.001)

Nomogram 0.802 0.727 0.731 0.778 0.368 (0.049) 0.234 (0.001)

Stacking model 0.792 0.773 0.769 0.778 0.423 (0.024) 0.255 (<0.001)

Ensemble model 0.794 0.705 0.769 0.778 0.368 (0.049) 0.241 (0.001)

Radiologist 0.628 0.682 0.923 0.333 0.188 (0.220) 0.099 (0.054)
f

AUC, area under the curve; NRI, net reclassification index; IDI, integrated discrimination index.
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represents the coarseness of the texture, and can better

reflect the heterogeneity of different tumors (8). Thus

T2_exponential_GLSZM_zone percentage was also an

important feature. A previous study had suggested that DWI

with ADC values were a potential quantitative and qualitative

tool for differentiating between early-stage EC and benign

mimickers (38). On DWI, benign endometrial lesions showed

low signal intensity, which was an important point in

differentiating them from EC that showed high signal intensity

due to relatively high cellularity (39). Nevertheless, the top two

important features were not derived from DWI and the ADC

map in this study. The possible reason was that DWI was

acquired in different scanners, which might lead to

inconsistency in image quality and ADC estimation across

vendors, although the models remained effective after cross-

validation in datasets from scanners with different

manufacturers or with different Tesla. Another possible reason

was that benign uterine lesions rich in cystic areas and mucus

might increase DWI signal intensity due to the influence of the

T2-penetration effect, and hemorrhagic areas and mucous

components could reduce the signal intensity of the ADC

map, which would lead to a slight difference between DWI

and ADC maps of benign and malignant endometrial lesions,

thus resulting in the reduction of the weight of their features.

Gatenby et al. (40) believed that radiomics features could

offer information on the phenotype and microenvironment of

tumors, which was complementary to other data like clinical

parameters. Radiomics features combined with clinical

parameters and other pertinent data can produce accurate

robust evidence-based clinical-decision support systems (8). In

this study, according to ROCs, CDCs, NRI, and IDI, the

compositive models modeled by clinical parameters

and radiomics features, such as the nomogram, stacking, and

ensemble models, showed better diagnostic performance and

achieved better clinical net benefits than the clinical model

and the radiologist. Compared with the radiomics model, the

nomogram had a higher AUC. Yan et al. (11) developed anMRI-

and clinical-based radiomics nomogram to preoperatively assess

high-risk EC, and obtained a similar result to this study, which

was the prediction efficiency of nomogram was better than that

of the radiomics model. The advantage of the ensemble strategy

was that it can reduce the variance and bias of the model by a

powerful process of majority vote or group averaging, and it

improves the robustness and generalizability of the model in

prediction and classification (27). A recent study had confirmed

that the two-tier stacking model could further improve the

generalization ability of the radiomics model compared with

the single model (41). In the present study, the diagnostic

performance of the stacking model and ensemble model was

similar with that of the nomogram and better than that of the

radiomics model in the internal validation group, whereas the
Frontiers in Oncology 11
AUCs of the stacking model and ensemble model were lower

than those of the nomogram and radiomics model in the

external validation group. Therefore, the nomogram presented

more excellent and stable differential diagnostic efficiency than

stacking and ensemble models with good reproducibility

and reliability.

There were some limitations in the study. First, this study

only collected patients from two centers. Patients from more

centers need to be included to improve the universality of the

model in clinical application. Second, the MRI systems and

scanning parameters were not uniform, and it may influence the

models’ results, especially in the external validation group.

Third, only traditional radiomics features were extracted; the

deep-learning-based features were not investigated. In the

future, we will conduct in-depth learning combined with

traditional radiomics to build models. Last, manual lesion

segmentation is time-consuming and is easily affected by the

experience of readers; automatic or semiautomatic methods that

delineate lesions more accurately need to be explored in

the future.
Conclusions

The multiparametric MRI-based radiomics models can be

conveniently used for preoperative identification of patients with

stage IA EC and benign endometrial lesions, and the model

established by the LR algorithm has the highest accuracy.

Incorporating radiomics and clinical parameters (age and

irregular vaginal bleeding) into a combined model to estimate

patients was more accurate than the clinical model and the

radiologist. This study is beneficial in noninvasively identifying

benign and malignant endometrial lesions that are difficult to

determine by clinicians and radiologists before surgery, avoiding

misdiagnosis and missed diagnosis, and providing a basis for the

patient protocol of individualized diagnosis and treatment.
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