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ABSTRACT

In the last decade, single cell RNAseq (scRNAseq)
datasets have grown in size from a single cell to mil-
lions of cells. Due to its high dimensionality, it is
not always feasible to visualize scRNAseq data and
share it in a scientific report or an article publication
format. Recently, many interactive analysis and visu-
alization tools have been developed to address this
issue and facilitate knowledge transfer in the scien-
tific community. In this study, we review several of
the currently available scRNAseq visualization tools
and benchmark the subset that allows to visualize
the data on the web and share it with others. We
consider the memory and time required to prepare
datasets for sharing as the number of cells increases,
and additionally review the user experience and fea-
tures available in the web interface. To address the
problem of format compatibility we have also devel-
oped a user-friendly R package, sceasy, which allows
users to convert their own scRNAseq datasets into a
specific data format for visualization.

INTRODUCTION

In just a decade, the number of cells profiled in each scR-
NAseq experiment has increased from ~1000 cells to mil-
lions of cells (1), thanks to the advent of sequencing pro-
tocols, from well-based (2-4) to droplet-based (5,6) and the
ever-decreasing cost of sequencing. In parallel, many com-
putational methods have been developed to analyse and
quantify scRNAseq data (7-12). A typical scRNAseq anal-
ysis pipeline starts from the raw reads, which are processed
to create an expression matrix, containing the expression
values of every gene in every cell. Further downstream anal-
ysis is then performed where cells are clustered and the
cluster-specific marker genes are identified to annotate cells
with corresponding cell types. The results are then visual-
ized using non-linear embedding methods, such as tSNE

(13) or UMAP (14) usually in a two-dimensional (2D) space
where each cell gets a pair of X-Y coordinates defining its
position on the visualization plot. Finally, the visualizations
are used to assess the obtained cell types by highlighting
the cell metadata (information about cells in a given exper-
iment, e.g. batch, donor etc.) or the expression of specific
genes across the cell types. This assessment can only be per-
formed in an interactive manner. However, when the results
are shared as a report or published in a paper format (a
static 2D image), it is only possible to see a snapshot of the
analysis corresponding to a single gene and a single set of
cell metadata. Recently the ability to analyze, visualize the
data in an interactive way has attracted a lot of attention
and advances in web technologies have led to the develop-
ment of multiple tools for sharing the analysis results via a
web interface.

In this paper we attempt to give an overview of a num-
ber of currently available tools to help researchers choose
an approach for data visualization. In the broader land-
scape of scRNAseq visualization we initially consider 13
popular interactive analysis and visualization tools and
give an overview of their features. We then select those
tools that provide web sharing functionality and benchmark
them against each other by means of their performance on
datasets of different sizes (from 5000 to 2 million cells). We
also evaluated user experience (UX) features of these tools.
Finally, since all of the tools have different input require-
ments, we developed an R package, sceasy, for flexible con-
version of one data format to another (see ‘Materials and
Methods’ section).

MATERIALS AND METHODS
Datasets

For benchmarking we utilized a mouse embryo de-
velopment scRNAseq dataset with accession number
GSE119945 (15) containing 2.07 million cells with cell and
gene metadata and including precalculated cluster assign-
ments and tSNE coordinates. The data and metadata were
converted from the input text format to an AnnData ob-
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ject in scanpy. This object was then subsampled in scanpy
to generate datasets of different sizes (5 000, 10 000, 25 000,
50 000, 100 000, 250 000, 500 000, 1 000 000, 1 500 000 and
2 000 000 cells) used for performance benchmarking.

Profiling

Benchmarking tests were done on a virtual Ubuntu OS
16.04 with 23GB of RAM and 2GHz Intel Xeon Processor
with 16 cores.

iSEE and scSVA are both R packages and therefore were
tested by using profvis, a package for profiling R scripts (16).
The highest value of the ‘memalloc’ slot with the label of
‘shiny::runApp’ was considered as preprocessing memory,
and the last value in the ‘time’ slot was considered as pre-
processing time.

For all the other tools (except cellxgene) the char-
acteristics were measured by running Linux command
Jusr/bin/time -v, and using ‘Maximum resident set
size (kbytes)’ output for RAM usage and using the sum
of ‘User time (seconds)’ and ‘System time (seconds)’
outputs for preprocessing times. For cellxgene the gnomon
command was used with elapsed-total option to measure
the preprocessing times. For SCope the preprocessing time
was profiled only from the server side (the timed process
was scope-server). The preprocessing times included both
the internal data import time (only for UCSC Cell Browser
and Single Cell Explorer) and server start-up time. Both
UCSC Cell Browser and Single Cell Explorer spent a
considerable amount of time on the data import as they
need to convert the data into other structures (json files
and MongoDB database, respectively) before being able
to visualize it. For UCSC Cell Browser, scanpy’s (17)
scanpy.external.exporting.cellbrowser was
used to perform the conversion. For Single Cell Explorer,
ProcessPipline.insertToDB function from the
scpipline.py library provided by the authors was used.

Data format conversion

We developed the R package sceasy for converting data for-
mats frequently used in scRNA-seq analysis, namely Seurat
object, SingleCellExperiment (SCE) object, Loom object,
to AnnData object. It also supports conversion from Seu-
rat object to SCE object, and between SCE and Loom ob-
jects. The package complements existing conversion func-
tions such as those in Seurat and scran. Examples of the
conversion functions can be found at the sceasy GitHub
page: https://github.com/cellgeni/sceasy

RESULTS
Tools overview

We considered 13 popular scRNAseq analysis and visual-
ization tools: ASAP (18), BioTuring Single Cell Browser
(Bbrowser) (19), cellxgene (20), Granatum (21), iSEE (22),
loom-viewer (23), Loupe Cell Browser (24), SCope (25),
scSVA (26), scVI (27), Single Cell Explorer (28), SPRING
(29) and UCSC Cell Browser (30). Table 1 compares these
tools in terms of cloud and web support, containerization,
supported input formats and developer activity.

Input formats

The tools vary in the ability to use different input file/data
formats (green color in Table 1). We focused on input for-
mats supported out of the box. The csv/txt format is the
most commonly accepted one and is supported by eight
tools. More specialized formats such as h5ad and loom are
accepted by six tools. R-based SingleCellExperiment (SCE)
and Seurat are accepted by one and three tools, respectively.
To make it possible for the users to visualize their datasets
in different ways we have developed the sceasy R package
for file format conversion (see ‘Materials and Methods’ sec-
tion), which is available on Github at https://github.com/
cellgeni/sceasy.

Data hosting, publishing and sharing via the web

These features are indicated in blue in Table 1. Web Shar-
ing corresponds to the ability of hosting and sharing a web
page with data visualization, whereas the SaasS feature cor-
responds to availability of a hosted online version of the
tool provided by the authors which only requires upload-
ing of input files by the user. An example is ASAP which is
a comprehensive hosting platform at Ecole Polytechnique
Fédérale de Lausanne (EPFL) and as such it does not re-
quire a local or cloud installation. Cloud Support indicates
whether the authors provided tools and instructions on how
to deploy their web interface on a public cloud.

Selection of tools for web sharing

For further comparison we selected actively developed (up-
dated during the last 6 months) tools that can be used for
web sharing. For ASAP we were not able to host it locally
with the provided Docker image, hence it was excluded from
the comparison. SPRING was excluded from the compari-
son because it was not updated recently and in addition no
Docker image is provided.

Web sharing steps

For the end user to see a visualization web page it usually
requires three steps to be completed: the input files have to
be prepared (e.g. to create a database or to convert to an-
other data format, different from the ones in Table 1), the
back-end server has to be started and, finally, the web page
should be served to the user in their web browser. For all of
the considered tools the memory and time needed for the
latter step are negligible compared to the first two steps. We
defined the maximum memory and total time required for
the first two steps as the preprocessing memory (RAM) and
the preprocessing time and measured how they depend on
the number of cells in the input data. All of the tools were
run with the default parameters. iSEE was run for both SCE
and loom input formats.

Summary of benchmarking results

Figure 1 summarizes the benchmarking results. iISEE-loom,
SCope, scSVA and loom-viewer all enable efficient inte-
gration with the hierarchical data format (HDF5) from
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ASAP |Bbrowser| cellxgene |Granatum| iSEE \Il-ig\?vr:r Lg:’gzsc;er" SCope [scSVA| scVI SIiEr;(gplleo ?eer" SPRING Ugris’v:;"
Web Sharing v v v v v v v v
Interactivity v v v v v v v v v
Docker v v v v
Cloud Support v v v v v
SaaS v v v v v
Loom v v v v v v v
h5ad v v v v v v
SCE v
Seurat v v v
csv/txt v v v v v v v v
Platform Ja;a/ Desktop | Python R R | Python | Desktop |Python| R Python | Python Python Python
Last updated* | >3 m <1m <1m >12m [<1m| >6m >3m <Im |[>12m| <1m >6m >12m <1m
Numpor Of | 2 ? 19 3 7| 5 ? 5 | 2 | 24 1 3 6
Number of
active 0 ? 6 0 3 0 ? 2 0 4 0 0 2
developers**
\F;zl‘,’siiexed 1.0 2213 0.11.0 [0.0.0.900 | 1.4.0 | 0.32.4 3.1.1 1.7.2 | 0.2.0 | 0.5.0 1.0.0 1.6.0 0.5.49

*Latest GitHub commit (checked on 9 June 2020), **checked at submission time. Web Sharing corresponds to the ability of hosting and sharing a web page
with data visualization. Interactivity corresponds to the ability of exploring the data in an interactive way as opposed to static images. Docker indicates
whether a docker image with the tool is provided by the developers. Cloud Support indicates whether the authors provided instructions on how to deploy
their web interface on a public cloud. SaaS (Software as a Service) corresponds to availability of a hosted online version of the tool provided by the authors
which only requires uploading of input files by the user. The rows marked Loom, h5ad, SCE (SingleCellExperiment), Seurat, csv/txt indicate the different

standard input data formats that are in use.

which loom and h5ad formats are derived. HDFS5 format
allows for on-demand loading, i.e. the necessary data is only
loaded in RAM when it is needed by the application. In this
case, at the start the tools only use the coordinates of the
cells without loading other input data into memory. scSVA
and loom-viewer are the most efficient HDF5-backed tools
with SCope being slightly slower. iISEE-loom is memory ef-
ficient but there is a sudden increase in the preprocessing
time at 250K and 500K cells. This is due to having eight
panels in the default iSEE interface, each requiring a sep-
arate rendering of the visualization of the input cells. The
defaults can be programmatically changed to having only
one panel. This brings the preprocessing times down to un-
der 2 min for 500K cells. Due to long preprocessing times we
did not run iSEE-loom for datasets with more than 500K.
Similarly, there is a sudden drop of loom-viewer efficiency
at 2M cells. This effect was consistent across all five runs
but we could not explain it. There is also a consistent drop

in RAM usage by Single Cell Explorer at 50K cells, which
we could not explain. In addition, we were not able to run
SCope and Single Cell Explorer for datasets larger than
500K cells.

Preprocessing time and memory

For four tools iISEE-SCE, Single Cell Explorer, UCSC Cell
Browser and cellxgene) the preprocessing memory and pre-
processing time grow exponentially with the number of in-
put cells. In case of iSEE-SCE and cellxgene this is due to
the lack of HDFS integration and loading of the full data
in memory, which increases the server starting time. In con-
trast, the long preprocessing times of Single Cell Explorer
and UCSC Cell Browser are explained by the required
database and file preparation time, respectively. iISEE-SCE
has the steepest RAM usage growth with the number of
cells and failed to start for datasets larger than 50K cells.
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Figure 1. Preprocessing RAM usage (A) and preprocessing times (B) of the
visualization tools. The points on the plots represent mean values and error
bars represent standard error across five independent runs. Preprocessing
times include input preparation and starting of the back-end server.

Among these four tools cellxgene has the shortest prepro-
cessing times.

User experience

In addition to the performance, we also compared the
benchmarked tools by their user experience as shown in Ta-
ble 2.

Cell selection tools

For statistical analysis and comparison of groups of cells
users need to select cell populations of interest. A majority
of the tools provide selection functionality. The most flex-
ible and user-friendly of them is the free-hand lasso selec-
tion, which is supported by cellxgene, SCope and Single Cell
Explorer. It allows the user to select the cells by drawing a
free shape curve around the cells of interest. A less flexible
type of selection is rectangular selection, where the user is
limited to drawing a rectangle around the cells of interest. It
is supported by scSVA and UCSC Cell Browser. In addition,
iSEE also supports a polygon version of the lasso selection,
where the selection is made by pointing to the vertices of a

polygon. To our knowledge, loom-viewer does not provide
any method of selection.

Zoom functionality

The ability to zoom in and out can be crucial to visually
analyse and validate the data. Most of the tools have zoom-
ing functionality except loom-viewer and Single Cell Ex-
plorer. Similarly, the ability to switch between multiple em-
beddings (e.g. between tSNE and UMAP) can be very use-
ful and help with the analysis. Again most of the tools have
this functionality, except scSVA and Single Cell Explorer.

Highlight by values

One of the most important features every single-cell visual-
ization tool must have is the capability to highlight specific
information. The user may want to highlight either gene ex-
pression levels (continuous scale) or cell metadata (usually
on a discrete scale). Not surprisingly, this functionality is
available in almost every tool with the exception of loom-
viewer (for gene expression) and SCope (for cell metadata).

Additional analysis

A useful feature of a visualization tool is the option of
performing extra analysis on user-selected cells, such as
e.g. cell-type annotation, differential expression analysis or
marker gene identification. Three of the benchmarked tools
(cellxgene, scSVA and Single Cell Explorer) have this func-
tionality out of the box. iSEE supports this via custom pan-
els.

Page loading speed

Finally, an important indicator of a good user experi-
ence is the speed of web page loading. Once the back-
end server is running most of the tools can serve the vi-
sualization to the user via a web page in a fast manner.
One exception is iISEE. We tested it with the default set-
ting of eight panels. At the moment the free version of the
Shiny server does not support persistent R processes for
faster load times (https://rstudio.com/products/shiny/shiny-
server/) and therefore it starts a new R process for each new
user, increasing the loading times and affecting the user ex-
perience when datasets are large.

DISCUSSION

The size and volume of scRNAseq data has exponentially
increased over the last decade and this has opened up new
avenues of scientific discovery and understanding. There is
a need among scientists to communicate their data to col-
laborators and colleagues for quick and easy exploration.
The burden of computational resources and bioinformatics
skills required to do this should ideally be removed from the
recipients of the data.

Single-cell interactive analysis and visualization tools
have been widely adopted by the research community. They
make data import, public data access and analysis much
easier for the users and accelerate the science. Furthermore,
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tools now exist (those with Web Sharing functionality in Ta-
ble 1) that allow the user to host and share their scRNAseq
data visualization with others on the web, due to recent ad-
vances in web technologies. These make it possible to share
analysis results with others in a user-friendly manner, allow-
ing for much faster scientific development. We believe that
high complexity and dimensionality of scRNAseq data can
only be revealed via comprehensive, interactive, and user-
friendly tools that can provide shareable visualizations via
the web. This is supported by the recent developments of
scRNAseq visualization portals at large scientific institutes:

1. Single-Cell Expression Atlas (31) at the European Bioin-
formatics Institute - https://www.ebi.ac.uk/gxa/sc/home

2. Single-Cell Portal at the Broad Institute - https:/
singlecell.broadinstitute.org/single_cell

3. Cell Browser at the University of California Santa Cruz
- https://cells.ucsc.edu/

4. Automated Single-cell Analysis Pipeline (ASAP) at
Ecole Polytechnique Fédérale de Lausanne - https:/
asap.epfl.ch/

To understand the current landscape of interactive anal-
ysis and visualization tools we compared (Table 1) sev-
eral of the most popular based on their general qualities.
Our results show that each tool has particular advantages
and disadvantages and as such a simple ranking cannot be
achieved. We looked specifically at the tools suitable for
sharing an interactive visualization of results via a web in-
terface (the Web Sharing row in Table 1). Again, in this case
there is not one tool that stands out as significantly better
than the rest in all categories. From our personal experi-
ence and partly supported by benchmarking, we currently
recommend using cellxgene for publishing and sharing scR-
NAseq data.

Cellxgene performs well in terms of both memory and
preprocessing times (Figure 1) and leads by the UX scores
(Table 2). It also has a thriving community, is the most sup-
ported (Table 1) with 24 contributors and has the highest
developer activity in the last 2 months. We have developed
a detailed tutorial (https://cellgeni.readthedocs.io/en/latest/
visualisations.html) for using cellxgene and how to convert
data into the required input format.

Single-cell sequencing technologies are still in rapid de-
velopment and we expect the dataset sizes (number of cells
per dataset) to further grow in the next few years. Tools that
use on-demand loading with linear or sublinear memory us-
age relative to cell count are best positioned to cope with
this growth. Other tools will have to adapt and optimize in

order to stay competitive. One way of optimization is to add
integration with the HDF5 format as supported by our re-
sults in Figure 1. A simpler approach is to down-sample the
data by selecting a small subset of cells in a random manner.
Most of the tools support this functionality. When down-
sampling it is important to make sure that rare cell pop-
ulations are not removed. One such approach is geometric
sketching (32) - a method to subsample massive sScRNA-seq
datasets while preserving rare cell states.

Additionally, there are several efforts to enrich visualiza-
tions by either using a 3D plot instead of 2D (18,33) or even
by using virtual reality (34). The third dimension may allow
resolution of cell-types not visible in two dimensions. Vir-
tual reality can support multiple embeddings in the same
VR space so that they can be directly compared.

This review represents a snapshot of a rapidly develop-
ing field and tools will catch up or drop out of contention
and new tools will emerge. All of the tools in this review
that are under active development are worth keeping an
eye on. The designers and developers will need to not only
think about efficiency and scalability of visualization but
also about additional features that can enrich the data vi-
sualization and provide more scientific insights. An example
is the user-friendly integration of a dataset under considera-
tion with public scRNAseq data. This is already happening
in commercial products, e.g. Bbrowser provides, for a se-
lected group of cells, a suggestion of cell type based on pub-
licly available data. It also provides the ability to search for
specific cells from public data similar to the selected ones.
It is worth noting that command line tools exist with ex-
actly the same or similar functionality. However, putting
this functionality into an interactive user-friendly interface
allows sharing and exploration of results across the whole
research community, facilitating scientific progress.
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