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With the global outbreak of COVID-19 in early 2020, rapid diagnosis of COVID-19 has become the ur-
gent need to control the spread of the epidemic. In clinical settings, lung infection segmentation from
computed tomography (CT) images can provide vital information for the quantification and diagnosis of
COVID-19. However, accurate infection segmentation is a challenging task due to (i) the low boundary
contrast between infections and the surroundings, (ii) large variations of infection regions, and, most im-
portantly, (iii) the shortage of large-scale annotated data. To address these issues, we propose a novel
two-stage cross-domain transfer learning framework for the accurate segmentation of COVID-19 lung in-
fections from CT images. Our framework consists of two major technical innovations, including an ef-
fective infection segmentation deep learning model, called nCoVSegNet, and a novel two-stage transfer
learning strategy. Specifically, our nCoVSegNet conducts effective infection segmentation by taking ad-
vantage of attention-aware feature fusion and large receptive fields, aiming to resolve the issues related
to low boundary contrast and large infection variations. To alleviate the shortage of the data, the nCoV-
SegNet is pre-trained using a two-stage cross-domain transfer learning strategy, which makes full use of
the knowledge from natural images (i.e., ImageNet) and medical images (i.e., LIDC-IDRI) to boost the final
training on CT images with COVID-19 infections. Extensive experiments demonstrate that our framework
achieves superior segmentation accuracy and outperforms the cutting-edge models, both quantitatively
and qualitatively.
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1. Introduction

The outbreak of the 2019 coronavirus disease (COVID-19) has
triggered a global public health emergency (Lancet, 2020). There
are a total of 165,711,111 confirmed cases and 3,528,951 confirmed
deaths worldwide as of May 20th, 2021. The COVID-19 pandemic
has caused unprecedented hazards to public health, the global
economy, and so on (Xiong et al., 2020). In this severe situation,
rapid control of the spread of COVID-19 becomes particularly im-
portant.

* Corresponding authors.
E-mail addresses: majiquan@hlju.edu.cn (J. Ma), gengchen@mail.nwpu.edu.cn (G.
Chen).
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Early diagnosis of COVID-19 plays a vital role in controlling the
spread of the disease. Currently, reverse transcription-polymerase
chain reaction (RT-PCR) is the most widely adopted approach for
the diagnosis of COVID-19 (Guan et al., 2020). However, RT-PCR
suffers from a number of limitations, including low efficiency,
short of supply test kits, and low sensitivity (Fang et al., 2020; Xie
et al.,, 2020). Compared with RT-PCR, chest computed tomography
(CT) imaging allows effective COVID-19 screening with high sensi-
tivity and is easy to access in a clinical setting (Xie et al., 2020).
Besides, CT imaging gained increasing attention from the research
community (Phelan et al., 2020), where efforts have been directed
to investigate the COVID-19 induced pathological changes from the
perspective of radiology.

Accurate segmentation of lung infections from CT images
is crucial to the quantification and diagnosis of COVID-19
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(Shan et al,, 2020; Shi et al., 2020; Tilborghs et al., 2020). Tradi-
tional manual/semi-automatic segmentation techniques are time-
consuming and require the intervention of clinical physicians. In
addition, the segmentation results tend to be biased towards the
expert’s experience. Therefore, automatic lung infection segmenta-
tion is greatly desired in a clinical setting. Significant efforts have
been directed towards this direction (Vaishya et al., 2020). In par-
ticular, deep learning techniques have been widely employed and
shown great potentials. For instance, Shan et al. (2020) proposed
a deep learning model, called VB-Net, to segment lung lobes and
lung infections from the CT scans of COVID-19 patients. In addi-
tion, a human-in-the-loop strategy is employed to refine the anno-
tation of each CT scan. Elharrouss et al. (2020) developed a multi-
task deep learning framework for lung infection segmentation from
CT images. Qiu et al. (2020) proposed a lightweight deep learning
model, called MiniSeg, for COVID-19 infection segmentation, aim-
ing to resolve the issues of over-fitting and low computational ef-
ficiency.

However, accurate COVID-19 lung infection segmentation is still
a challenging task due to three key factors, including (i) Low
boundary contrast. The boundary between the COVID-19 infected
regions and surrounding normal tissues suffers from the low con-
trast issue and is usually blurry (Fan et al., 2020). This induces
significant difficulties for accurate lung infection segmentation. (ii)
Large variation. The COVID-19 lung infection exhibits a large vari-
ety of morphological appearances, e.g., size, shape, etc., which ag-
gregates the difficulty of accurate segmentation. Most importantly,
(iii) Short of labeled data. Large-scale infection annotations provided
by clinical doctors are extremely difficult to obtain, especially at an
early stage of the disease outbreak. This is a major issue restricting
the performance of deep learning segmentation models that rely
on sufficient training data. To handle the low boundary contrast
and large infection variation, a large receptive field is greatly de-
sired since it can provide rich contextual information. In addition,
the fusion of multi-level features is another key factor determin-
ing the success of infection segmentation. However, existing works
usually overlook the importance of these two factors, which can
result in unsatisfactory performance.

To tackle the shortage of labeled data, transfer learning has
been adopted and gained increasing interest from the medical im-
age analysis community (Shie et al., 2015; Shin et al., 2016; Chep-
lygina et al, 2019). In general, there are two kinds of widely
adopted transfer learning strategies: (i) Network Backbone. A net-
work trained with large-scale datasets (e.g., ImageNet (Deng et al.,
2009)) can be embedded into the medical image analysis mod-
els as a backbone for exacting informative features (Carneiro et al.,
2015). (ii) Network Pre-training. Methods in this category pre-train
the whole network using large-scale datasets, and then perform
formal training with the target dataset (Shin et al.,, 2016; Chatfield
et al., 2014). Both strategies have shown promising performance in
medical image analysis tasks. However, existing works usually fo-
cus on one aspect of these two kinds of strategies, which is unable
to make full use of powerful transfer learning.

In this paper, we propose a novel two-stage cross-domain trans-
fer learning framework for the accurate segmentation of COVID-
19 lung infections from CT images. Our framework is based on a
specially designed deep learning model, called nCoVSegNet, which
segments lung infections with attention-aware feature fusion and
large receptive fields. Specifically, we first feed the CT images to
a backbone network to extract multi-level features. The features
are then passed through our global context-aware (GCA) modules,
which provide rich features from significantly enlarged receptive
fields. Finally, we fuse the features using our dual-attention fusion
(DAF) modules, which integrate the multi-level features with the
guidance from spatial and channel attention mechanisms. Further-
more, we train our model with a two-stage transfer learning strat-
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egy for improved performance. The first stage takes advantage of
a backbone network trained on ImageNet (Deng et al., 2009) and
provides valuable cross-domain knowledge from the human per-
ception of natural images. Since a large gap exists between nat-
ural images and COVID-19 CT images, we further perform a sec-
ond stage transfer learning, where our model is pre-trained using
LIDC-IDRI (Armato III et al., 2011), which is currently the largest
CT dataset for pulmonary nodule detection and provides a large
amount of chest CT images that share similar appearances with
the COVID-19 CT images. The second stage transfer learning can fill
the gap between two domains and provides vital knowledge from a
neighboring domain to improve the segmentation accuracy. Finally,
we train our model with COVID-19 CT images from the MosMed-
Data (Morozov et al.,, 2020). Extensive experiments demonstrate
the effectiveness of our nCoVSegNet and the two-stage transfer
learning strategy, both quantitatively and qualitatively.

Our main contributions are summarized as follows:

1. We develop a novel two-stage transfer learning framework
for segmenting COVID-19 lung infections from CT images. Our
framework learns valuable knowledge from both natural images
and CT images with pulmonary nodules, allowing more effec-
tive network training for improved performance.

2. We propose an effective infection segmentation network, nCoV-
SegNet, which consists of a backbone network along with
our GCA and DAF modules. Our nCoVSegNet accurately seg-
ments lung infections from CT images by taking advantages of
attention-aware feature fusion and large reception fields.

3. Extensive experiments on two COVID-19 CT datasets demon-
strate that our framework is able to segment lung infections
accurately and outperforms state-of-the-art methods remark-
ably. Our framework, which provides vital information regard-
ing lung infections, has great potentials to boost the clinical di-
agnosis and treatment of COVID-19.

Our paper is organized as follows: In Section 2, we introduce
related works. Section 3 describes our COVID-19 lung infection
segmentation framework in detail. In Section 4, we present the
datasets and experimental results. Finally, we conclude our work
in Section 5.

2. Related work

In this section, we review related works from two cate-
gories, including COVID-19 lung infection segmentation and trans-
fer learning in medical imaging.

2.1. COVID-19 lung infection segmentation

Recently, deep learning has been actively employed for
COVID-19 lung infection segmentation. Among various net-
work architectures, U-Net (Ronneberger et al, 2015) is a
popular network backbone in a large number of works.
For instance, Miiller et al. (2020) employed 3D U-Net for
the segmentation of lungs and COVID-19 infected regions.
Saeedizadeh et al. (2021) proposed TV-U-Net to promote con-
nectivity of the segmentation map by adding a connectivity
regularization term in the loss function. Meanwhile, attention
mechanisms have also been incorporated in the encoder and/or
decoder of the networks for COVID-19 infection segmentation
(Zhou et al., 2021; Chen et al, 2020; Zhao et al, 2020; Wu
et al., 2021; Yan et al, 2020). A novel noise-robust framework
(Wang et al., 2020a) was also proposed for COVID-19 pneumo-
nia lesion segmentation, where a noise-robust Dice loss and a
mean absolute error loss were used. The success of deep learning
models relies on a large amount of labeled training data, which
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is, however, hard to guarantee for the COVID-19 infection seg-
mentation, especially at the early break of the disease. To this
end, effort has been dedicated to semi-supervised (Fan et al.,
2020) and weakly-supervised (Xu et al., 2020) COVID-19 infection
segmentation. In addition, Zhou et al. (2020a) resolved the data
scarcity issue by fitting the dynamic change of real patients’ data
measured at different time points. To alleviate the burden of
data annotation, a label-free model was proposed in (Yao et al.,
2021), where synthesized infections were embedded into normal
lung CT scans for training the infection segmentation network.
Bressem et al. (2021) proposed a transfer learning segmenta-
tion framework, where a 3D U-Net with an encoder pre-trained
on Kinetics-400 dataset was employed for COVID-19 infection
segmentation.

Different from existing works (Bressem et al., 2021; Zhou et al.,
2021; Fan et al., 2020), we propose a novel network with consid-
eration of attention-aware feature fusion and enlarged receptive
fields. In addition, we address the shortage of training data with
an effective two-stage cross-domain transfer learning strategy.

2.2. Transfer learning in medical imaging

Transfer learning is particularly effective in resolving the short-
age of training data for the deep learning models that are designed
for medical image analysis tasks. In general, we classify the exist-
ing works into two categories. The first category is similar to our
first-stage transfer learning, where a convolutional neural network
(CNN) (e.g., VGGNet (Simonyan and Zisserman, 2015) and ResNet
(He et al., 2016)) that has been pre-trained on a large-scale dataset
(e.g., ImageNet (Deng et al., 2009)) is utilized as the backbone of a
network for feature extraction. This strategy has been widely em-
ployed for a variety of medical image analysis tasks, such as lesion
detection and classification (Byra et al., 2019; Khan et al., 2019),
normal/abnormal tissue segmentation (Vu et al., 2020; Bressem
et al., 2021), disease identification (Bar et al., 2015; Shie et al.,
2015), etc. The other strategy is to pre-train the network with
a large-scale dataset before the formal training using the target
dataset with limited data. This strategy has been employed in brain
tumor retrieval (Swati et al., 2019) and various disease diagnosis
tasks (Tajbakhsh et al., 2016; Liang and Zheng, 2020). In particular,
Li et al. (2017) employed three different transfer learning strate-
gies to conduct diabetic retinopathy fundus image classification,
demonstrating that transfer learning is a promising technique for
alleviating the shortage of training data.

In our work, we address the shortage of training data using a
two-stage transfer learning strategy, which takes advantage of both
model-level transfer learning (i.e., network backbone) and data-
level transfer learning (i.e., network pre-training).

3. Method

In this section, we provide the details of our framework by
first presenting the proposed segmentation model, nCoVSegNet,
and then explaining the two-stage transfer learning strategy.

3.1. nCoVSegNet

Our segmentation model mainly consists of a backbone network
and two key modules, ie., the global context-aware (GCA) mod-
ule and dual-attention fusion (DAF) module. The backbone net-
work extracts multi-level features from the input CT images. Then,
the GCA modules enhance the features before feeding them to the
DAF modules for predicting the segmentation maps.

3.1.1. Network architecture
As shown in Fig. 1, the multi-level features are first extracted
from the hierarchical layers of the backbone network. Both of the
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low-level and high-level features are then fed to GCA modules for
enhancement by enlarging the receptive fields. Note that the low-
/high-level features denote the features closer to the beginning/end
(i.e., input/output) of a backbone network (Lin et al, 2017; He
et al., 2016). We then employ three DAF modules to perform fea-
ture fusion for predicting the segmentation maps. Furthermore, we
employ a deep supervision strategy to supervise the outputs of
three DAF modules and the output of the last GCA module. We
use the first four layers of the pre-trained ResNet50 as the encoder
for nCoVSegNet. The enhanced channel attention (ECA) component
(Wang et al., 2020b) is embedded in each ResNet block (RB) to pre-
serve as much useful texture information as possible in the origi-
nal CT image and to filter out interference information, e.g., noise.
Note that the size of the feature map is halved and the number of
channels is doubled between two neighboring RBs.

3.1.2. Global context-aware module

Inspired by Liu et al. (2018), we develop the GCA module,
which exploits more informative features using enlarged receptive
fields. As shown in Fig. 2(a), a GCA module consists of five paral-
lel branches, each of which is constituted of different convolutional
layers. In particular, the three middle branches utilize asymmetric
convolution layers with different kernel sizes, which provides rich
multi-scale features from different receptive fields. After fusing the
multi-scale features, we have more informative features, providing
rich characteristics of image information. It is worth noting that,
due to the use of asymmetric convolution layers, we reduce the
computational amount and trainable parameters, while enlarging
the receptive fields. Mathematically, the GCA module is defined as

feea = RelU (Convs,3(Cat (f1, f3. fs. f7)) + Convi,1(fre)). (1)

where f; denotes the features from ith branch with i € {1, 3,5, 7}
representing the size of the asymmetric convolutional kernel
size; Cat(-) denotes the concatenation operation; Convq,(-) and
Convs,3(-) represent the convolutional unites with kernel sizes of
1 x1 and 3 x 3, respectively; fgg denotes the features extracted
from the backbone. For the last GCA module (i.e., GCA4 in Fig. 1),
we remove the branch for 7 x 7 convolutional layers since the re-
ceptive field of high-level features is already large. This adjustment
can save the memory and only has a marginal influence on the re-
sults.

3.1.3. Dual-attention fusion module

To fuse the rich features from GCA modules, we propose a novel
DAF module, which enhances the lower-level features by using the
attention maps generated from the upper-level features, and then
integrates the enhanced lower-level features with the upper-level
features. Specifically, as shown in Fig. 2(b), we consider both chan-
nel attention (CA) (Chen et al., 2017) and spatial attention (SA)
(Chen et al., 2017) mechanisms. Following (Woo et al., 2018), we
employ global average pooling in the CA component and max pool-
ing in the SA component. The fused feature is a summation of the
upsampled upper-level features and the enhanced lower-level fea-
tures provided by CA and SA components. Mathematically, we de-
fine the DAF module as

SAF = RELU(WSA ©® Wea © Convsy s (fgCA) + DeCOTlU4X4( éal)),
(2)

where f’éCA and féai represent the features provided by kth
(lower-level) and k+ 1th (upper-level) GCA modules with k =
1,2,3. © denotes the Hadamard product, i.e., element-wise mul-
tiplication. Deconvg,4(-) represents the deconvolution operation
with a kernel size of 4 x 4, which enlarges the size of the feature
map. Wy and Ws are the CA and SA attention weight matrices,
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and are defined as

Wea = O'(Conulxl (POOl(féal)))’ (3)

Wsp = o (Pool(Deconva,4(fEL4)))- (4)

where Pool(-) denotes pooling operation and o (-) represents Sig-
moid activation function.

3.1.4. Loss function

We employ a deep supervision strategy (Lee et al., 2015) to de-
sign the loss function. Specifically, as shown in Fig. 1, the super-
vision is added to each DAF module and the last GCA module, al-
lowing better gradient flow and more effective network training.
For each supervision, we consider two losses, i.e., the binary cross-
entropy (BCE) loss and Dice loss (Milletari et al., 2016). The overall
loss is therefore designed as

4

L= Z(LECE + LI]Sice)‘
k=1

(5)

For the BCE loss, a modified version (Wei et al., 2020) is
adopted to alleviate the imbalance problem between positive (le-
sion) and negative (normal tissue). For clarity, we omit the super-
script k. The definition of Lgcg is as follows

Y YW (o) Yo (g = DlogPr(p;; = 1|¥)
2?:1 Z;Ail (@i j) ’

where I € (0, 1) indicates two kinds of labels. p; ; and g; ; are the
prediction and ground truth values at location (i, j) in an CT im-
age with a shape of width W and height H. ¥ represents all
the parameters of the model, and Pr(p;;=1) denotes the pre-
dicted probability. «; ; € [0, 1] is the weight of each pixel. Follow-
ing (Wei et al., 2020), we define ¢; ; as

(6)

Lpcg = —

Z(m,n)eAi‘j gm,n
Z(m.n)eAU 1

where A; j represents the area surrounding the pixel (i, j), and |- |
denotes the computation of absolute value.

a;j =] (7)

—&ij [,
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In addition, the weighted Dice loss is defined as
B i Y (g pi) (1 + i)
Y W (g + P+ &P ) (1 + i)

Lpice = 1 (8)

3.2. Two-stage cross-domain transfer learning

We train nCoVSegNet using an effective two-stage cross-domain
transfer learning strategy. As shown in Fig. 3, at the first stage, the
knowledge learned by the backbone network, which is pre-trained
using natural images, is transferred to our task at the model level.
It is worth noting that this stage provides cross-domain learning,
which transfers the knowledge from natural images to medical
images. As aforementioned, we use a modified ResNet block pre-
trained on ImageNet as the backbone of nCoVSegNet for transfer
learning at this stage.

At the second stage, the CT images for lung nodule detection
are utilized for transfer learning at the data level. Our motivation
lies in two aspects. First, there exists a large gap between natu-
ral images and COVID-19 CT images, which raises significant de-

mands to introduce a procedure for filling the cross-domain gap.
Second, as shown in Fig. 4, COVID-19 lung infections share simi-
lar appearances with the pulmonary nodules, such as ground-glass
opacity at the early stage, and pulmonary consolidation at the late
stage (Li et al., 2020; Zhou et al., 2020b). Therefore, lung nod-
ule segmentation is able to provide useful guidelines for COVID-
19 lung infection segmentation. Motivated by these, we employ
the current largest lung nodule CT dataset, LIDC-IDRI, to perform
the second stage transfer learning, which provides vital knowledge
from a neighboring domain to fill the cross-domain gap. There-
fore, the LIDC-IDRI dataset is regarded as the source domain data
to train the whole network for the model level transfer learning.
After that, the COVID-19 dataset is employed for the final training
of our model.

4. Experiments

In this section, we first provide detailed information on the
datasets, followed by experimental settings and evaluation meth-
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Table 1
Statistics of our training and testing datasets.
Total Train Test
Dataset - . -
Cases  Slices Cases  Slices Cases  Slices
LIDC-IDRI (Armato III et al., 2011) 1010 244,527 875 13916 0 0
MosMedData (Morozov et al., 2020) 50 2049 40 1640 10 409
Coronacases (Ma et al., 2021) 10 2581 0 0 10 2581

ods. Finally, we present the experimental results for our nCoVSeg-
Net and the cutting-edge models.

4.1. Datasets

To conduct a data-level transfer learning, we use the largest
dataset for lung nodule detection, i.e., LIDC-IDRI, for pre-training.
In addition, the COVID-19 CT images from MosMedData dataset
(Morozov et al., 2020) are used to train our model. In our experi-
ments, 40 cases from MosMedData are used for training, while the
remaining 10 subjects are used for testing. The COVID-19 CT im-
ages from https://coronacases.org/ with the annotations provided
by (Ma et al., 2021) are used to test our trained model for eval-
uating its generalization performance. This dataset is denoted as
“Coronacases”. Table 1 shows the statistics of our training and test-
ing datasets.

The data processing for three datasets is detailed as follows.
LIDC-IDRI: According to the CSV files provided by the dataset, we
select subjects with lung nodules. Next, we generate the nodule
ground truth mask by referring to each patient’s XML file. Since
each lung nodule is marked by four doctors, we take a 50% con-
sensus as the choice to determine ground truth masks. MosMed-
Data & Coronacases: Similar to (Fan et al,, 2020), we extract the
lung regions from CT images before training and testing. For this
purpose, we first segment the lung using the unsupervised method
in (Liao et al., 2019). Based on the 3D lung mask, we determine a
bounding box for the region of the lung. This bounding box is then
utilized to crop the 3D region of the lung from a CT scan.

4.2. Experimental settings

Our model is implemented using PyTorch and trained on an
NVIDIA GeForce RTX 2080 Ti GPU. The code is publicly available at
https://github.com/Jiannan-Liu/nCoVSegNet. We first pre-train the
model using LIDC-IDRI with the settings as follows: 100 epochs,
initial learning rate of 1e-4 with a decay of 0.1 every 50 epochs,
batch size of 4, and image size of 352 x 352. Note that a quar-
ter of LIDC-IDRI training data is used for validation to search for
the best hyperparameters. The resulting hyperparameters are em-
ployed for the formal training with all training data. An Adam opti-
mizer (Kingma and Ba, 2014) is employed for optimization. At this
stage, 875 subjects with a total of 13,916 slices are fed into nCoV-
SegNet to pre-train the model for filling the gap between natural
images and medical images. Next, MosMedData, which contains 40
subjects with a total of 1640 slices, is utilized to train the model
for COVID-19 infection segmentation. The learning rate is reduced
to 5e-5 and the number of epochs is set to 50, and an early stop-
ping strategy is employed to prevent over-fitting. Similar to LIDC-
IDRI, a validation procedure is employed to determine the best hy-
perparameters for training with MosMedData. For data augmenta-
tion, we use the random horizontal flip, random crop, and multi-
scale resizing with different ratios {0.75,1,1.25}. The input images
are normalized to (0,1) before the training. Finally, the remaining
subjects in MosMedData and the whole Coronacases are used for
the testing.

4.3. Evaluation metrics

Six widely adopted metrics are used for measuring the perfor-
mance of segmentation models.

Dice similarity coefficient (DSC): The DSC is used to mea-
sure the similarity between the predicted lung infections and the
ground truth (GT). DSC is defined as

_ 2|Vseg N Ver|

[Vseg| + [Ver|®
where Vs, and Vgr represent the voxel sets of the infection seg-
mentation and GT, respectively. | - | denotes the operation of cardi-
nality computation, which provides the number of elements in a
set.

Sensitivity (SEN): The SEN reflects the percentage of lung in-
fections that are correctly segmented. Its definition is as follows
|VSeg N VGT|

Verl

Specificity (SPE): The SPE reflects the percentage of non-
infection regions that are correctly segmented and is defined as

DSC 9)

SEN = (10)

[Vi — Vseg U Vr|
Vi = Verl
where V| denotes the voxel set of the whole CT volume.

Positive Predictive Value (PPV): The PPV reflects the accuracy
of the segmented lung infections and is defined as

SPE = (11)

[Vseg N Verl
|VSeg|
Volumetric Overlap Error (VOE): The VOE represents the er-

ror rate of the segmentation result. VOE equals zero for a perfect

segmentation and one for the worst case that there is no overlap

between the segmentation result and GT (Heimann et al., 2009).

VOE is defined as:

Vseg N Vi1

Vseg UVer

PPV = (12)

VOE=1-| (13)

Relative Volume Difference (RVD): The RVD is used to mea-
sure the volume difference between the predicted lung infections
and GT, which is defined in Eq. (14) (Heimann et al., 2009). We
take the absolute value of RVD and report the corresponding re-
sults in this work.

|VSeg| - |VGT|

VD= Ver|

I (14)

4.4. Baseline methods

Our proposed model is compared with various state-of-the-
art deep learning models, including two popular ones, U-Net
(Ronneberger et al., 2015) and U-Net++ (Zhou et al., 2018), as
well as three recently developed CE-Net (Gu et al., 2019), U2Net
(Qin et al., 2020), and U-Net3+ (Huang et al.,, 2020). All baseline
methods are trained with default settings based on the codes pro-
vided in the literature.
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Quantitative segmentation results on MosMedData (Morozov et al.,, 2020). The best, second best, and
third best results are marked by italic, boldface, and underline, respectively.

Method DSC SEN SPE PPV VOE RVD

U-Net (Ronneberger et al,, 2015)  0.5419  0.4585  0.9971 0.7425  0.6283  0.3667
U-Net++ (Zhou et al., 2018) 0.5454  0.4546  0.9971 0.7674 0.6250  0.3856
U2Net (Qin et al., 2020) 0.6022  0.5813  0.9971 0.6867  0.5691 0.0803
U-Net3+ (Huang et al., 2020) 0.6265 05724 09975 0.7653  0.5438  0.1885
CE-Net (Gu et al., 2019) 0.6416  0.6295  0.9973 0.7276  0.5276  0.0297
nCoVSegNet (Ours) 0.6843 0.7480 0.9976 0.7525  0.4798 0.0251

Table 3

Quantitative segmentation results on Coronacases (Ma et al., 2021). The best,

best results are marked by italic, boldface, and underline, respectively.

second best, and third

Method DSC SEN SPE PPV VOE RVD

U-Net (Ronneberger et al,, 2015)  0.5184 0.3925 0.9848 0.8829 0.6501 0.5463
U-Net+ (Zhou et al., 2018) 0.5371 0.4231 0.9850 0.8470 0.6328  0.4788
U2Net (Qin et al., 2020) 0.5311 0.4134  0.9851 0.8690 0.6384  0.5129
U-Net3+ (Huang et al., 2020) 0.6097 0.4869  0.9871 0.8883  0.5614  0.4441
CE-Net (Gu et al.,, 2019) 0.6712 0.5501 0.9885 0.8905 0.4948 0.3903
nCoVSegNet (Ours) 0.6894 0.5918 0.9886 0.8949 0.4739 0.3270

4.5. Results

4.5.1. Quantitative results

We show the quantitative results in Table 2. As can be observed,
our nCoVSegNet performs the best in terms of DSC, SEN, SPE, VOE,
and RVD. Specifically, it outperforms the second-best model, CE-
Net, by a large margin of 4.3% in terms of DSC, which is the key
evaluation metric in segmentation. In addition, it significantly im-
proves the SEN by a large margin of 12%, while maintaining a
high SPE. Furthermore, it provides the best performance in terms
of VOE and RVD with 9.1% and 15.5% improvement in compari-
son with CE-Net. To further demonstrate the effectiveness of our
nCoVSegNet, we performed paired student t-test between our re-
sults and those provided by CE-Net. The t-test results show that
our improvement is statistically significant with p-values smaller
than 0.05. Our nCoVSegNet performs the best in terms of all eval-
uation metrics, except PPV, where nCoVSegNet ranks the third-
best method. The underlying reason is that there are many in-
dependent and scattered pulmonary nodules in the MosMedData,
which posed challenges in segmentation. It is worth noting that
our nCoVSegNet consistently outperforms the second best method,
CE-Net, in terms of PPV.

To verify the generalization capability of our nCoVSegNet, we
further evaluate the segmentation performance on the Coronacases
dataset. Note that none of Coronacases’ data is used during the
training process. The quantitative segmentation results, shown in
Table 3, indicate that our nCoVSegNet outperforms the cutting-
edge methods in terms of all the evaluation metrics, demonstrating
that nCoVSegNet achieves promising generalization capability.

4.5.2. Qualitative results

The visual comparison of segmentation results is shown in
Fig. 5. It can be observed that U-Net and U-Net++ fail in provid-
ing complete infection segmentation. A large amount of missing
segmentation confirms the low sensitivity in Table 2. The other
three baseline methods, CE-Net, U2Net, and U-Net3+, improve the
results, but are still not good as our nCoVSegNet, especially for
the regions marked by red arrows. In contrast, nCoVSegNet con-
sistently provides the best performance in the visual comparison,
demonstrating its effectiveness sufficiently.

4.5.3. Effectiveness of two-stage cross-domain transfer learning
We further investigate the effectiveness of two-step cross-
domain transfer learning strategy on MosMedData by comprising

three versions of our method, including “w/o TL”: Without transfer
learning, “Single-Stage TL”: One-stage transfer learning with Im-
ageNet pre-trained model, and “Two-Stage TL”: The full version
of two-stage transfer learning, i.e., considering both ImageNet and
LIDC-IDRI.

The results, shown in Table 4, indicate that “Single-Stage TL”
outperforms “w/o TL” in terms of all evaluation metrics, demon-
strating that the knowledge learned from the natural image can
be used to improve the performance effectively. In addition, “Two-
Stage TL” further improves the performance, which outperforms
the other two versions with respect to all the metrics. This finding
demonstrates that pre-training with LIDC-IDRI can fill the cross-
domain gap and further improve the performance by using the
knowledge from a neighboring domain.

Furthermore, we show some representative visual results in
Fig. 6. As can be observed, the “Two-Stage TL” provides the best
segmentation results that are close to the ground truth. In contrast,
“Single-Stage TL” and “w/o TL” show unsatisfactory performance
and are unable to provide segmentation results with complete in-
fection regions. Overall, the results, shown in Table 4 and Fig. 6,
sufficiently demonstrate that the two-stage transfer learning strat-
egy is particularly effective in the COVID-19 infection segmentation
task.

4.5.4. Ablation study

Finally, we perform an extensive ablation study on MosMed-
Data to investigate the effectiveness of each component in the net-
work. In general, we consider the effectiveness of GCA module,
DAF module, and the deep supervision (DS) strategy. We summa-
rize the quantitative results in Table 5. The comparison baseline is
denoted by “(A) Backbone”, which is a U-Net-like architecture with
the backbone network (ResNet50 with ECA components) as an en-
coder.

Effectiveness of GCA: The ablated version (B) is the backbone
with our GCA modules. As shown in Table 5, (B) outperforms (A)
in terms of all evaluation metrics, demonstrating that GCA modules
can improve the performance effectively.

Effectiveness of DAF: We then investigate the effectiveness of
the DAF module. The ablated version (C) is the backbone with our
DAF modules. Compared with (A), our proposed DAF module im-
proves the performance in terms of all metrics, sufficiently demon-
strating its effectiveness.

Effectiveness of DS: As shown in Table 5, the ablated version
with DS, i.e., (D), shows improved performance over (A) in terms
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Fig. 5. Visual comparison of segmentation results for different methods.

Table 4
Quantitative comparison of different transfer learning results. The best and second best re-
sults are marked by italic, boldface, respectively.

Method DSC SEN SPE PPV VOE RVD
w/o TL 0.6411 0.6802 0.9973 0.6562 0.5282 0.1626
Single-Stage TL 0.6680 0.7007 0.9975 0.6977 0.4984 0.1299
Two-Stage TL 0.6843 0.7480 0.9976 0.7525 0.4798 0.0251
Table 5
Quantitative results for ablation studies. The best results are in boldface.
Model  Backbone @ GCA  DAF DS DSC SEN SPE PPV
(A) v 0.5908 0.5758 0.9972 0.6536
(B) v v 0.6055 0.5870 0.9973 0.6691
(©) v v 0.6283 0.6445 0.9973 0.6656
(D) v v 0.6119 0.6577 0.9971 0.6129
(E) v v v 0.6270 0.6640 0.9973 0.6377
(F) v v v 0.6355 0.6651 0.9974 0.6846
(G) v v v 0.6453 0.6711 0.9974 0.6809
(H) v v v v 0.6680 0.7007 0.9975 0.6977
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Fig. 6. Visual comparison of segmentation results provided by different transfer learning strategies.

of DSC, SEN, and PPV. In addition, it provides a comparable SPE in
comparison with (A). All of these results demonstrate that DS is an
effective component capable of improving performance effectively.

Effectiveness of Module Combinations: Finally, we investigate
the effectiveness of different module combinations, including (E),
(F), and (G). As shown in Table 5, each module combination out-
performs the corresponding ablated versions with a single module.
The results demonstrate that the module combination can improve
the results. In addition, the full version of our nCoVSegNet , i.e.,
(H), outperforms (E), (F), and (G), indicating that jointly incorpo-
rating GCA, DAF, and DS into the network provides the best perfor-
mance.

5. Conclusion

In this paper, we have proposed a two-stage cross-domain
transfer learning framework for COVID-19 lung infection segmenta-
tion from CT images. Our framework includes an effective infection
segmentation model, nCoVSegNet, which is based on attention-
aware feature fusion and enlarged receptive fields. In addition,
we train our model using an effective two-stage transfer learning
strategy, which takes advantage of valuable knowledge from both
ImageNet and LIDC-IDRI. Extensive experiments on COVID-19 CT
datasets indicate that our model achieves promising performance
in lung infection segmentation and outperforms cutting-edge seg-
mentation models. The results also demonstrate the effectiveness
of the two-stage transfer learning strategy, the generalization of
our model, and the effectiveness of proposed modules.
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