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Abstract
Accumulating evidence indicates that alterations of gut microbiota are associ-
ated with colorectal cancer (CRC). Therefore, the use of gut microbiota for the 
diagnosis of CRC has received attention. Recently, several studies have been 
conducted to detect the differences in the gut microbiota between healthy in-
dividuals and CRC patients using machine learning-based gut bacterial DNA 
meta-sequencing analysis, and to use this information for the development of 
CRC diagnostic model. However, to date, most studies had small sample sizes 
and/or only cross-validated using the training dataset that was used to create the 
diagnostic model, rather than validated using an independent test dataset. Since 
machine learning-based diagnostic models cause overfitting if the sample size is 
small and/or an independent test dataset is not used for validation, the reliability 
of these diagnostic models needs to be interpreted with caution. To circumvent 
these problems, here we have established a new machine learning-based CRC 
diagnostic model using the gut microbiota as an indicator. Validation using in-
dependent test datasets showed that the true positive rate of our CRC diagnostic 
model increased substantially as CRC progressed from Stage I to more than 60% 
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1   |   INTRODUCTION

In developed countries, the morbidity and mortality of 
colorectal cancer (CRC) are increasing year by year, and 
its countermeasures are becoming an urgent issue.1 Since 
effective therapeutic drugs for CRC are still under de-
velopment, the only effective measure at the moment is 
early detection and surgical removal of CRC. Thus, there 
is a need for a simple and accurate CRC screening test. 
Currently, the most widespread screening tests for CRC 
are colonoscopy and the fecal occult blood test (FOBT).1 
Although the colonoscopic examination achieves an ac-
curate and sensitive diagnostic test for CRC detection, it 
is invasive, expensive, labor-intensive, and time consum-
ing. Thus, it is difficult to use it for a population-wide CRC 
screening.1 On the other hand, FOBT is a non-invasive, 
simple, and inexpensive screening test for CRC detection, 
but often gives false positive results especially when ap-
plied to those with bleeding by hemorrhoids or menstrua-
tion. Furthermore, the sensitivity of FOBT for early-stage 
CRC and proximal colon cancer is not adequately high be-
cause of the difficulty to detect the low amount of blood in 
the stool.2 Therefore, there is a need to develop a new non-
invasive, simple, and effective CRC screening test that can 
compensate for the problems of the FOBT.

The gut microbiota is an ecosystem created by a wide 
variety of bacteria that reside in the intestinal lumen. It is 
known that the gut microbiota helps to maintain the ho-
meostasis of the organism through the construction of the 
host's immune system and assistance in food digestion.3–5 
However, when the composition of the gut microbiota is 
disrupted by overeating, an imbalanced diet, or antibiotic 
medication, the number of useful bacteria decreases, and 
pathogenic bacteria proliferate instead, causing intestinal 
and systemic inflammation, and metabolic disorders.3–5 
Accumulating evidence indicates that gut bacteria are 
also involved in tumorigenesis in the liver6,7 and co-
lon.8–10 Notably, Fusobacterium nucleatum,11–13 entero-
toxigenic Bacteroides fragilis,14 pks+ Escherichia coli,15–18 
and Peptostreptococcus anaerobius19 are reportedly in-
volved in the development of CRC. Furthermore, we 

have recently reported that Porphytomonas gingivalis and 
Porphytomonas asaccharolytica may promote the develop-
ment of CRC through the production of butyrate.20 Thus, 
examination of gut microbiota to detect those pathogenic 
bacteria would be a promising method to screen CRCs. 
However, since these pathogenic bacteria are not detected 
in all patients with CRCs and some of these bacteria are 
also detected in healthy individuals, screening for CRC 
cannot be satisfactorily performed if the presence of these 
pathogenic bacteria alone is used as markers.13,21,22

In recent years, several studies have been conducted 
to detect the differences in the gut microbiota between 
healthy individuals and CRC patients using machine 
learning-based meta-sequencing analysis of bacterial 
DNA, and to use this information for the diagnosis of 
CRC.23–27 However, most of the studies have small sample 
sizes, and some of them do not have independent test data-
sets, but only cross-validate the diagnostic model using 
the training dataset used to create the model.23–27 Since 
machine learning-based diagnostic models can cause 
overfitting if the sample size is small.25 Furthermore, 
cross-validation is not an appropriate validation method 
because the results can reflect the characteristics of the 
training data and cause an overfitting problem. Therefore, 
it is essential to develop a diagnostic model using a train-
ing dataset with sufficient sample size, and at the same 
time, to validate it using an independent test dataset. 
Furthermore, some studies have used sequence data pub-
lished in databases to increase the sample size. However, 
since differences in experimental conditions and sample 
population characteristics may affect the prediction re-
sults of machine learning models, care should be taken 
in interpreting the results obtained. It should also be 
noted that although shotgun metagenomic sequencing 
analysis has higher bacterial classification accuracy than 
meta-16S rRNA gene sequencing analysis, it is currently 
difficult to use for primary screening of large populations 
because of the high cost of analysis and the need for high-
performance computers to analyze large amounts of data.

To solve the above problems, in this study, we attempted 
to develop a new diagnostic model for CRC screening 

for CRC patients more advanced than Stage II when the false positive rate was set 
around 8%. Moreover, there was no statistically significant difference in the true 
positive rate between samples collected in different cities or in any part of the 
colorectum. These results reveal the possibility of the practical application of gut 
microbiota-based CRC screening tests.
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test using meta-sequencing analysis of gut bacterial 16S 
rRNA genes with a carefully designed machine learning 
approach. Notably, our model has been created using a 
sufficient number of training datasets and validated using 
independent test datasets collected from three hospitals in 
different regions of Japan. With these improvements, we 
succeeded in developing a more reliable CRC screening 
method using the gut microbiota, and we report it here 
and discuss the potential and limitations of the method 
using the gut microbiota.

2   |   MATERIALS AND METHODS

2.1  |  Human fecal sample collection

Feces were collected from study participants who vis-
ited the JFCR (Tokyo) from December 2013 to March 
2015 (cohort-1), January to September 2017 (cohort-2), 
and May 2019 to August 2021 (cohort-3), and those who 
visited Kyoto University Hospital (Kyoto) or Osaka City 
University Hospital (Osaka) from May 2019 to August 
2021 (cohort-3) using a fecal sampling tool (TechnoSuruga 
Laboratory). All study participants underwent colonos-
copy at the time of stool collection. Colorectal cancer 
patients (CRC patients) were defined as patients with pri-
mary malignant epithelial colorectal tumors according to 
the Third English Edition of the Japanese Classification of 
Colorectal, Appendiceal, and Anal Carcinoma.2 Advanced 
adenoma patients were defined as patients with colorectal 
adenomas larger than 10 mm in diameter. Healthy indi-
viduals (HI) were defined as individuals without colorec-
tal cancers nor colorectal advanced adenomas. HI were 
classified into two groups: clean HI who had no colorec-
tal adenomas and HI with colorectal polyps smaller than 
10  mm in size. We excluded those with a history of in-
flammatory bowel disease, prior gastrointestinal recon-
structive surgery, severe liver dysfunction, anticancer 
and/or antibiotic treatment within 1 month, stool col-
lection within 3 days of colonoscopy, and those without 
access to detailed clinical information. Patients who re-
ceived chemotherapy, radiation therapy, or colonic stent 
placement before fecal sample collection, who had fecal 
samples collected after endoscopic resection of tumors, 
or patients whose tumors were not primary colorectal 
tumors (e.g., squamous cell carcinoma of the anal canal 
cancer, metastasis or direct invasion of other cancers to 
the large intestine) were also excluded. HI with a history 
of colorectal cancers, or with malignant tumors other than 
colorectal cancer or abnormal endoscopic findings, such 
as enteritis and hamartomas at the time of stool collection 
were excluded. Written informed consent was obtained 
from all participants for the use of anonymized samples 

and the publication of the patients' clinical information 
under the protocol approved by the ethics committee of 
the JFCR hospital, Kyoto University Hospital, and Osaka 
City University Hospital. The tumor profiles of CRC pa-
tients were classified based on the Third English Edition 
of the Japanese Classification of Colorectal, Appendiceal, 
and Anal Carcinoma.2

2.2  |  16S rRNA gene sequencing 
analysis and microbiome analysis

Bacterial DNA extraction from fecal samples was per-
formed using a QIAamp Fast DNA Stool Mini Kit 
(QIAGEN) (samples of cohort-1) or a Magtration System 
12GC (Precision System Science) in TechnoSuruga 
Laboratory (samples of cohort-2) or a GENE STAR PI-
480 automated DNA isolation system (Kurabo Industries, 
Ltd., Osaka, Japan) (samples of cohort-3). The polymer-
ase chain reaction (PCR) amplification of the V1-V2 re-
gion of the bacterial 16S rRNA gene was performed using 
KAPA HiFi Hot Start Ready Mix (Roche) with universal 
16S rRNA primers followed by the secondary amplifica-
tion adding the Illumina flow cell adapters and indices. 
The PCR primers used are shown in Table S1. Meta-16S 
rRNA gene sequencings were carried out per 192 sam-
ples on the Illumina MiSeq platform (Illumina Inc.) 
using MiSeq Reagent Kit v2 (Illumina Inc.) (paired-end, 
250 cycles × 2). These processes were performed at Biken 
Biomics, Inc. Sequencing reads were processed accord-
ing to the QIIME2 (version 2020.8) pipeline.28 Fastq files 
were de-noised with the DADA2 plugin29 and amplicon 
sequence variants (ASVs) were counted. These processes 
were performed separately for samples from the training 
data and the test data. Subsequently, de novo clustering 
was performed on ASVs using the VSEARCH plugin30 to 
obtain operational taxonomic units (OTUs) with a simi-
larity of more than 99%. Open-reference clustering based 
on OTUs detected from the training data were performed 
on the test data. Finally, the OTU counts were converted 
to relative abundance per sample. A phylogenetic tree 
was generated from the ASVs, and beta diversity analyses 
(principal coordinate analyses of weighted UniFrac dis-
tance) were performed with a sampling depth of 10,000 
reads. Phylogenetic classification of the detected OTUs 
was performed by a Naive Bayes classifier trained on the 
SILVA 16S rRNA sequence database (version 138)31 in 
the QIIME2 pipeline. Identification of the specific bacte-
rial species corresponding to each OTU was performed 
by using the 16S rRNA database provided by the National 
Center for Biotechnology Information (NCBI) (last modi-
fied on 12 June 2021) and a similarity search with BLAST+ 
(version 2.9.0).32
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2.3  |  Statistical modeling

For the construction of the colorectal cancer screening 
model, h2o.automl function with 10-fold cross-validations 
in the h2o package of R (version 3.32.0.1) (https://www.
h2o.ai/) was performed. After repeating this process 10 
times, the StackedEnsemble_BestOfFamily model with 
the highest AUC for the cross-validation predictions was 
selected. The h2o package displays the feature (variable) 
importance scaled between 0 and 1, except for stacked 
ensemble learning. In this study, the scaled feature im-
portance in a stacked ensemble model was defined as the 
rescaled sum of the product of the scaled importance of its 
constituent models within a meta-learner and the scaled 
importance of each feature within each model.

2.4  |  Quantitative real-time PCR analysis

Quantitative real-time PCR was performed on Thermal 
Cycler Dice® Real-Time System III (Takara Bio Inc.) using 
TB Green® Premix Ex Taq™ II (Takara Bio Inc.). Universal 
16S rDNA was used as internal control, and the abun-
dances of the bacteria were expressed as relative levels to 
16S rDNA. The PCR primer sequences used are shown in 
Table S1.

2.5  |  Statistical analysis

Statistical analysis was performed using R (version 
4.0.5). The differences in the characteristics of the sam-
ples were analyzed by the Wilcoxon rank sum test and 
the chi-squared test. For the performance testing of 
the colorectal cancer screening model, a bootstrapping 
method with 10,000 resamples by the pROC package of 
R (version 1.16.2)33 was used. To compare the variables 
of the multiple sample groups, the pairwise method with 
the adjustment of p values by the Benjamini–Hochberg 
false-discovery rate correction at 0.05 was performed. The 
Cochran–Armitage test for trends in proportions was used 
to evaluate the statistical significance of trends in positive 
rates across colorectal cancer progression. Statistical tests 
were two-tailed and p < 0.05 was considered significant.

3   |   RESULTS

3.1  |  Strategies for optimizing the 
diagnostic model of CRC

In our previous study, stool samples from healthy in-
dividuals and patients with CRC were collected twice 

at the JFCR hospital in Tokyo (cohort-1 in 2013–2015 
and cohort-2 in 2017–2018) and their gut microbiota 
profiles were analyzed by bacterial 16S rRNA gene 
meta-sequencing.20 As a result, we found 12 common 
CRC-related bacterial species that were significantly 
increased in CRC patients but almost undetectable in 
healthy individuals in both cohorts.20 Unexpectedly, 
however, the CRC diagnostic model created by ma-
chine learning based on the dataset of cohort-1 failed 
to correctly diagnose the sample of cohort-2. To inves-
tigate the cause of this, we compared the β-diversity of 
the gut microbiota between the two cohorts and found 
that they differed substantially (Figure  S1). These two 
cohorts used different methods to extract DNA from 
stool, which may have caused differences in the gut 
microbiota profile and reduced diagnostic efficiency. 
Therefore, considering this result and the problems that 
have been pointed out regarding the generation of a 
CRC diagnostic model using the gut microbiota and ma-
chine learning,34–36 we attempted to develop a new CRC 
diagnostic model by paying attention to the following 
three points1: Create a diagnostic model for CRC screen-
ing using a sufficient number of training datasets and 
validate it appropriately using independent samples as 
test datasets.2 Stool collection, DNA extraction, and se-
quencing are performed based on a consistent pipeline 
to minimize data variability due to differences in opera-
tions.3 Test samples were collected at three hospitals 
located in different regions of Japan (Tokyo) to evalu-
ate the diagnostic robustness regardless of the region of 
donor residency (Figure 1A).

3.2  |  Determining the sample size 
required to create a CRC diagnostic model

The small sample size can lead to overfitting in gener-
ating diagnostic models based on machine learning. In 
addition, cross-validation, which is performed using 
part of the training dataset rather than being evaluated 
using an independent test dataset, also increases the risk 
of overfitting.25 Therefore, we attempted to estimate the 
number of training data samples required to create a 
diagnostic model for the CRC screening test using the 
training dataset and independent test dataset of cohort-
1. Note that because there is a slight batch effect for each 
sequencing run, there may be some errors when using 
amplicon sequence variants (ASVs), which are classified 
as identical only if they are 100% identical, in the analysis. 
To circumvent this problem, we utilized an operational 
taxonomic unit (OTU) clustering ASVs with 99% iden-
tity rather than ASV itself, and then create and validate a 
CRC diagnostic model using h2o AutoML (https://www.

https://www.h2o.ai/)
https://www.h2o.ai/)
https://www.h2o.ai/
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h2o.ai/), an open-source machine learning platform 
(Figure S2). The h2o AutoML can run seven different 
machine learning algorithms: Generalized Linear Model, 
Distributed Random Forest, Extremely Randomized 
Trees, Gradient Boosting Machine, XGBoost, Deep 
learning, and Stacked Ensemble. However, it is gener-
ally known that Stacked Ensemble has the best perfor-
mance, and Stacked Ensemble is further divided into 
Stacked Ensemble_AllModels and Stacked Ensemble_
BestOfFamily (Figure S2). Although the performance of 
Stacked Ensemble_AllModels and Stacked Ensemble_
BestOfFamily is almost the same, the model created by 
Stacked Ensemble_AllModels has a very large data size 
(Figure S2). Therefore, in this study, we decided to use 
Stacked Ensemble_BestOfFamily which has a manage-
able data size to create a CRC diagnostic model. We 

created a diagnostic model by varying the number of 
clean healthy individuals and CRC patients in the train-
ing dataset of cohort-1, and evaluated the diagnostic ef-
ficiency of the model by calculating the AUC (area under 
the curve) of the ROC (receiver operating characteris-
tic) curve using independent test dataset37 (Table S2 and 
Figure S3A). As the number of clean healthy individu-
als and CRC patients used to create the model was in-
creased step by step, the value of AUC increased until 
the number of subjects reached 120 each (Figure S3B). 
However, when the sample size was increased to more 
than 120 subjects each, the AUC values did not increase 
anymore (Figure S3B), indicating that the training data 
of 120 clean healthy individuals and 120 CRC patients 
were necessary and sufficient for creating the CRC diag-
nostic model.

F I G U R E  1   The strategy of this 
study. (A) flow diagram of cohort-3. 
Stool samples from three hospitals in 
Tokyo (JFCR hospital), Kyoto (Kyoto 
University Hospital), and Osaka (Osaka 
City University Hospital) were collected 
in one place and analyzed using a uniform 
method. (B) Workflow chart for enrolling 
healthy individuals (HI) and CRC patients 
for microbiome analysis in cohort-3

TokyoKyoto

RIMD
(Osaka)

Automated DNA extraction

Polymerase Chain Reaction

Next-Generation Sequencing

Microbiome analysis

Machine learning

Unified processes

Osaka

(A)

(B)

1,077 people 
submitted fecal samples.

143 people were excluded.
• 6 had a history of inflammatory bowel disease.
• 23 had previous gastrointestinal reconstructive surgery.
• 11 had current anticancer treatment.
• 27 had antibiotic treatment within 1 month.
• 27 had fecal samples taken within 3 days of colonoscopy.
• 21 had fecal samples collected after resection of tumors.
• 3 detailed clinical information was inaccessible.
• 10 patients did not have primary colorectal tumors.
• 2 healthy individuals had a history of colorectal cancers.
• 10 healthy individuals had enteritis.
• 3 healthy individuals had hamartomas.

934 people 
were eligible for analysis. 58 patients 

submitted fecal samples.

28 patients were excluded.
• 3 had previous gastrointestinal reconstructive surgery.
• 1 had current severe hepatic dysfunction.
• 4 had antibiotic treatment within 1 month.
• 1 had fecal samples collected after resection of tumors.
• 5 did not primary colorectal tumors.
• 14 detailed clinical information was inaccessible.

30 patients 
were eligible for analysis.

78 patients 
submitted fecal samples.

22 patients were excluded.
• 2 had a history of colorectal cancers.
• 11 received chemotherapy, radiation therapy, or colonic 

stent placement.
• 3 had fecal samples collected after resection of tumors.
• 2 had antibiotic treatment within 1 month.
• 4 detailed clinical information was inaccessible.

56 patients 
were eligible for analysis.

Tokyo

Osaka

Kyoto

https://www.h2o.ai/


      |  3199KONISHI et al.

3.3  |  Development of a diagnostic model 
for CRC screening

Given the estimated sample size required to create a di-
agnostic model, samples required for the development of 
the CRC diagnostic model (more than 120 clean healthy 

individuals and CRC patients each) were newly collected 
in Tokyo for training data as cohort-3. Independent sam-
ples for test data were also collected in Kyoto and Osaka 
in addition to Tokyo. All collected stool samples were 
subjected to DNA extraction, sequencing of bacterial 16S 
rRNA gene, and clustering of sequence data by a consistent 

T A B L E  1   Summary of the study participants in cohort-3

Study population Clean HI HI with polyps Advanced adenoma 
patients

CRC patients stage

0 I II III IV

Training data

Tokyo 120 22 43 31 17 7

Test data

Tokyo 234 165 75 30 46 36 76 32

Kyoto 21 16 19

Osaka 1 8 12 5 4

Cohort-2 (Tokyo) 83 37 32 13 30 8

Abbreviation: HI: Healthy individuals.

F I G U R E  2   Evaluation of CRC 
diagnostic model by ROC curve. (A)–(G) 
ROC curves were drawn separately for 
the different sample categories and for 
each stage of CRC progression. Healthy 
individuals with colorectal polyps (A), 
advanced adenoma patients (B), Stage 0 
(C), Stage I (D), Stage II (E), Stage III (F), 
Stage IV (G). AUC (area under the curve). 
Ranges in parentheses are 95% confidence 
intervals with 10,000 bootstrap replicates

(G)

Stage IV

AUC = 0.874
(0.801 – 0.937)

(C)

(E)

Stage 0

Stage II

AUC = 0.536
(0.454 – 0.618)

AUC = 0.863
(0.812 – 0.908)

(A)

Polyp

(D)

(F)

Stage I

Stage III

AUC = 0.736
(0.678 – 0.792)

AUC = 0.826
(0.777 – 0.872)

(B)

Advanced adenoma

AUC = 0.582
(0.529 – 0.636)

AUC = 0.525
(0.451 – 0.597)
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pipeline (Figure 1A). Among a total of 1213 samples col-
lected, 193 samples inappropriate for analysis were ex-
cluded, and 1020 samples were processed to create a CRC 
diagnostic model (Figure 1B). From cohort-3, 120 samples 
each of clean healthy individuals and CRC patients from 
the Tokyo sample were selected as training data (Table 1), 
and a new CRC diagnostic model was generated by the 
Stacked Ensemble_BestOfFamily machine learning algo-
rithm. Subsequently, the model generated from training 
data were evaluated by test dataset. It should be noted 
that we were unable to collect samples from healthy in-
dividuals in Kyoto and Osaka and that the distribution of 
cancer progression stage among CRC patients was uneven 
(Table 1). Therefore, in order to increase the number of 
test data, we also used the dataset of the cohort-2, where 
DNA extraction from stool was performed in the same way 
as in the cohort-3, and its β-diversity was similar to that 
of the cohort-3 as judged by principal coordinate analysis 
(PCoA) of weighted UniFrac distance38 (Figure S4). Thus, 
the test dataset was composed of all samples that were 
not used for training data in cohort-3 and cohort-2, whose 
specimens were processed in a consistent way (Table 1). 
Note that the value of AUC is highly dependent on the 
sample composition of the dataset. Therefore, as a meas-
ure to evaluate the diagnostic model, we decided to also 
compare the true positive rate (sensitivity) for each stage 
of cancer when the threshold of the algorithm was set to a 
value that is expected to result in a false positive rate (i.e., 
1 - specificity) of about 8%, as in Zeller et al.26

Judging from the independent test dataset, the AUC 
and true positive rate of CRC patients increased sub-
stantially as CRC progressed from stage I, with AUCs 
above 0.80 and true positive rates above 60% in patients 
with stage II or higher CRC (Figure 2 and Table 2). The 
true positive rate also significantly increased in correla-
tion with the depth of tumor invasion (T classification),2 
indicating that our model is suitable to detect advanced 
CRCs (Table 2). On the other hand, the true positive rate 
of patients with early-stage cancers belonging to stage 
0 or T0 was as low as 19.1% and the AUC = 0.536, al-
most indistinguishable from clean healthy individuals 
(Table 2 and Figure 2). Healthy individuals with colorec-
tal polyps and patients with advanced adenoma were 
also indistinguishable from clean healthy individuals 
(Table  2 and Figure  2A and B). Consistent with these 
results, the mean relative abundance of the top 50 most 
important bacteria (OTUs) for diagnosis in our CRC di-
agnostic model changed after stage I of CRC (Figure 3). 
It is worth emphasizing that there was no significant dif-
ference in the true positive rate between the data from 
the three hospitals (Tokyo, Kyoto, and Osaka) (Table 3) 
and no statistically significant difference in the true 
positive rate in any part of the colorectum (Table 4). It 

should also be noted that although there was a statisti-
cally significant difference in age and BMI (body mass 
index) between the healthy individual group and the 
CRC patient group in the test dataset, the CRC diagnos-
tic model obtained by training data combining gender, 
age, BMI, and gut microbiota composition did not sig-
nificantly improve performance from the model trained 
on gut microbiota composition data alone (Figure  4). 
This result suggests that changes in gut microbiota are 
more strongly correlated with colorectal cancer than age 
or BMI.

3.4  |  Comparison with qPCR methods 
for detection of specific gut bacteria

Recently, Guo et al.39 reported that a highly accurate CRC 
diagnostic model was developed by combining the results 
of qPCR quantification of the abundance of three gut bac-
teria, Fusobacterium nucleatum, Faecalibacterium praus-
nitzii, and Bifidobacterium spp. Therefore, in order to 
compare the efficiency of our model and Guo's model,39 we 
randomly selected samples of 67 clean healthy individuals 

T A B L E  2   Positive rate of our CRC diagnostic model for clean 
healthy individuals, healthy individuals with colorectal polyps, 
advanced adenoma patients, and patients with CRC in different 
stages of CRC progression (stage and T classification)

Group n Positive rate (%)

Clean healthy individuals 317 10.7 (7.3–14.2)

Healthy individuals with polyps 165 13.3 (8.5–18.8)

Advanced adenoma patients 75 12.0 (5.3–20.0)

CRC patients

Stage

0 68 19.1 (10.3–29.4)

I 107 45.8 (36.4–55.1)

II 77 66.2 (55.8–76.6)

III 130 63.1 (54.6–71.5)

IV 44 68.2 (54.5–81.8)

p = 7.99 × 10–10

T classification

Tis 68 19.1 (10.3–29.4)

T1 77 48.1 (36.4–59.7)

T2 60 46.7 (33.3–60.0)

T3 166 66.3 (59.0–73.5)

T4 55 67.3 (54.5–80.0)

p = 6.88 × 10–11

Ranges in parentheses are 95% confidence intervals with 10,000 bootstrap 
replicates. Statistical significance was determined with the Cochran–
Armitage test for trends in proportions. p values < 0.05 were considered 
significant.
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and 59 CRC patients from our cohort-3, performed a qPCR 
analysis with the same primers as Guo et al., and applied 
it to Guo et al.’s diagnostic model. Although the CRC diag-
nostic model by Guo et al. achieved very high diagnostic 
accuracy with AUC = 0.964 in their dataset, their model 
only showed AUC = 0.654 in our cohort-3 dataset, which 
was lower than our CRC diagnostic model (Figure 5). It 
is unclear why this difference occurred, but it may reflect 
differences in DNA extraction methods or regional dif-
ferences between Japan and China. However, our data 

suggest that screening for CRC using the diagnostic model 
of Guo et al. would be difficult, at least in a Japanese 
sample.

4   |   DISCUSSION

The colon contains the highest density of metabolically 
active microbiota, and it is becoming clear that changes 
in the composition of the gut microbiota are associated 

F I G U R E  3   The top 50 most important bacteria (OTUs) for diagnosis in our CRC diagnostic model developed in this study. The heat 
map shows the mean relative abundance of the top 50 most important bacteria (OTUs) for diagnosis in our CRC diagnostic model in the 
training and test datasets. The bar chart shows the scaled feature (variable) importance of each OTU. The color of bar chart is red if the 
average relative presence ratio of positive samples is greater than the average relative presence ratio of negative samples in the training 
dataset, and green otherwise. The relative amounts were multiplied by 10,000 and logarithmically transformed (pseudo-count = 1), then the 
mean of each sample group was calculated and finally normalized by the z-score

[Accession number] Bacteria name (identity)
[NR_025904.1] Gemella morbillorum 2917B (100%)
[NR_043589.1] Peptostreptococcus stomatis W2278 (99.7%)
[NR_114338.1] Parvimonas micra JCM 12970 (100%)
[NR_118730.1] [Clostridium] symbiosum ATCC 14940 (99.7%)
[NR_113073.1] Barnesiella intestinihominis JCM 15079 (100%)
[NR_074277.1] Bacteroides thetaiotaomicron VPI-5482 (98.7%)
[NR_114315.1] Blautia luti DSM 14534 (95%)
[NR_147396.1] Lachnoclostridium pacaense Marseille-P3100 (96.6%)
[NR_125628.1] Holdemania massiliensis AP2 (98.7%)
[NR_041721.1] Streptococcus constellatus ATCC 27823 (99.4%)
[NR_144605.1] Acutalibacter muris KB18 (79.9%)
[NR_112932.1] Bacteroides caccae JCM 9498 (99.4%)
[NR_074377.1] Eggerthella lenta DSM 2243 (95.1%)
[NR_044731.2] Holdemanella biformis DSM 3989 (97.4%)
[NR_115130.1] Solobacterium moorei JCM 10645 (100%)
[NR_145929.1] Caproiciproducens galactitolivorans BS-1 (88%)
[NR_036777.1] [Ruminococcus] torques VPI B2-51 (100%)
[NR_159317.1] Klebsiella grimontii SB73 (100%)
[NR_165727.1] Anaerotignum faecicola KGMB03357 (100%)
[NR_104846.1] Gemmiger formicilis X2-56 (94.1%)
[NR_026330.1] Eubacterium callanderi DSM 3662 (99.7%)
[NR_074446.1] Desulfovibrio vulgaris str. Hildenborough (91.7%)
[NR_118674.1] Eubacterium ramulus ATCC 29099 (98.1%)
[NR_042776.1] Streptococcus salivarius ATCC 7073 (100%)
[NR_074515.1] Bacteroides vulgatus ATCC 8482 (100%)
[NR_043318.1] Alistipes onderdonkii WAL 8169 (95.5%)
[NR_151900.1] Ruthenibacterium lactatiformans 585-1 (100%)
[NR_029356.1] Flavonifractor plautii 265 (92%)
[NR_113075.1] Odoribacter splanchnicus JCM 15291 (99.4%)
[NR_029356.1] Flavonifractor plautii 265 (100%)
[NR_114395.1] Schaalia odontolytica JCM 14871 (98.7%)
[NR_112940.1] Bacteroides ovatus JCM 5824 (99.7%)
[NR_144740.1] Romboutsia timonensis DR1 (99.3%)
[NR_117138.2] Anaerostipes hadrus DSM 3319 (100%)
[NR_114315.1] Blautia luti DSM 14534 (94.7%)
[NR_074793.2] Oscillibacter valericigenes Sjm18-20 (95.4%)
[NR_118690.1] [Ruminococcus] gnavus ATCC 29149 (95.4%)
[NR_114315.1] Blautia luti DSM 14534 (96%)
[NR_144727.1] Anaeromassilibacillus senegalensis mt9 (93.6%)
[NR_118728.2] Romboutsia lituseburensis DSM 797 ATCC 25759 (98.3%)
[NR_074613.1] [Eubacterium] eligens ATCC 27750 (97.2%)
[NR_118673.1] [Eubacterium] hallii ATCC 27751 (97.2%)
[NR_152060.1] Butyricicoccus faecihominis KS-2 (96%)
[NR_027557.1] Roseburia intestinalis L1-82 (100%)
[NR_118690.1] [Ruminococcus] gnavus ATCC 29149 (97.8%)
[NR_118669.1] [Clostridium] herbivorans 54408 (90.7%)
[NR_113355.1] Dialister invisus JCM 17566 (100%)
[NR_029248.1] Tyzzerella nexilis DSM 1787 (96.9%)
[NR_114315.1] Blautia luti DSM 14534 (98.4%)
[NR_114315.1] Blautia luti DSM 14534 (97.2%)
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with colorectal cancer.8–10 Although only a limited num-
ber of gut bacteria have been reported to be involved 
in the development of CRC,11–20 many studies have 
reported increased or decreased abundance of certain 
gut bacteria in patients with CRC.26,27,40,41 Therefore, 
changes in the gut microbiota may be useful for screen-
ing for colorectal cancer. In this study, we established 
a new machine learning-based CRC diagnostic model 
using gut microbiota as an indicator, overcoming the 
problems that have been pointed out in the past, such 
as sample size and independent test datasets. However, 
since several attempts have already been made to use the 
gut microbiota as an indicator for CRC diagnosis by ma-
chine learning,23–27 it is important to compare our CRC 
diagnosis model with Zeller's model, which seems to be 
the most reliable so far because it uses independent test 
dataset for validation.26 In Zellers's model, however, the 
training data were small (88 healthy individuals and 53 
CRC patients), and the test data included only 38 CRC 
patients.26 Furthermore, most of the healthy individual 
data in the test dataset were cited from other studies.26 
It is, therefore, possible that the characteristics of the 
other study's data, rather than being healthy individu-
als or not, are responsible for the differences between 
CRC patients and healthy individuals and increase the 
accuracy of the diagnosis in a pretense. In addition, 
the diagnostic model obtained in Zeller's study showed 
AUC  =  0.85 in the test data, which at first glance ap-
pears to be a high performance,26 but the reason for this 
value may be that only two patients with CRC were in 
Stage 0, and the others were in more advanced stages. 
In fact, in Zeller's CRC diagnostic model, when the false 

positive rate is 7.7%, the true positive rate is less than 
60% even for Stage III/IV.26 On the other hand, our CRC 
diagnostic model has a true positive rate of more than 
60% for CRC that had progressed to stage II or higher 
(Table 2).

Nevertheless, Gemella morbillorum, Peptostreptococcus 
stomatis, and Parvimonas micra, which ranked among 
the most important bacterial for diagnosis in our CRC di-
agnostic model (Figure  3), have also been identified as 
CRC-associated bacteria in other reports20,27,40,41 including 
Zeller's study,26 suggesting that these bacterial species are 
likely to be increased commonly in CRC patients, regard-
less of geographical localization, technical protocols, and 
ethnicity. However, since, there have been no reports to 
date that these bacteria are involved in the development 
of CRC, it is possible that some bacteria have increased or 
decreased as a result of developing CRC (Figure 3). In this 
regard, it is important to note that several known tumor-
promoting bacteria, such as Fusobacterium nucleatum,11–13 
Peptostreptococcus anaerobius,19 Porphyromonas gingiva-
lis,20 and Porphyromonas asaccharolytica,20 are not listed 

T A B L E  3   Positive rate of our CRC diagnostic model for CRC 
patients in different hospitals by stage

Group n Positive rate (%)

Clean healthy individuals 317 10.7 (7.3–14.2)

CRC patients

Stage 0/I/II

Tokyo 112 47.3 (37.5–56.3)

Kyoto 37 59.5 (43.2–75.7)

Osaka 21 57.1 (38.1–76.2)

p = 0.371

Stage III/IV

Tokyo 108 67.6 (59.3–75.9)

Kyoto 19 68.4 (47.4–89.5)

Osaka 9 66.7 (33.3–100)

p = 0.995

Ranges in parentheses are 95% confidence intervals with 10,000 bootstrap 
replicates. Statistical significance was determined with the chi-squared test. 
p values < 0.05 were considered significant.

T A B L E  4   Positive rate by stage of our CRC diagnostic model 
for CRC with a different location

Group n Positive rate (%)

Clean healthy individuals 317 10.7 (7.3–14.2)

CRC patients

Stage 0

Proximal colon 32 9.4 (0.0–21.9)

Distal colon 13 30.8 (7.7–53.8)

Rectum 23 26.1 (8.7–43.5)

p = 0.148

Stage I

Proximal colon 36 38.9 (22.2–55.6)

Distal colon 24 45.8 (25.0–66.7)

Rectum 47 51.1 (36.2–66.0)

p = 0.544

Stage II

Proximal colon 32 62.5 (46.9–78.1)

Distal colon 22 59.1 (36.4–77.3)

Rectum 23 78.3 (60.9–95.7)

p = 0.335

Stage III/IV

Proximal colon 45 57.8 (42.2–71.1)

Distal colon 43 58.1 (44.2–72.1)

Rectum 86 70.9 (61.6–80.2)

p = 0.203

Ranges in parentheses are 95% confidence intervals with 10,000 bootstrap 
replicates. Statistical significance was determined with the chi-squared test. 
p values < 0.05 were considered significant.



      |  3203KONISHI et al.

in Figure 3, as they overlap in appearance pattern with the 
above-mentioned bacteria and do not further improve the 
diagnostic efficiency of CRC. Therefore, the bacteria shown 

in Figure  3, which are good diagnostic markers for CRC, 
may not necessarily be the bacteria involved in the develop-
ment of CRC. In other words, we should be cautious about 

F I G U R E  4   Gender, age, and body mass index (BMI) of the cohort-3 samples. (A) Distribution of gender, age, and BMI in the test dataset 
(317 clean healthy individuals and 426 CRC patients). Missing data have been skipped. The boxes in the graph of age and BMI represent 
25th–75th percentiles, black lines indicate the median, whiskers extend to the maximum and minimum values within 1.5× the interquartile 
range and dots indicate outliers. Statistical significance was determined with the chi-squared test (gender) or the two-tailed Wilcoxon rank 
sum test (age and BMI). p values < 0.05 were considered significant. (B) ROC curves for the test datasets of the “microbiome” model, the 
“Gender + Age + BMI” model, and the “Gender + Age + BMI + microbiome” model. The “microbiome” model was trained to distinguish 
between CRC patients and clean healthy individuals based solely on gut microbiota. The “Gender + Age + BMI” model was trained based 
on gender, age, and BMI. The “Gender + Age + BMI + microbiome” model was trained based on gender, age, BMI, and gut microbiome. 
Despite the significant differences in Age and BMI between clean healthy individuals and CRC patients (A), the AUC of the “Gender + 
Age + BMI” model was low. The AUC of the “Gender + Age + BMI + microbiome” model did not differ from that of the “microbiome” 
model. Ranges in parentheses are 95% confidence intervals with 10,000 bootstrap replicates. Statistical significance was determined with a 
bootstrapping method with 10,000 resamples. p values < 0.05 were considered significant

(A)

(B)

AUC

Microbiome 0.769 (0.735 – 0.801)

Gender + Age + BMI 0.670 (0.630 – 0.707)

Microbiome + Gender + Age + BMI 0.781 (0.748 – 0.813)

P = 9.24 10-5

P = 0.297
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discussing the causal relationship between gut bacteria and 
CRC based only on quantitative changes in gut bacteria, and 
biological function analysis of gut bacteria is also necessary.

Although we did not perform FOBT in this cohort 
study, the test data of cohort-3 included 21 clean healthy 
individuals and 13 healthy individuals with colorectal pol-
yps who had false positive results on FOBT. Notably, 76.2% 
(95% confidence interval, 57.1%–90.5%) of these 21 clean 
healthy individuals and 76.9% (53.8%–100.0%) of these 13 
healthy individuals with colorectal polyps tested negative 
in our CRC diagnostic model, suggesting that combining 
FOBT with our gut microbiota-based diagnostic model 
may reduce false positives by more than 75%. Moreover, as 
mentioned earlier, the FOBT is known to have a poor pos-
itive rate for proximal colon cancer.42 On the other hand, 
our model showed no statistically significant difference in 
the positive rate in any part of the colorectum (Table 4). 
Proximal colon cancer is known to have a low survival 
rate, which may be partly due to the delay in detection 
caused by the low true positive rate by FOBT. Therefore, 
our model may also be useful for improving the survival 

rate of proximal colon cancer. However, contrary to our 
expectations, the CRC diagnostic model we developed 
could not sufficiently achieve early detection, which is an 
important issue in CRC screening tests. This indicates that 
in the early stages of CRC, the gut microbiota is not altered 
enough to be detected by stool examination, implying that 
there may be limitations in analyzing the gut microbiota 
in feces for the diagnosis of early stage CRC. Further stud-
ies are therefore needed to overcome this limitation.
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