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Objective: The loudness dependence of the auditory evoked potential (LDAEP) is associated with central serotonergic 
neurotransmission. Recent studies have proposed that LDAEP is also influenced by dopaminergic activity. Evidence 
shows attention deficit hyperactivity disorder (ADHD) symptoms are associated with dopamine dysfunction. This study 
aimed to evaluate the relation between ADHD symptoms and LDAEP, as well as medication-mediated changes of 
LDAEP. 
Methods: A total of 38 male children (6−12 years old) with ADHD were analyzed in this study. Symptom severity 
was assessed using the ADHD rating scale (ARS) and the continuous performance test. To determine LDAEP, the auditory 
event-related potential was evaluated before medication. Changes in LDAEP were measured after 12 weeks of treatment 
with methylphenidate.
Results: The subjects had a mean age of 9.24 ± 1.74 years with an average IQ of 109.4 ± 13.8. Before pharmacological 
treatment with methylphenidate, LDAEP was positively associated with the ARS score after adjusting for age and IQ 
(r = 0.592, p = 0.005). LDAEP was correlated with inattention (r = 0.522, p = 0.015) and hyperactivity-impulsivity 
(r = 0.6, p = 0.004). However, the LDAEP of 15 subjects decreased following methylphenidate treatment (Z = −1.988, 
p = 0.047).
Conclusion: In boys with ADHD, LDAEP appears to be associated with symptom severity. LDAEP showed a significant 
association with impulsivity and inattention. Importantly, LDAEP was shown to decrease after drug treatment. Our find-
ings support the utility of LDAEP as a noninvasive and clinically useful method to assess symptom severity in children 
with ADHD.
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INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is a 
common childhood mental health disorder [1]. The main 
symptoms of ADHD, which affects around 3−7% of chil-
dren and adolescents, are inattention, hyperactivity, and 
impulsivity [2,3]. The symptoms occur in two or more set-
tings and cause dysfunction in family life and significant 
difficulties at school and peer relationships. Symptoms of 

ADHD may persist into adulthood, with an estimated 
prevalence of 2−5%, and manifest as restlessness, emo-
tional instability, disorganized behavior, and impulsivity 
[4,5]. Thus, early screening and prompt treatment of 
ADHD is critical for promoting child and adolescent men-
tal health. It is also essential to identify the biological and 
physiological characteristics of ADHD to aid in accurate 
diagnosis and treatment response evaluation.

The specific etiologies of ADHD are still unknown. 
However, structural neuroimaging studies have found re-
duced frontal lobe, striatum, and cerebellum volume in 
ADHD patients. Additionally, ADHD patients have been 
shown to have decreased cerebral blood flow [6] and in-
creased theta activity in the frontal lobe [7]. Moreover, 
previous evidence suggests that dysregulation of the dop-
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aminergic and noradrenergic pathways may be involved 
in ADHD pathophysiology [8,9]. Overexpression of the 
presynaptic dopamine transporter (DAT) gene is con-
sistently reported in ADHD [10-12], indicating that dop-
aminergic dysregulation may be an underlying cause of 
ADHD [13,14]. 

Among the class of dopamine reuptake inhibitors that 
are prescribed for ADHD, methylphenidate (MPH) is the 
first line-drug. MPH helps maintain alertness and improve 
attention and inhibitory control [11]. MPH also decreased 
somatic symptoms and increased brain functional con-
nectivity in adolescents with ADHD [15]. Moreover, stud-
ies investigating the effects of MPH provide further evi-
dence supporting the correlation between dopaminergic 
dysregulation and ADHD [16-19].

Recently, there has been extensive research conducted 
on event-related potential (ERP) in ADHD. ERP is a non- 
invasive method designed to evaluate neurophysiological 
reactions to external stimuli. Additionally, ERP recorded 
on the scalp reflects cognitive processes associated with 
attention tasks [20-22]. Furthermore, a variety of ERP trials 
for children and adolescents with ADHD have explored 
various aspects of brain function including inhibitory con-
trol, attention, performance monitoring, and emotion 
processing [23-26]. 

Studies utilizing ERP to examine aspects of ADHD-re-
lated brain function have primarily focused on two ERP 
components, P300 and N100; however, there has been a 
more recent focus on mismatch negativity [27]. The P300 
wave is a well-characterized portion of late-ERP that has 
been involved in various psychiatric disorders. It is as-
sumed to represent the executive function, working mem-
ory, and attention [28-31]. Previous studies have shown 
lower P300 amplitude and longer P300 latency in chil-
dren with ADHD relative to normal subjects [32-34]. 
Moreover, during an auditory oddball task, the P300 am-
plitude in the central electrode and P300 latency in the 
frontal electrode positively correlated with symptom se-
verity in treatment-naive children with ADHD [35]. 

Studies on the loudness dependence of the auditory 
evoked potential (LDAEP), a type of ERP, are gradually 
increasing. LDAEP is inversely associated with central se-
rotonergic activity, with a weak LDAEP indicating strong 
serotonergic neurotransmission, and vice versa [36]. 
Therefore, several LDAEP studies have been conducted in 
adults with anxiety and mood disorders [37-41]. Further-

more, recent research studies have investigated childhood 
maltreatment, the predictability of suicidality, and the re-
sponse of antidepressants [39,42-44]. 

A few studies have examined LDAEP in ADHD and 
found a relationship between LDAEP and ADHD symp-
toms including inattention, impulsivity, and emotional in-
stability [45,46]. However, these studies were mainly de-
signed for adults with depression, rather than for children 
with ADHD. In addition to serotonergic activity, recent 
findings showed that dopaminergic transmission also im-
pacts LDAEP [47,48]. Therefore, determining the relation-
ship between LDAEP and ADHD may yield a greater un-
derstanding of dysregulated neurotransmission in ADHD. 
Considering that it is unknown how LDAEP varies relative 
to ADHD symptom severity in children, the primary aim 
of this study was to determine the relationship between 
ADHD symptoms and LDAEP. The secondary aim was to 
examine differences in LDAEP after drug treatment with 
methylphenidate.

METHODS

Participants
A total of 46 children participated in the initial study. Of 

these, thirty-eight subjects were boys and eight subjects 
were girls. Among them, twenty-seven children (23 boys 
and 4 girls) started medication. There were seventeen 
children (15 boys and 2 girls) who completed all tests and 
LDAEP before and after 12 weeks of medication. Since the 
number of girls was small, the data were analyzed after 
the girl was excluded. Finally, thirty-eight boys (aged 6−
12 years) diagnosed with ADHD were analyzed in this 
study. The subjects were recruited from the Inje University 
Hospital Psychiatric Clinic. All included children met the 
Diagnostic and Statistical Manual of Mental Disorders 
(DSM-IV) criteria for ADHD using for the K-SADS-PL 
(Korean-Schizophrenia and Affective Disorder Schedule 
for Present and Lifetime: Semi-structured diagnostic inter-
view) by a child and adolescent psychiatrist. Participants 
diagnosed with any additional mental disorders in the 
DSM-IV, such as schizophrenia, mood disorder, anxiety 
disorder, and sleep disorder, or have any significant medi-
cal or neurological diseases, were excluded. Patients tak-
ing psychiatric medication were also excluded. Symptom 
severity was assessed using the Korean version of the 
ADHD rating scale (K-ARS), continuous performance test, 
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and Clinical global impression-severity (CGI-S). The LDAEP 
changes were re-evaluated after a 12-week treatment with 
methylphenidate. Of the twenty-seven children prescribed 
methylphenidate, a total of 15 children completed LDAEP 
measurements before and after drug treatment. 

Written informed consent and assent were obtained 
from all parents and children. The study was approved by 
the institutional review board (IRB No. IB-1101-008).

Intelligence
Children’s full-scale, verbal, and performance IQ were 

assessed using the abbreviated form of the Korean 
Educational Development Institute’s Wechsler Intelligence 
Scales for Children (KEDI-WISC) [49]. The KEDI-WISC test 
consisted of arithmetic, vocabulary, block design, and 
picture arrangement. Scores from the abbreviated test are 
strongly associated with the WISC Full-Scale IQ, both in 
the age-standardized Korean version [50] and in the origi-
nal instrument [51]. The sum of the age-adjusted scaled 
scores of the arithmetic and vocabulary subtests was used 
to determine verbal IQ. Performance IQ was calculated as 
the sum of the block design and picture arrangement sub-
sets [49].

Korean Version of ADHD Rating Scale 
Symptom severity was evaluated by using the K-ARS 

[52]. The K-ARS includes 18 items related to 18 symptoms 
adopted in the DSM-IV [3], with nine items related to in-
attention and nine related to impulsivity and hyperactivity. 
Each item was rated from 0 to 3. The validity and reli-
ability of the K-ARS have been well established [52]. The 
K-ARS was completed by the participant’s parents. In ad-
dition, the CGI-S was used to measure the severity of 
symptoms after pharmacological treatment for 12 weeks. 
CGI-S is a 7-point scale that allows the clinician to meas-
ure the severity of the patient’s disease. 

Continuous Performance Test 
The Korean version of the continuous performance test 

(CPT) was administered to children with ADHD [53]. Raw 
data were converted to age-adjusted T scores on the CPT 
variables. Higher T scores showed poorer performance on 
the test. The test measures four major outcomes: 1) omis-
sion errors, 2) commission errors, 3) response time, and 4) 
the standard deviation of response times. Omission errors 
illustrate a failure to respond to targets and are indicative 

of inattention. Commission errors imply an erroneous re-
sponse to nontargets and are correlated with impulsivity. 
The response time indicates the time taken to react after 
the target is released. The standard deviation of response 
times (response time variability) is a measure of attention 
consistency. Among Korean children and adolescents, 
the CPT was standardized for age, and its validity and reli-
ability were established [54].

Loudness Dependence Auditory Evoked Potentials 
(LDAEP)

Each participant was tested in a sound-attenuated room 
during the EEG measurement. The EEG was recorded 
when the subject was in a resting state without a cognitive 
function task. By measuring the LDAEP before treatment, 
the potentially confounding influences of drugs were 
minimized. The auditory stimulation consisted of 1,000 
signals with randomized time intervals between 500 and 
900 ms and an interstimulus interval. Five intensities were 
provided (55, 65, 75, 85, and 95 dB SPL) with random-
ized tones of 1,000 Hz and an 80-ms duration (with a 
10-ms fall and 10-ms rise). EEG data were recorded on the 
international 10−20 system from 32 scalp sites (impe-
dance ＜ 10 kΩ). Data was collected using a bandpass fil-
ter from 0.5 to 100 Hz at a sampling frequency of 1,000 
Hz. The stimuli were generated by E-Prime software 
(Psychology Software Tools, Pittsburgh, PA, USA).

The measured ERPs at the central electrode were the 
N1 peak and P2 peak. The N1 peak is the negative-most 
amplitude measured between 80 and 130 ms after the 
stimulus, while the P2 peak is the positive-most peak be-
tween 130 and 230 ms after the stimulus. The peak-to-peak 
N1/P2 amplitudes were calculated as the slope of the line-
ar regression curve.

Statistical Analysis
All statistical analyses were carried out using the SPSS 

version 25 program (IBM Co., Armonk, NY, USA). All var-
iables were reported as mean and standard deviation 
values. The demographic data, symptom severity, cogni-
tive function, and LDAEP were compared using correla-
tion analysis. To control age and IQ effects, we used a par-
tial correlation in LDAEP-related analysis. A multiple line-
ar regression analysis was performed for evaluating the as-
sociation between symptom severity and LDAEP. The ef-
fect of pharmacological treatment on LDAEP and CGI-S 
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Table 1. Demographic characteristics of participants

Variable
Whole samples (n = 38, all boys)

Mean ± SD Range

Age 9.24 ± 1.74 6 to 12
Total IQ (n = 33) 109.4 ± 13.8 86 to 138
LDAEP_baseline (n = 38) 0.74 ± 0.94 −0.76 to 4.32
ADHD rating scale (n = 31)

Total ARS score 22.4 ± 10.0 4 to 50
Inattention subscale 11.8 ± 5.4 1 to 24
Hyperactivity-Impulsivity subscale 10.8 ± 5.9 3 to 26

Continuous performance test (T score)
Visual omission error 59.8 ± 18.1 42 to 100
Visual commission error 66.9 ± 17.1 40 to 100
Visual reaction time 59.2 ± 10.8 43 to 78
Visual reaction time SD 59.8 ± 15.4 36 to 100
Auditory omission error 62.8 ± 18.0 40 to 100
Auditory commission error 60.1 ± 15.6 41 to 100
Auditory reaction time 66.6 ± 10.2 32 to 82
Auditory reaction time SD 53.69 ± 10.7 36 to 84

LDAEP, loudness dependence of the auditory evoked potential; ADHD, attention deficit hyperactivity disorder; SD, standard deviation; ARS, ADHD 
rating scale; IQ, intellectual quotient.

was evaluated by conducting the Wilcoxon signed-rank 
test. In addition, ANCOVA was used to compare the 
LDAEP scores between low and high impulsivity groups 
after adjusting for age and IQ. The analysis was used to 
control age and total IQ as covariates given that LDAEP 
could be significantly influenced by age and sex [55]. 
Group differences were tested at the p ＜ 0.05 level.

RESULTS

Demographic Characteristics of Participants
Table 1 shows the demographic and clinical character-

istics of participants. A total of 38 male children diagnosed 
with ADHD participated in this study. The mean age was 
9.24 ± 1.74 years, and the mean IQ was 109.4 ± 13.8. The 
participants had a mean ARS score of 22.4 ± 10.0, a mean 
inattention subscale score of 11.8 ± 5.4, and a mean hy-
peractivity-impulsivity subscale score of 10.8 ± 5.9. 
Additionally, the average LDAEP was 0.74 ± 0.94 (Table 1).

Correlation Analysis of LDAEP with ADHD Symptoms
LDAEP had a significant association with the total ARS 

score (r = 0.483, p = 0.006). It was also related to the in-
attention subscale (r = 0.570, p = 0.004) and hyperacti-
vity-impulsivity subscale (r = 0.527, p = 0.008). Statistical 
significance was also noted after adjustment for age and 

intelligence (total ARS score: r = 0.592, p = 0.005; inattention 
subscale: r = 0.522, p = 0.015; hyperactivity-impulsivity 
subscale: r = 0.6, p = 0.004) (Fig. 1). In the multiple linear 
regression analysis, after adjusting for age and IQ, higher 
LDAEP was significantly associated with higher total ARS 
score (B = 0.510, t = 3.008, p = 0.006), inattentive sub-
scale score (B = 0.515, t = 2.668, p = 0.015), and hyper-
activity-impulsivity subscale score (B = 0.569, t = 3.271, p = 
0.004).

In the CPT, children with ADHD were divided into two 
groups based on the T score of the visual commission 
error. The high-impulsivity group had a T score of ≥ 65, 
and the low-impulsivity group had a T score of ＜ 65. The 
two groups of subjects showed significantly different 
LDAEP levels (F = 4.539, p = 0.043) after controlling for 
the covariates of age and IQ. LDAEP levels in the high-im-
pulsivity group were higher than those in the low-im-
pulsivity group (1.07 ± 1.14 vs. 0.43 ± 0.76, respectively) 
(Table 2, Fig. 2). In logistic regression analysis, a trend was 
observed showing that LDAEP levels could predict im-
pulsivity (p = 0.055, Table 3).

The Change of LDAEP and CGI-S after Medication 
The LDAEP was measured after 12 weeks of methyl-

phenidate treatment. A total of 15 children were analyzed. 
LDAEP tended to decrease after drug use and was statisti-
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Fig. 1. The correlation between LDAEP and ADHD rating scale. 
LDAEP, loudness dependence of the auditory evoked potential; ADHD,
attention deficit hyperactivity disorder; ARS, ADHD rating scale; IQ, 
intellectual quotient.
In Multiple linear regression analysis, the higher LDAEP was signifi-
cantly associated the higher total ARS score (B = 0.510, t = 3.008, p =
0.006) inattention subscale score (B = 0.515, t = 2.668, p = 0.015) and
hyperactivity-impulsivity subscale score (B = 0.569, t = 3.271, p = 
0.004) after adjusting for age and IQ. 

Table 2. The difference in LDAEP between low and high impulsivity group

Variable Low impulsivity group (n = 17) High impulsivity group (n = 16) p value

Age 9.53 ± 1.54 8.69 ± 1.85 0.179
LDAEP_baseline 0.43 ± 0.76 1.07 ± 1.14 0.043a

Total IQ 111 ± 15 107 ± 12 0.567
ADHD rating scale 

Total ARS 18.8 ± 7.2 27.4 ± 11.6 0.080
Inattention ARS 9.7 ± 4.2 14.5 ± 6.1 0.096
Hyperactivity-Impulsivity ARS 8.7 ± 4.2 14.3 ± 7.1 0.072

Continuous performance test (T score)
Visual omission error 55.1 ± 18.4 64.8 ± 16.8 0.008
Visual commission error 53.6 ± 5.8 81.13 ± 13.2 ＜ 0.001
Visual reaction time 60.7 ± 10.5 57.5 ± 11.2 0.402
Visual reaction time SD 54.2 ± 12.5 65.8 ± 16.3 0.031
Auditory omission error 66.76 ± 16.7 58.33 ± 19.1 0.114
Auditory commission error 57.1 ± 9.9 63.5 ± 20.1 0.710
Auditory reaction time 71.0 ± 7.1 61.6 ± 11.0 0.006
Auditory reaction time SD 54.82 ± 11.1 52.4 ± 10.4 0.682

Values are presented as mean ± standard deviation.
LDAEP, loudness dependence of the auditory evoked potential; ADHD, attention deficit hyperactivity disorder; SD, standard deviation; ARS, ADHD 
rating scale; IQ, intellectual quotient.
The high-impulsivity group had a T score of ≥65 and the low-impulsivity group had a T score of ＜ 65. The two groups of subjects showed 
signicantly dierent LDAEP levels (F = 4.539, p = 0.043) after controlling age and IQ as covariates. Mann Whitney U test was conducted to compare 
two groups. 
aANCOVA after adjusting for age and total IQ.
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Table 4. Changes of LDAEP and CGI-S after medication

Variable
Sample with medication (n = 15)

Mean ± SD Range p value

Age 9.33 ± 1.8 6 to 12
Total IQ 114 ± 13.6 86 to 134
Total ARS score 26.3 ± 11.34 12 to 50
Dose of MPH (mg) 38.3 ± 12.5 18 to 63 　

CGI-S
CGI-S_baseline 5.41 ± 1.12 4 to 7 Z = −3.332
CGI-S_after MPH trial 3.27 ± 0.88 1 to 3 p = 0.001

LDAEP
LDAEP_baseline 1.02 ± 1.13 −0.14 to 4.32 Z = −1.988
LDAEP_after MPH trial 0.63 ± 1.17 −0.81 to 3.52 p = 0.047

MPH, methylphenidate; LDAEP, loudness dependence of the auditory evoked potential; ADHD, attention deficit hyperactivity disorder; SD, 
standard deviation; ARS, ADHD rating scale; IQ, intellectual quotient; CGI-S, clinical global impression severity. 
Wilcoxon signed-rank test was conducted. 

Table 3. Logistic regression analysis of LDAEP in relation to impulsivity

Variable B SE Wals F p value Exp(B)
95% confident interval

Lower Higher

LDAEP_baseline 1.086 0.566 3.676 1 0.055 2.961 0.976 8.985
Age −0.417 0.263 2.516 1 0.113 0.659 0.393 1.103
Total IQ −0.05 0.033 2.334 1 0.127 0.951 0.893 1.014

LDAEP, loudness dependence of the auditory evoked potential; IQ, intellectual quotient; SE, standard error. 

Fig. 2. LDAEP differences between high-impulsivity and low-impulsivity
groups.
LDAEP, loudness dependence of the auditory evoked potential; IQ, 
intellectual quotient.
The two groups of subjects showed significantly different LDAEP levels
(F = 4.539, p = 0.043) after controlling age and IQ as covariates.
*p value ＜ 0.05.

cally significant (Z = −1.988, p = 0.047). Moreover, 
CGI-S decreased significantly after methylphenidate treat-
ment (p = 0.001) (Table 4, Fig. 3).

DISCUSSION

This study identified an association between LDAEP 
and symptom severity in children with ADHD. Moreover, 
changes in LDAEP were observed after taking the ADHD 
medication, methylphenidate. LDAEP had a significant 
association with the severity of ADHD symptoms includ-
ing impulsivity and inattention. In particular, LDAEP was 
higher in the highly impulsive group than in the less im-
pulsive group. Pharmacological treatment with MPH sig-
nificantly decreased LDAEP in accordance with symptom 
improvement. Importantly, LDAEP was found to be pos-
itively correlated with the impulsive symptoms of ADHD 
in the CPT. These results suggest that LDAEP may act as a 
specific indicator of cognitive dysfunction in children 
with ADHD.

Our study showed a significant correlation between 
ADHD core symptoms and LDAEP. The correlation be-
tween LDAEP and inattention and impulsivity reported 
here are similar to previous findings. In previous studies, 
LDAEP has been reported to be higher among more im-
pulsive individuals [56] and reflect behavioral inhibition 
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Fig. 3. Differences in LDAEP and 
CGI-S after medication (methylpheni-
date). 
LDAEP, loudness dependence of the 
auditory evoked potential; CGI-S, cli-
nical global impression-severity; CI, 
confidence interval.
LDAEP tended to decrease after drug 
use and was statistically significant 
(p = 0.047). CGI-S decreased signifi-
cantly after taking the drug (p = 
0.001).

and emotional sensitivity [46]. Additionally, an functional 
magnetic resonance imaging study showed that immediate 
reward behavior, which is related to impulsivity, is asso-
ciated with stronger LDAEP [57]. Low serotonergic activity, 
as evaluated by a high LDAEP, was linked to impulsivity, 
according to Mavrogiorgou et al. [57]. It’s possible that 
the serotonergic system in the orbitofrontal area controls 
impulsive reward-oriented decision-making. In a recent 
study, LDAEP was found to be significantly correlated 
with ADHD symptoms and the inattention subscale in de-
pressed adults; however, it was unrelated to the hyper-
active subscale [45]. Interestingly, Kim et al. [45] reported 
that LDAEP decreased with more severe symptoms, which 
contrasts with our findings. The researchers explained 
these results by suggesting that LDAEP could be differ-
ently reflected in depressed adults with ADHD symptoms. 
A direct comparison of the inattention of depressed adult 
patients with that of children with ADHD may be limited. 
Comorbidities like depression and anxiety were not eval-
uated as confounding factors in our study. These limi-
tations should be considered.

After 12 weeks of treatment with MPH, we observed an 
improvement in ADHD symptoms and a significant re-
duction in LDAEP. To our best knowledge, no study has 
been conducted thus far to evaluate changes in LDAEP af-
ter MPH administration in ADHD patients. In a similar 
study, Beucke et al. [58] examined the effects of L-Dopa 
treatment on LDAEP in patients with Parkinson’s disease. 
Similar to ADHD, Parkinson’s disease is associated with 
dopamine deficiency. In that study, L-Dopa was ad-
ministered for 12 weeks to determine the relationship be-
tween the improvement of symptoms and changes in 
LDAEP. Prior to L-Dopa treatment, there was a significant 
difference in LDAEP of control subjects and Parkinson’s 

disease patients. However, no significant difference was 
observed between groups following L-Dopa treatment for 
12 weeks. Furthermore, there was a trending correlation 
between LDAEP and DAT activity in unmedicated Parkinson’s 
disease patients, suggesting a possible relationship be-
tween low serotonergic activity and the loss of dopamine 
detected in Parkinson’s disease. 

In another recent study of LDAEP in Parkinson’s disease 
patients, the absolute value of LDAEP decreased after 12 
weeks of taking dopaminergic medication [59]. A study of 
cats also reported a decrease in LDAEP after the applica-
tion of the dopamine agonist, apomorphine [60]. Similarly, 
in our study, LDAEP decreased after MPH administration, 
which may be linked to increased dopamine concentra-
tion. However, changes in LDAEP can be associated with 
changes in both serotonin and dopamine, Further re-
search is required to elucidate detailed associations. 

LDAEP has been studied mainly in association with 
brain serotonin levels, but increasing evidence shows that 
LDAEP is related to dopamine. Previous studies have re-
vealed an inverse association between LDAEP and dop-
amine metabolite levels [47]. Furthermore, LDAEP is pos-
itively related to DAT after adjusting for age and sex [61]. 
These results support the hypothesis of dopamine being a 
major modulator in the generation of LDAEP and dop-
amine-serotonin interaction. Clearly, several findings have 
shown that serotoninergic deficiency is associated with a 
lack of dopamine [62-64]. A molecular genetic study 
showed that there are several dopaminergic and seroto-
nergic genes related to reward functioning in ADHD [65]. 
In addition, studies have shown a link between dopamine 
and serotonin through LDAEP [66,67]. The availability of 
brain DAT and SERT in patients with the obsessive-com-
pulsive disorder was significantly correlated with LDAEP 
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[67,68]. Taken together, these results indicate that LDAEP 
is likely associated with both dopamine and serotonin activity. 

In the current study, we found that LDAEP decreased af-
ter methylphenidate treatment in ADHD patients. Since 
Impaired dopaminergic transmission is believed to be as-
sociated with symptoms [10,12,13], it is possible that al-
tered dopaminergic neurotransmission is associated with 
methylphenidate-mediated changes in LDAEP. As the 
monoaminergic systems of the brain may interact, further 
studies are needed to investigate the relationship between 
LDAEP and various neurotransmitters in ADHD. 

LDAEP has been utilized to study various mental dis-
orders for two decades [36,69]. Researchers have focused 
mainly on the relationship between LDAEP and mood 
and anxiety disorders such as depression, obsessive-com-
pulsive disorder, bipolar disorder, and suicidality [70-73]. 
Notably, mental health disorders, such as depression and 
anxiety, are common comorbidities that occur with ADHD. 
Children with ADHD have high rates of depression and 
anxiety (25−41%) [74-76]. Recently, Oh et al. [77] also 
showed a temporal connection between depression and 
MPH use in adolescents with ADHD. Therefore, the asso-
ciation between LDAEP and ADHD can also be interpreted 
in terms of emotional comorbidities [43,70,78]. In the pres-
ent study, we did not directly investigate the relationship 
between LDAEP and anxiety/depression. Further studies 
are needed to explore the relationship between anxi-
ety/depression and LDAEP in subjects with ADHD.

Since LDAEP is mainly linked to serotonin, it is worth 
paying attention to recent research on ADHD and sero-
tonin. Some studies have reported the association of sero-
tonergic genes with ADHD [79-84]. Also, ADHD symp-
toms, such as impulsivity and emotional dysregulation, 
are associated with serotonin [85,86]. Furthermore, meth-
ylphenidate influences blood serotonin levels [87], and 
the effect of the serotonergic gene expression with meth-
ylphenidate treatment was reported [88]. It may be neces-
sary to view ADHD in the context of multiple neuro-
transmitter-mediated neural pathways. Further research is 
needed to clarify this. 

It is crucial to identify biomarkers of ADHD to aid in 
early diagnosis and treatment. Proposed ADHD bio-
markers include the degree of specific cognitive function 
[89,90], the activation of particular brain regions [91], 
and the expression of specific genes [10,84]. However, 
these approaches are invasive and expensive making 

them difficult to perform in children with ADHD. In con-
trast, ERPs, which are non-invasive and relatively easy to 
perform, are highly correlated with specific cognitive 
functions that may be dysregulated in ADHD [92]. Due to 
the correlative relationship between LDAEP and neuro-
transmitter levels, the LDAEP study in ADHD children 
could provide additional information.

This study has several limitations. First, there was a rela-
tively small sample size that did not include healthy 
controls. The small sample size should be considered 
when interpreting the results of this study. Second, only 
boys were analyzed in the study. The prevalence of 
ADHD in boys is three to five times higher than in girls [3]. 
In addition, ERP results are dependent on sex [93,94]. 
Therefore, the selective inclusion of only boys may have 
limited participant variation. Third, this study did not ana-
lyze the difference according to the subtype of ADHD. 
Further research related to subtypes is needed in the 
future. Depression and anxiety were not evaluated in this 
study, as children with severe depression and anxiety dis-
orders were also excluded to focus on ADHD core 
symptoms. Due to the small number of participants, we 
could not investigate changes in LDAEP according to the 
degree of improvement in symptoms after drug treatment. 
The ERP studies presented in the reference were measured 
while performing cognitive tasks such as the Go/NoGo 
test, but this study measured LDAEP in the resting state. It 
is necessary to consider this part when comparing and in-
terpreting the results. The strength of this study is that in-
dividuals with formal ADHD diagnosis participated and 
symptom severity was evaluated in both rating scale and 
standardized cognitive test. Additionally, results were 
statistically analyzed after adjusting age and intelligence. 
Notably, a previous ERP study revealed that intelligence 
influences attention and impulsivity in ADHD children 
[95]. Thus, adjusting for intelligence and age strengthens 
our results that show a relationship between ERP and 
symptoms and cognitive tests in children. 

To support our findings and validate the usefulness of 
LDAEP in ADHD, future studies using a larger cohort and 
normal control are needed. To our best knowledge, this is 
the first study to investigate a direct association between 
LDAEP and ADHD symptom severity and the effect of 
treatment in children.

The present study suggests that changes in LDAEP were 
associated with ADHD symptoms and treatment effects. 
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According to our results, LDAEP may be a significant in-
dicator of the neurophysiological characteristics of ADHD. 
Furthermore, our findings support the utility of LDAEP as a 
noninvasive and clinically applicable method to assess 
symptom severity in children with ADHD.
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