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Abstract: Future-generation radio access networks (RAN) are projected to fulfill the diverse
requirements of user equipment (UE) by adopting a heterogeneous network (HetNet) environment.
Necessary integration of different radio access technologies (RAT), such as 2G, 3G, 4G, wireless local
area network (WLAN), and visible light communication (VLC) is inevitable. Moreover, UEs equipped
with diverse requirements will be capable of accessing some or all the RATs. The complex HetNet
environment with diverse requirements of UEs will present many challenges. The HetNet is likely to
suffer severely from load imbalance among the base stations (BSs) from inheriting the traditional user
association scheme such as max-SINR (signal-to-interference-plus-noise ratio)/max-RSSI (received
signal strength indicator), unless some sophisticated schemes are invented. In this paper, a novel
scheme is devised for a joint-user association for load balancing, where BSs are densely deployed
and UEs typically have a certain degree of mobility. Unlike most of the present works, a dynamic
network is considered where the position and channel condition of the UEs are not fixed. We develop
two complex and distributed association schemes based on probability and d-choices, while carefully
considering both loads of the BSs and SINR experienced by the UEs. Numerical results validate
the efficiency of the proposed schemes by showing a received data-rate fairness among UEs and an
improvement in the UE’s minimum received data rate.

Keywords: load balancing; online user association; HetNet; distributed scheme

1. Introduction

The traffic demand in wireless communication systems has surged over the past few years.
This trend will continue in the future because of the growing popularity and heavy usage of wireless
devices [1]. According to telecom players [2], the average mobile network connection speed globally
will increase three-fold from 2016 (6.8 Mbps) to 2021 (20.3 Mbps). By 2021, the average global mobile
connection speed will surpass 20 Mbps, there will be 1.5 mobile devices per capita, and smart-phones
will cross 86% of mobile data traffic. All these developments will lead to an outburst of wireless traffic
volume on limited spectrum resources. To meet these surging traffic demands, the requirement of a
sophisticated radio access network (RAN) integrated with multiple radio access technologies (RAT) is
inevitable. Heterogeneous RAN is proposed to solve the above traffic demand. This heterogeneous
network (HetNet) will be an integration of different technologies, such as 2G, 3G, 4G, wireless local
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area network (WLAN), visible light communication (VLC) [3,4], mobile device cloud (MDC) [5],
and vehicular cloud computing [6]. This is to ensure backward compatibility, as well as to support
current and future technologies [7]. This HetNet model can support different applications, such as the
multi-cloud service [8], data aggregation [9,10], and monitoring of critical systems [11]. It has been
widely accepted that HetNet has the potential to achieve high spectral and energy efficiency. Ease of
deployment and maintenance is an added advantage of HetNet deployment. In fact, to enhance traffic
volume, 3rd Generation Partnership Project (3GPP) long-term evolution advanced (LTE-A) proposes
a multi-tier HetNet, in which low-powered and short-range small cells/tiers (picocells, femtocells)
are laid under macro base stations (BSs) to fulfill Quality of service (QoS) requirements and traffic
volume [12], as shown in Figure 1. The densification with different kinds of BSs in HetNet creates
a huge problem of load imbalance in the networks. In the following sub-sections, we will discuss
HetNet, user association, and load balancing in detail and discuss some open problems.

Figure 1. Heterogeneous radio access network (RAN) system architecture.

1.1. HetNet and User Association

To boost areal spectral efficiency, reuse of radio resources is indispensable. However, the
deployment of more macro BSs, forming a dense homogeneous network, is an unattractive solution as
the deployment costs, along with the operational and maintenance costs, are very high. An alternative
to this homogeneous deployment is to have a heterogeneous one, where many low-powered small
cells are deployed within the coverage area of a macro BS. A HetNet cellular network consists of
randomly located BSs forming a multi-tier cellular network. Here, each tier differs in the average
transmitting power, data rate, and deployment density. The HetNet provides big capacity, high
performance, ease of operation, and fast deployment, but with the cost of additional revenue,
interference, resource management, and backhaul management [13]. HetNet also has the potential to
degrade load imbalance among different BSs due to disparate transmit powers and capabilities [14].
However, with HetNet environment, there are some critical challenges, such as user association, power
control, and resource allocation that need to be addressed [15]. The traditional cell-selection strategy,
max-SINR(signal-to-interference-plus-noise ratio) [16], used by user equipment (UEs) causes load
imbalance in HetNet [17]. This is mainly because UEs in the coverage area of small BSs still receive the
strongest signal from the macro BS, and also because the varying data-traffic pattern in the network is
not being considered during the cell-selection procedure. To overcome this problem, UEs should be
effectively pushed onto the small BSs, but currently, cellular standards support max-SINR, max-RSSI
(received signal strength indicator) [16], and biased received power-based user association [18] schemes.
In the first two schemes, the UE will be associated with the BS from which it receives maximum signal
strength among all the BSs. From the UE’s perspective, this scheme should give a better data rate. In a
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biased received power-based user association scheme, UEs are offloaded to low-powered small cells
using association bias [14]. The UE adds a bias value to the receiving power of the low-powered small
cells; however, it is difficult to prescribe the optimal biased value. These schemes perform well in
the traditional cellular network [14], where the macro BSs have uniform transmitting power and are
deployed uniformly. However, the HetNet environment is completely different, as the heterogeneous
BSs are not deployed uniformly.

1.2. Load Balancing Problem

The definition of “load” in a cellular network changes according to the environment. The authors
in Refs. [14,17,19] consider the load of a BS as the number of UEs attached to it. If the maximum
number of UEs supported by a BS varies and the average time frequency resource used by UEs is
constant, then the traffic flow experienced by the BS is directly proportional to the attached number
of UEs. This definition of load is simple to consider and easy to implement. If a BS has many UEs
attached to it, then the total resources will be divided among the attached UEs. Hence, the per-user
data rate gets reduced, which is not desirable from the UEs perspective. Authors in Ref. [20] consider
the application-aware target rate and instantaneous physical rate to calculate the load of a BS. The UE’s
satisfaction index is calculated by taking the inverse of the load. If a UE is associated with a highly
loaded BS, then it will be less satisfied. Traditional user association schemes in a HetNet environment
with small cells result in lower UE experience, as well as load imbalance in the network; hence, a novel
user association scheme should be adopted. Thus, our objective is to design a novel user association
and load-balancing model in the new HetNet environment.

In this paper, we propose low-complexity online distributed algorithms for cell selection in a
HetNet environment, while considering two types of load definitions. The BSs and UEs are treated
as bidders and objects, respectively, such as that in online combinatorial auctions. We present an
analytical model to show the near-optimal performance of our proposed solutions.

The remainder of this paper is organized as follows. Section 2 presents some related works.
In Section 3, the system model is presented and the problem is formulated. Distributed cell-selection
algorithms are presented in Section 4. Performance analysis is given in Section 5. The performance
evaluation, discussion, and conclusion are given in Sections 6–8, respectively.

2. Related Works

Recent surveys [14,21] show different schemes regarding user association for load-balancing in a
HetNet environment. In Ref. [14], the authors surveyed different schemes to solve the load-balancing
problem, such as centralized optimization, the game theory, Markov decision process, and biasing
schemes, and also mentioned some of the open challenges. They also discussed a few myths in detail,
such as signal quality (which is the main driver of user experience) and spectrum crunch. UE will not
always get the best experience from the strongest BS in its range, and the current focus should be on
the development of infrastructure rather than spectrum shortage. The authors in Ref. [22] surveyed
various user-association schemes and summarized the challenges into four parts, being complexity,
energy efficiency, spectrum efficiency, and interference management. They also stated that the large
number of UEs, together with the increasing number of BSs requires simple user-association algorithms,
with minimal signaling and processing overhead. Authors in Ref. [23] proposed a load-balancing
scheme based on a machine learning technique that uses both unsupervised learning and supervised
learning, as well as the Markov Decision Process. Authors in Ref. [21] discussed the control mechanisms
for user association in a cellular network which can be divided into three categories, namely centralized
control, distributed control, and hybrid control. In centralized control, a single processing unit takes
all the decisions for user association. Some centralized controls were presented in Refs. [24–27]. The
authors in Ref. [24] formulated the resource allocation with a load-balancing problem as a mixed-integer
nonlinear non-convex combinatorial optimization problem. Then, a nonlinear fractional programming
scheme and dual decomposition scheme were applied to search the optimal solutions. A two-tier
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scenario with a centralized controller for load-balancing was considered in Ref. [25], where the
load-balancing problem was formulated as a nonlinear integer problem, and a centralized entity was
responsible for the load-balancing task. The authors in Ref. [26] proposed an ON-OFF transmission
coordination model which can control the BS to either transmit at the maximum power or none. An
optimization problem was formulated to maximize the throughput and balance the load in Ref. [27],
where the user-association task was done centrally. Centralized controls have been proven to show
good results in terms of optimal resource allocation, with a fast convergence. However, the required
amount of signaling overhead grows exponentially, and is intractable with the increase in network
size [17,21]. Hence, a scheme having decentralized implementation with low-signaling overhead is
desirable [28]. Distributed controls [17,19,20,29–43] can be further divided into the static/offline and
dynamic/online environment, and are guaranteed to be the simple and low-complexity alternative
to centralized controls. In a distributed control, the UEs select the BSs based on the received signal
strength and information received, such as load information, from BSs in range. BSs and UEs make
autonomous user association decisions by themselves through mutual interaction. Both the BSs and
the UEs execute the load-balancing algorithm on their respective ends. The BSs broadcast the load
parameter periodically, and the concerned UEs take the decision of associating to a BS based on these
load values and signal strengths. These schemes achieve higher performance in terms of network
throughput and load balance.

Offline and Online User Association

In the offline user association scheme, a static network environment is provided where the
complete setup is assumed to be known previously. In general, a throughput optimization problem
is formulated for the user association problem. Authors in Refs. [17,31–35,37–43] considered a static
environment, where the channel condition does not change. A q-learning-based BS selection game
was applied in Ref. [30]. In this, the UE tries to maximize a utility function by associating it with the
best possible candidate for BS. The system converges to Nash equilibrium after several numbers of
steps. By considering numerous sensors and mobile devices with a dense deployment and formulating
the problem as a non-cooperative game mode, authors in Ref. [38] investigate the cell selection
problem. They theoretically found the circular boundaries between the devices selecting the macrocell
and those selecting the picocells. However, in the game-theory-based schemes, the players (BSs or
UEs) cannot act rationally all the time due to the fact that different players (e.g., BSs) always have
different optimization objectives [44]. Although the user association problem for a static/offline
environment has been thoroughly investigated, less attention has been given to the online user
association. The motivation behind the online user association problem is the practical nature of the
problem. This is due to the fact that, in the presence of new UEs arriving over time, the problem is
solved from scratch, where there is a high probability of UE re-association. This is not desirable from a
UE’s perspective, where frequent re-association occurs. The online schemes, on the other hand, do not
need the complete setup in prior. The association decision is taken in an online fashion—that is, each
UE associates with a BS upon arrival to the network. There is less related work present for the online
user association problem. Authors in Ref. [19] highlighted the problem in static environments, and
proposed user-centric and cell-centric online algorithms. A game-theory-based BS selection strategy
was investigated in Ref. [39]. The problem was formulated as a non-cooperative game, where the
strategy converges to Nash-equilibrium in a small number of steps. These schemes are straightforward
as the maximum of a utility is considered for the user association. In this scheme, UEs arrive to the
system one after another and select the BS which either maximizes the utility of the BS or the UE.
Authors in Ref. [45] study the user association problem by considering both energy and spectrum
efficiency maximization of the 5G HetNet. Taking the quality of service into account, the authors
develop a low-complexity algorithm to solve the formulated optimization problem in an approximate
manner. The approximation algorithm can also be employed in an online fashion. In Table 1, we have
compared various user association schemes, while considering fairness and the environment type.



Sensors 2019, 19, 1412 5 of 23

Table 1. Comparison of user association schemes.

Ref. Control Environment HetNet Fairness

[17] Distributed Static Yes High
[19] Distributed Dynamic Yes High
[20] Distributed Dynamic Yes Moderate
[24] Centralized Static Yes -
[25] Centralized Static Yes High
[29] Distributed Dynamic Yes High
[26] Centralized Static Yes High
[27] Centralized Static Yes -
[30] Distributed Dynamic Yes -
[31] Distributed Static No -
[32] Distributed Static No -
[33] Distributed Static Yes High
[34] Distributed Static No -
[35] Distributed Static Yes -
[36] Distributed Dynamic Yes -
[37] Distributed Static Yes High
[39] Distributed Dynamic Yes -
[40] Distributed Static Yes -
[41] Distributed Static Yes High
[42] Distributed Static Yes -
[43] Distributed Static Yes -
[45] Centralized Dynamic Yes High

The low complexity and dynamic nature of the distributed algorithm is well-suited for the
cell selection problem. In this paper, we proposed two types of online distributed algorithms for
load-balancing in a heterogeneous cellular network, such as probabilistic and d-choices-based user
association schemes. D-choices-based distributed load-balancing algorithms have been successfully
applied to various server selection and channel allocation problems [46], where a client chooses
d number of servers uniformly at random and associates with that server, which has a minimum
load. A solution to balls into non-uniform bins was investigated in Ref. [47], where a heterogeneous
environment was considered and the balls are assigned to the bins. After the allocation, the maximum
load (number of balls) was found to be lnln(n)

ln(d) , where n is the number of bins and d is the number of
choices for a ball. A more realistic environment was considered in Ref. [48],where a ball arrives in a
random location and wishes to associate with a bin, which is the same as the user association problem.
The procedure achieved a balanced allocation after the execution of the scheme. In the heterogeneous
RAN, a tier-wise, as well as BS wise load-balancing is desirable, and hence a multi-level load-balancing
scheme is needed. To the best of our knowledge, a d-choices-based scheme has not been applied to the
user association problem in a cellular network.

3. System Model and Problem Formulation

We consider a K-tier HetNet, and denote the set of tiers as K = {1, 2, ..., K}, the set of all BSs as
B = {1, 2, ..., B}, and the set of UEs asU = {1, 2, ..., U}. The cardinality ofB andU give the total number
of BSs and UEs in the system, respectively. Each small BS uses a wireless backhaul to connect with
the macro BS, either directly or indirectly. We adopt a universal frequency reuse scheme among the
different tiers. This model can easily be extended to a multi-RAT scenario. We assume that at a given
point of time, a fraction of the total UEs, say U, will get access to the network. Without the loss of
generality, the UEs are indexed as their arrival in the system—that is, where UE 1 arrives first and UE
U arrives last. The maximum capacity, as well as maximum transmission power varies from one tier to
another. Each BS has a positive integer capacity, also termed the size of a BS. We denote λj,k and Pj,k as
the current load and the transmission power respectively of BS j at tier k, where j ∈ B and k ∈ K. To
calculate the load of a BS, we consider two different parameters—the number of UEs and the SINR
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experienced from a BS. While considering the number of UEs as a load parameter, we consider the
following assumptions. Each UE in the network consumes a portion of the time-frequency resource
from the BS. Here, we consider an orthogonal frequency-division multiple access (OFDMA)-based
medium access control (MAC) protocol with fair sub-carrier scheduling, as given in Ref. [27]; hence,
the load of the BS could be the total number of UEs associated with it [17]. The average data rate from
a BS also signifies the load, as the highly loaded BS’s average data rate will be lower, as compared
with other BSs. We present load1 and load2 as the loads occurring due to the number of UEs and the
average data rate of the BS, respectively. In a HetNet environment, BSs of different tiers can provide
services to a varying number of UEs, and come with varying capacities. For example, a macro BS can
offer services to a considerably large number of UEs, as compared to a pico BS. If we consider the
same number of UEs attached to both macro BS and pico BS, then the load is not same for both the BSs;
in contrast, the macro BS is lightly loaded as compared to that of pico BS. One important parameter,
SINR, plays a key role in accessing the network. At first, a UE scans all the possible BSs it can access,
and then it calculates the SINR, ηi,j,k, of these BSs:

ηi,j,k =
Pj,khi,j,k

∑l∈B,l 6=j Pl,khi,l,k + σ2 , (1)

where Pj,k is the transmission power of BS j at tier k, hi,j,k is the channel gain between UE i, and BS j at
tier k. σ2 denotes the noise power level, and ∑l∈B,l 6=j Pl,khi,l,k is the interference received from other
BSs of the same tiers. The instantaneous data rate, ri,j,k, associated with the SINR, ηi,j,k, is given by:

ri,j,k = W log2(1 + ηi,j,k) (2)

In a conventional network, the UE will associate with that BS whose SINR is the maximum,
among all the BSs in range. In a HetNet environment this type of association scheme will lead to
load imbalance among BSs. UEs attached to macro BS will not get the desired data rate, though the
instantaneous data rate is quite high. This is because the total resources will be divided among all
the associated UEs, and the per-user data will be significantly low. Let Nj,k be the set of UEs attached
to the BS j of tier k. If the BS schedules for equal resources for each UE in an OFDMA-based MAC
protocol [17,19,27,39], then the actual UE data rate will be given by the following equation:

Ri,j,k =
ri,j,k

|Nj,k|
, (3)

where |Nj,k| is the total number of UEs attached to BS j at tier k. Note that if a scheme can evenly
distribute UEs among the BSs, then the minimum data rate will also increase as the per-user resource
sharing rate will be high.

We assume that equal time-sharing will be used to schedule the UE, in case a BS is associated
with multiple UEs. Hence, the throughput of an UE i depends on the total number of UEs attached to
and sharing the same BS [17,19,39]. While defining the load1, we consider the current load of a BS to
be the number of attached UEs. The load1 of a BS is defined as follows:

λload1
j,k = |Nj,k|, (4)

Similarly, while considering the average data rate of a BS as load2, we have the following expression,

λload2
j,k =

∑ Ri,j,k

|Nj,k|
. (5)

Note that both Equations (4) and (5) represent the load of a BS by considering different parameters.
One important difference in λload1

j,k and λload2
j,k is that, the higher λload1

j,k value signifies a higher load of a
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BS, while a higher λload2
j,k value implies a lower load. The definitions of all the variables are given in

Table 2.

Table 2. Brief description of acronyms.

Notation Description

K Set of tiers
B Set of BSs
U Set of UEs
B Number of BSs in the network
U Number of UEs in the network
λload1

j,k Current load1 of BS j belongs to kth tier
λload2

j,k Current load2 of BS j belongs to kth tier
Pj,k Transmission power of a BS j belongs to the kth tier
ηi,j,k SINR from BS j of tier k to UE i
σ2 Noise power level
W Bandwidth
ri,j,k Instantaneous rate from BS j of tier k to UE i
Ri,j,k Actual experienced data rate from BS j of tier k to UE i
xi,j,k UE and BS association indicator
Nj,k Set of UEs attached to BS j of tier k
Bi Set of BSs the UE i can associate with
Ui,j,k(.) Utility of UE i from BS j of tier k
Vj,k(.) Utility of BS j of tier k
Ωj,k Set of UEs that the BS j of tier k can be associated with
αi,j,k Association parameter calculated by UE i considering BS j of tier k
δi,j,k Probability of association calculated by UE i considering BS j of tier k

Before the problem statement is formally defined, we highlight the trade-off problem between
throughput and fairness. The authors in Ref. [49] presented a family of fairness functions by considering
five axioms of fairness measures. Jain’s fairness [50], α-fairness, and entropy are special cases of this
family. Furthermore, authors in Refs. [51,52] provide an analytical framework of a throughput-fairness
trade-off, and show that an approach can be considered more or less fair compared to other ones,
depending on the fairness definition. In this work, we maximize the throughput of the network by
considering the log utility function. This ensures that allocation of more resources for a well-served
UE has a low priority compared to the allocation of more resources to UEs with low data rates [17].

Problem Formulation

Taking a utility function perspective, we assume that UE i obtains utility Ui(Ri,j,k) when the
receiving data rate is Ri,j,k, which is a function of the actual data rate Ri,j,k. Let xi,j,k be the association
indicator, xi,j,k = 1 if user i is connected to the BS j of tier k and 0 otherwise. We formulate the user
association problem for load1, that maximizes the aggregate utility function (denoted as Q1):

maximize
xi,j,k

∑
i∈U

∑
j∈B

∑
k∈K

xi,j,kUi

( ri,j,k

∑l∈U xl,j,k

)
(6)

s.t. ∑
j∈B

∑
k∈K

xi,j,k = 1, i ∈ U (7)

ηi,j,k ≥ τ, i ∈ U, j ∈ B, k ∈ K (8)

xi,j,k ∈ {0, 1}, i ∈ U, j ∈ B, k ∈ K, (9)

where the constraints ensure that a UE can only be associated with a single BS, and the SINR should be
greater than some threshold τ. The SINR threshold τ is the minimum SINR level required to decode the
received signal from the BS. For example, the SINR required to decode a Quadrature Phase Shift Keying
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(QPSK)-modulated signal is comparatively lower than that of a Quadrature amplitude modulation
(QAM)-modulated signal. The association indicator, xi,j,k, ensures that a UE can only connect to a
single BS. This problem can be easily extended to multiple BS association. Since the above problem Q1
is an integer program, it is generally difficult to find the optimal solution. The problem Q1 can easily
be converted to a convex optimization problem by simply making the utility function as a logarithmic
utility and relaxing the constraint in Equation (9) as xi,j,k ≥ 0. This converted convex optimization
problem can be solved effectively. The above optimization problem, Q1, can be reconfigured, which
maximizes the average utility function (denoted as Q2) as follows:

maximize
xi,j,k

∑
i∈U

∑
j∈B

∑
k∈K

xi,j,k

Ui

( ri,j,k
∑l∈U xl,j,k

)
|Nj,k|

(10)

The problem Q2 maximizes the average UE throughput, which ensures fairness in the network.
The problem Q2 has same set of constraints as that of Q1.

4. Algorithm Description

In the following, we consider a static environment and implement a centralized solution, and
later compare with our proposed schemes to show the novelty. Figure 2 shows a static environment,
where the UEs have no mobility and the channel condition remains constant. The centralized entity
requires some primitives before making any decisions. Below are the numbers of functions with their
meanings, which are essential to running the centralized solution.

1. Neighborhood(BSj) = Set of BSs neighbors to BS j. 1 ≤ j ≤ B
2. Can_Access(i) = Number of BS(s) that can be accessed by the ith UE. 1 ≤ i ≤ U

Macro BS

Macro BS

Macro BS

UE

Figure 2. User equipments (UEs) placed in a homogeneous environment. Some UEs can access two or
more macro base stations (BSs).

The UE obtains the Can_Access(i) value by performing an initial BS search. The BSs whose SINR
is greater than a threshold, τ, are considered. UEs are responsible for sending the Can_Access() value
to their respective BSs, and the BSs, in turn send these parameters to the centralized entity. Algorithm 1
is then executed at the centralized entity, where it searches for the BS having optimum λj,k value at
each loop. By optimum λj,k, we mean the minimum for λload1

j,k and maximum for λload2
j,k . Upon finding

the BS, the centralized entity searches for neighboring BSs which are having optimum λj,k values.
Then, a UE selection strategy is applied to select a particular UE. UE whose Can_Access() value is 2
is given higher priority over the UE whose Can_Access() value is 3 and so on, because Algorithm 1
gives priority to UEs which have a lesser number of BSs in its range. As we consider two load values,
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λload1
j,k and λload2

j,k , a proper decision must be taken for the BS selection at steps 2 and 4 of the algorithm.

For λload1
j,k , min is considered at step 2 and max is considered at step 4, while for λload2

j,k the opposite

decisions are taken. This is because of the nature associated with λload1
j,k and λload2

j,k , where higher value
of the former gives a higher load, while the opposite holds true for the latter.

Algorithm 1 Centralized solution

1: Assign UEs to the BSs which have Can_Access() =1;
2: Find the BS with a opt (λj,k) value,

L = opt {λj,k}, ∀j ∈ B, ∀k ∈ K
3: Lnh = neighbourhood (L)
4: Find a BS which has a opt λj,k value and is a neighbor to BS L,

S =opt {λj,k|j, k ∈ Lnh},∀j ∈ B, ∀k ∈ K
5: if L ∩ S = φ then
6: Lnh = Lnh − {S}
7: if Lnh = φ then
8: Do not consider this base station in future processing
9: Go to Row 2

10: end if
11: Go to Row 4
12: else
13: A = Lnh ∩ S, c = 2
14: Select an UE i whose Can_Access(i) = c, i ∈ A
15: if Can_Access(i) = φ then
16: c = c + 1
17: Go to Row 14
18: end if
19: Assign the Selected UE to BS Lnh

20: end if
21: Update the λj,k, ∀j ∈ B, ∀k ∈ K
22: Goto Row 2

The above-mentioned scheme works well in a static, idealistic environment where there is no
mobility and the channel quality remains intact. A slight change in the Can_Access() value triggers the
centralized entity to re-run the algorithm from scratch, which is not suitable for a dynamic case. Hence,
we develop distributed methods to handle the dynamic nature of the environment. Two schemes
are developed for UEs with mobility using a distributed scheme: (a) the probability-based and (b)
the d-choices-based selection, which try to balance the load over the whole network.

4.1. Probability Scheme

In this probability scheme, the UE selects a BS in a probabilistic manner upon arrival at the
network. Actually, the UE considers two parameters, ηi,j,k and λj,k, before associating with a BS j at
tier k. Higher values of ηi,j,k and optimal λj,k yield in higher probability of associating with the BS j.
The intuition behind this scheme is that higher ηi,j,k from the BS gives a higher data rate, and optimal
λj,k of the BS leads to better down-link speed. The working principle of the probability scheme is easy
to describe. The BSs periodically transmit their load parameter. When a new UE i arrives at the system,
it checks for the BSs in range and calculates the ηi,j,k, and also receives the λj,k parameter of these BSs.
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Let b be the set of BSs the UE can associate with. For each BS that satisfies the SINR constraint τ, the
UE i calculates the following association parameter αi,j,k:

αi,j,k := f un(ηi,j,k, λj,k) (11)

The value of f un(ηi,j,k, λj,k) for λload1
j,k and λload2

j,k is given by U
( ri,j,k
|Nj,k+1|

)
, and U

(
ri,j,k ∗

∑ Ri,j,k
|Nj,k |+1

)
,

respectively. Note that U (.) represents the UE’s own utility. After calculating the αi,j,k for each BS in its
range, the UE i then calculates the probability of association. The probability of association with a BS
is given by:

δi,j,k =
f un(ηi,j,k, λj,k)

∑j∈b ∑k∈K f un(ηi,j,k, λj,k)
, i ∈ U, j ∈ B, k ∈ k. (12)

The UE now has information regarding the probability of association with each BS. Equipped
with this information, the UE then selects one BS in a probabilistic way. Note that the BS having higher
αi,j,k will have a higher probability to be selected. Algorithm 2 depicts the above scheme.

Algorithm 2 Probability scheme

1: Initialize δi,j,k := 0, i ∈ U, j ∈ B, k ∈ K
2: for each UE i in the network do
3: Bi := { set of BSs ∈ B | ηi,j,k ≥ τ }
4: Calculate αi,j,k := f un(ηi,j,k, λj,k)

5: Associate UE i with BS j of tier k with probability δi,j,k

6: end for

Each UE executes the Algorithm 2 at their respective end. In Step 1, all the UEs in the network
initialize their association probability to 0. Cell selection begins at Step 2 and in Step 3, the UE collects
the BS information, which satisfies the SINR threshold. These are the potential BSs the UE can attach
to. As the BS broadcasts their load information periodically, the UE is able to calculate αi,j,k for each BS
in Bi (Step 4). The expression f un(ηi,j,k, λj,k), given at Equation (11), is different for λload1

j,k and λload2
j,k .

The UE associates with a BS in Bi with a probability δi,j,k according to Step 5.

4.2. Hierarchical d-Choices Scheme

The user association problem can be thought of as the “balls and bins” problem, shown in Ref. [48].
We can consider UEs to be balls and BSs to be bins. Each UE has a certain BS to associate with, and
each BS has a specific capacity—for example, macro BS has more capacity than that of pico BS. Like
in the traditional “balls and bins” experiment, each ball can choose d number of bins to associate
with, and the expected maximum load is given by Equation (13), where n is the number of balls in the
system. Here, O(1) represents a constant. No matter how large the size of n be, the maximum load is
bounded by ln ln n

ln 2 .

E[maximum load] =
ln ln n

ln 2
+ O(1). (13)

The same principle can be applied to the association scheme in a cellular network. Each user can
choose d number of BSs and select a BS that has the lightest load among the chosen BSs. This above
method is well-suited for homogeneous cases, where each BS has the same capacity and same
probability of association, but in the case of HetNet, the capacity varies from one tier to another.
Hence, load-balancing in this HetNet should be carefully considered. Authors in Ref. [47] proposed a
“balls into non-uniform bins” method. Accordingly, we first reduced our BS selection problem to the
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“balls into non-uniform” problem, and then applied the algorithm prescribed therein. Each UE will
associate with a BS so that the final load will be bounded by some factor.

The d-choices scheme has been successfully applied to many load-balancing applications. The main
strategy is that when a UE arrives to the system, it chooses d servers in the system uniformly at random.
Then, the UE checks the load of each of the d servers, and associates with the server with the least
load. We tried to apply a similar scheme to this cellular network. Our scheme consists of two levels:
(1) load-balancing in different tiers, and (2) load-balancing in each BS in a particular tier. The network
traffic for different RATs must flow through the corresponding service gateway, so care must also be
taken to balance the load in the service gateway level. We assumed that all BSs broadcasted their
load information periodically. The macro BS, having the highest coverage area, has a special task,
in that it accumulates all the load parameters of BSs of different tiers, adds them up tier-wise, and then
broadcasts the load value. The broadcast signal by macro BS will have the load value of all tiers in
the network.

The UE performs the load-balancing task in two levels. Figure 3 shows the procedure of load
transmission in two levels. After receiving the load information from macro BS, it selects d tiers
uniformly at random, and then chooses a tier from the d number of tiers which has a minimum load.
The next step is to choose a BS from the already chosen tier. The UE repeats the above procedure for
selecting a BS from the chosen tier. The UE chooses d number of BSs uniformly at random, and selects a
BS from the d number of BSs which has a minimum load. This procedure ensures load balancing at two
levels: (1) tier-level load-balancing, and (2) BS-level load-balancing. Note that tier-level load-balancing
is required to shift the load from a heavily loaded tier to a lightly loaded tier. Algorithm 3, d-choices,
depicts the above distributed d-choices scheme by considering λj,k.

Algorithm 3 Two-level d-choices scheme.

1: λi := {set consisting loads of tiers for ith UE | ηi,j,k ≥ τ }
2: for all UEs, i do
3: Independently choose a set Kd

i of d1 tiers at random from λi

4: λi,k := {loads of tiers belong to Kd
i }, without loss of generality λi,k := { λi,1, λi,2, ..., λi,d1 }

5: find Kψ := opt ( λi,1, λi,2, ..., λi,d1 )
6: Bi := { set of BSs ∈ kψ | ηi,j,k ≥ τ }
7: Independently choose a set Bd

i of d2 BSs at random from Bi

8: λj,k := {loads of BSs belong to Bd
j }, without loss of generality λj,k := { λj,1, λj,2, ..., λj,d2 }

9: find Bψ := opt ( λj,1, λj,2, ..., λj,d2 )
10: Associate UE i with Bψ BS
11: end for
12: Kload1

ψ = min{λload1
i,1 , λload1

i,2 , ..., λload1
i,d1 }

13: Kload2
ψ = max{λload1

i,1 , λload1
i,2 , ..., λload2

i,d1 }
14: Bload1

ψ = min{λload1
j,1 , λload1

j,2 , ..., λload1
j,d2 }

15: Bload2
ψ = max{λload1

j,1 , λload1
j,2 , ..., λload2

j,d2 }
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Figure 3. Two-level load transmission. In Level One, all the small-cell BSs, pico and femto, send their
respective load value to macro BS. In Level Two, all the base stations (BSs) broadcast their load values.

Algorithm 3 executes the d-choices schemes in two levels. The UE begins its user association
procedure by accumulating the BSs which satisfy the ηi,j,k ≥ τ in a tier-wise manner (Step 1).
Subsequently, in Steps 3–5 the UE selects a tier from the Kj set using the d-choices scheme. The same
procedure is applied to choose a BS from the chosen tier in Steps 6–9. Then in Step 10, the UE associates
with the chosen BS. As the two load parameters, λload1

i,k and λload2
i,k , have different properties, the opt

function in Steps 5 and 9 returns different values, as mentioned in Steps 12–15. In the next subsection,
we discuss the effect of different values for d1 and d2.

Effects of Different d-Choices and Different User Association Methods

To evaluate the effect of different d-choices, we consider a hypothetical scenario where there are
four tiers and each tier has 10 servers. 1000 UEs arrive at the system one by one to attach with a server.
First, the UE randomly picks d1 tiers, and chooses the tier with the smallest load (total number of UEs).
After the selection of an appropriate tier, the UE then randomly picks d2 servers from a selected tier
and picks the server with the minimum load. We chose Jain’s fairness index for the fairness evaluation.
The different d-choices, average Jain’s fairness index, and the total probes made by a UE are given
in Table 3. The Jain’s fairness index with only four probes is about 0.9985, and this fairness does not
increase significantly with an increase in the number of probes. The author in Ref. [53] showed that
the power consumption of a UE increases with an increase in the number of probes.

Apart from selecting the tier with a minimum load, a new scheme could be considered for the
evaluation. If we select the most unbalanced tier from the d chosen tiers and allocate the UE to
the minimum loaded BS, then the scenario will be totally different. This strategy may not ensure a
load-balancing scenario. Think of a situation where all the servers of a tier have an equal number of
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UEs, but the total UE number is less than another unbalanced tier. The balanced tier will never be
selected, even though the total number of UEs are less than other tiers. The final outcome will be an
unbalanced allocation; hence, this method is not desirable.

Table 3. Comparison of different d-choices.

Different Combinations of d Average Jain’s Fairness Total Number of Probe

d1 = 2, d2 = 2 0.9985 4
d1 = 2, d2 = 3 0.9995 5
d1 = 2, d2 = 4 0.9997 6
d1 = 3, d2 = 2 0.9985 5
d1 = 3, d2 = 3 0.9984 6
d1 = 3, d2 = 4 0.9998 7
d1 = 4, d2 = 4 (optimal case) 1 14

5. Performance Analysis

In this section, we give an analytic model of the performance for the online algorithms by
considering load1. The analysis for the load2 follows the same line. We first prove the fact that
the BS utility function is submodular and monotone. Then, we show that the UE utility function
exhibits the same outcome as BS utility. As a concrete example, we analyze the logarithmic UE utility
Ui(.) = log(.), ∀i ∈ U, which is commonly used in wireless networks to provide proportional fairness
among UEs [17]. The utility of the BS is defined as the sum utility of its associated UEs. Under the
logarithmic utility, the BS utility function becomes:

Vj,k(Nj,k) = ∑
i∈Nj,k

log
( ηi,j,k

|Nj,k|

)
, j ∈ B, k ∈ K, Nj,k ⊂ Ωj,k (14)

Definition 1. The UE utility function Ui(·) is submodular and monotone.

Lemma 1. Vj,k(Nj,k) = ∑
i∈Nj,k

log(
ηi,j,k

|Nj,k|
), k ∈ K, j ∈ Bk, Nj,k ⊂ Ωj,k is submodular and monotone.

Proof. Our proof is, in essence, similar to the proof given in Ref. [19]. Here, we present it for
completeness. For submodularity, we have the following definition:

For every N, O ⊆ Ω with N ⊆ O and every i ∈ Ω we have that V(N ∪ {i})− V(N) ≥ V(O ∪
{i})− V(O). Let us first consider the case N 6= ∅. We have

Vj,k(i|N) = Vj,k(N ∪ {i})− Vj,k(N).
= ∑l∈N∪{i} log(

ηl,j,k
|N|+1 ) −∑l∈N log(

ηl,j,k
|N| )

= log(ηi,j,k) + |N| log |N| − (|N|+ 1) log(|N|+ 1).
(15)

For Vj,k(i|N) ≥ Vj,k(i|O), is equivalent to |N| log |N| − (|N| + 1) log(|N| + 1) ≥ |O| log |O| −
(|O|+ 1) log(|O|+ 1). To show the marginal gain, Vj,k(.) is a decreasing function, and we need to
show that n log n− (n + 1)log(n + 1) is a decreasing function for n > 0.

f (n) = n log n− (n + 1) log(n + 1)
f
′
(n) = log(n)− log(n + 1)

(16)

The function f
′
(n) clearly is a decreasing function ∀n > 0. For the other case N = ∅, we need

to show that 0 ≥ |O| log |O| − (|O|+ 1) log(|O|+ 1). The proof is straightforward, as |O + 1| ≥ |O|
and log(|O + 1|) ≥ log(|O|), ∀ |O| > 0. Thus, the expression Vj,k(N) ≥ Vj,k(O) holds true for all cases.
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We conclude that Vj,k(.) is submodular. From (16), it is clear that f
′
(n) is decreasing ∀n > 0. Hence,

Vj,k(.) is monotonically decreasing. We conclude that Vj,k(.) is submodular and monotone.
Now, we prove the fact that the UE utility function, Ui(.), is similar to the marginal gain of the BS

utility function—that is, Vj,k(i|N). The UE i’s utility for BS j belongs to tier k is given as log
(

ηi,j,k
|N+1|

)
,

which is equal to
Ui(.) = log(ηi,j,k)− log(|N + 1|) (17)

Now, we establish the similarity between Equations (15) and (17). Equation (15) can be re-written as:

Vj,k(i|N) = log(ηi,j,k)− ((|N|+ 1) log(|N|+ 1)− |N| log |N|)

The expression log(|N + 1|) from (17) and (|N|+ 1) log(|N|+ 1)− |N| log |N| from Equation (15)
exhibits a similar trend. This can be verified from Figure 4. By following the same line after
Equation (15), we conclude that the UE utility function, Ui(.), is submodular and monotone.

0 1 2 3 4 5 6 7 8 9 10

N ×10
4

0

1

2

3

4

5

6
log(N+1)

(N+1) log(N+1) - N log(N)

Figure 4. Similarity between UE’s utility and BS’s utility.

Theorem 1. Under the submodularity and monotonicity of Ui(.), we have E[ALG2(Q1)] ≥ 1
2−b−1 OPT(Q1),

where b = maxi∈U |Bi|.

Proof. The submodularity and monotonocity of Uj(.) are shown in the Lemma 1. By following the
analysis of Theorem 1 in Ref. [19], we can conclude that E[ALG2(Q1)] ≥ 1

2−b−1 OPT(Q1).

Time Complexity Analysis

In this section, we compute the time complexity of the different proposed algorithms. The time
complexity of Algorithm 2 depends on the number of UEs and BSs. Each UE calculates the ηi,j,k
and receives the λi,k information from the candidate BSs; afterwards, it goes for the user association
procedure. Calculation of ηi,j,k and the probability of association for each BS depends on the factor
that calculates how many BSs satisfy the SINR threshold. The number of BSs which satisfy the SINR
threshold varies from UE to UE. We denote the average number of BSs accessed by these UEs to be C,
where the time complexity for Algorithm 2 will then be of O(C), as the method is distributed in nature.
Algorithm 3, on the other hand, works differently. Each UE selects a tier, k, in the first level and a BS,
j, from that tier in the second level. Both selections of the tier and BS are performed on the number
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of choices d1 and d2, respectively. In Level 1, for the selection of a tier, the algorithm tries to find a
tier that has a minimum load out of the d1 chosen tiers. This results in O(d1) for a single UE. In the
second level of the algorithm, the UE finds a BS from the selected tier. The UE has a number of choices,
but only d2 numbers of BSs are eligible for the access procedure. Therefore, the time complexity for
Algorithm 3 depends on both levels 1 and 2. The time complexity of this distributed scheme is thus
the sum of the two choices in two different levels. Hence, the time complexity is O(d1 + d2). Table 4
shows the comparison of different algorithms by considering association rule, time complexity and
scheme employed.

Table 4. Comparison of different algorithms.

Algorithm Association Rule Time Complexity Scheme

1 Centralized
O(U); U is the total number
of UEs in the network Greedy based

2 Distributed
O(C); C is the average number
of BSs a UE can access to Probability based

3 Distributed
O (d1+d2); d1 and d2 are the
number of choices in the two levels d-choices based

6. Performance Evaluation

Here, we consider a three-tier HetNet environment consisting of macro, pico, and femto BSs.
We develop the HetNet environment and run the simulation on the MATLAB platform. The BSs are
uniformly and independently distributed in a 2000 × 2000 m2 space. The macro BS is placed at the
central location of the space, and 4 pico and 20 femto BSs are deployed in the whole region. We also
consider a uniform and non-uniform deployment of the 500 mobile UEs in the network scenario. For
non-uniform deployment, we place the UEs around Femto and Pico BSs. Figure 5a,b depicts the UE
and BS deployment for uniform and non-uniform UE deployment respectively. These UEs arrive to
the system online—that is, there is one UE arrival per unit time. The spectrum bands of different tiers
are orthogonal to each other, and hence do not interfere with each other, whereas BSs which belong to
the same tier do interfere. The transmission powers of macro, pico, and femto BSs are 46 dBm, 35 dBm,
and 24 dBm, respectively. The path-loss model for macro BS is taken as 128 + 37.1*log10(D), where D is
in kilometers. The path-loss model for pico and femto BS is taken as 37 + 30*log10(D), where D is in
meters. We assume log-normal shadowing with a standard deviation σs = 8 dB and a bandwidth of
10 MHz. The thermal noise power is σ2 = −104 dBm. For the different d values in Algorithm 3, we
restrict the choices to only two, as the probability for higher d decreases in a real environment [54]. We
perform the simulation 100 times and averaged out the results. The following are the performance
matrices used for the evaluation of our results.

(a) Cumulative distribution function (CDF) of spectrum efficiency
(b) Normalized minimum user rate [19]

The minimum user rate is normalized with the optimum value. The optimum value is the
maximum among the minimum user rate on each scheme. Let R be the minimum data rate experienced
by the UE(s) in the network. The value R will vary from one scheme to other. Let there be N schemes,
so the normalized user rate, β̃min, for each scheme, n ∈ N, is given by β̃min = Rn

max{R1,R2,...,RN}
.

(c) Normalized sum user rate [19]

The sum user rate of the network is normalized with the optimum value. The optimum value is
the maximum among the sum user rate on each scheme. Let S be the sum user rate of the network.
The value S will vary from one scheme to other. The normalized sum user rate, β̃sum, for each scheme,
n ∈ N, is given by β̃sum = Sn

max{S1,S2,...,SN}
.
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(d) Jain’s fairness [50]
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(a) Uniform deployment.
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(b) Non-uniform deployment.

Figure 5. UE and BS deployment in the network.

6.1. Loads among Different BSs

Along with the traditional max-SINR, we also consider the BS-centric algorithm (BS-centric),
proposed in Ref. [19], as our benchmark scheme. The UE share in uniform and non-uniform
deployment of UEs is shown in Figure 6a,b, respectively. In the uniform UE deployment scenario, as
expected, the traditional max-SINR shows an uneven UE share. However, we can see that a considerable
amount of UEs are being offloaded to Pico and Femto BSs in the case of Prob. scheme 1, Prob. scheme 2,
and BS-centric. UEs associated with macro BS are being offloaded to both Pico and Femto BSs, which
verifies the effectiveness of our proposed probability schemes. The d-choices schemes, on the other hand,
focus on tier-wise balanced UE allocation. Figure 6a clearly shows the balanced allocation of UEs for
d-choices 1 and d-choices 2 schemes. A similar trend can be seen in non-uniform deployment. More UEs
are offloaded to pico and femto BSs.
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Figure 6. UE share for different association schemes in different deployment scenarios.

6.2. CDF of Spectrum Efficiency

One way to give a better experience to the UEs experiencing low spectrum efficiency is to take the
resource from strong UEs and assign it to weak UEs. This task of taking the resource from strong UEs
is done through load-balancing. Figure 7a, for uniform UE deployment, shows the CDF of spectrum
efficiency in HetNet for different association schemes. Approximately 85% of the UEs, for all the
schemes, have a spectrum efficiency lower than 1 bit/s/Hz. This ensures that very few UEs close to
the BS have a higher spectrum efficiency. Prob. scheme 1, Prob. scheme 2, d-choices 1, d-choices 2, and
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BS-centric schemes perform quite well at spectrum efficiency as compared to the traditional max-SINR
scheme. When considering the BS-centric one, our proposed schemes give better service to the majority
of UEs—approximately 65%—in terms of spectrum efficiency. In all the schemes (except the max-SINR)
a majority of the UEs have a higher spectrum efficiency. Approximately 80% of UEs in all the schemes
have higher spectrum efficiency, as compared to max-SINR. This is because the macro BS is highly
loaded, and the total resource is divided among the UEs. This, in turn, lowers the spectrum efficiency
of the associated UEs. For non-uniform UE deployment, although many UEs are placed around
the lower-powered BSs, the outcome is similar to that of uniform deployment. All of our proposed
schemes performed better in the mid-segment of the CDF graph, where the spectrum efficiency of the
UEs are higher than that of max-SINR. Our proposed scheme, Prob. scheme 1, continuously performs
better as compared to BS-centric for non-uniform deployment, as shown in Figure 7b.
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Figure 7. The cumulative distribution function (CDF) of spectrum efficiency for different association
schemes in different deployment scenarios.

6.3. Normalized Rate

Another performance metric for evaluation of the network performance is considering the
normalized data rate of the UEs. The normalized minimum user rate, β̃min for different schemes
in the uniform UE deployment scenario is shown in Figure 8a. β̃min for max-SINR is about 0.30,
while Prob. scheme 1 and Prob. scheme 2 show improved performance. Prob. scheme 1 shows a 70%
improvement, while a similar trend can be seen for Prob. schemes 2. d-choices 1 and d-choices 2 show good
results, and the minimum UE rate is higher, as compared to max-SINR. This gain in minimum user rate
ensures that our scheme performs well for the cell edge UE, which mainly suffers with low data rate.
All our proposed schemes perform better than BS-centric and max-SINR, while Prob. scheme 1 achieves
the highest minimum user rate. A similar trend can be seen in non-uniform deployment, as shown in
Figure 8b. Prob. scheme 1 continues to perform well in non-uniform deployment. The max-SINR scheme,
on the other hand, continues to perform poorly. The metric “normalized sum rate”, denoted as β̃sum,
tells about the overall throughput of the network. In the case of traditional max-SINR schemes, the
UEs near to the BSs receive higher signal strength. As can be seen in Figure 9a, our proposed methods
for uniform deployment perform better than the max-SINR. On the other hand, for the non-uniform
deployment, as shown in Figure 9b, the throughput of max-SINR performs slightly better. However,
the max-SINR can achieve a higher sum user rate while ignoring the user fairness.
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(b) Non-uniform deployment.

Figure 8. Normalized minimum rate for different association schemes in different deployment scenarios.
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(a) Uniform deployment.
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Figure 9. Normalized sum rate for different association schemes in different deployment scenarios.

6.4. Jain’s Fairness

Jain’s fairness index of UEs’ received data rate in a network shows the overall fairness. The fairness
index becomes 1 when all UEs receive the same rate. Figure 10a,b shows the Jain’s fairness index of
UEs’ received data rate for uniform and non-uniform deployment respectively. As expected, the Jain’s
fairness index for max-SINR in uniform deployment is 0.1, which is very low. Unlike max-SINR, our
proposed schemes perform better. The fairness index nearly equals to 0.6 for all the proposed schemes.
The same outcome can be observed in the non-uniform UE deployment scenario.
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Figure 10. Jain’s fairness index of UE rate for different association schemes in different
deployment scenarios.

User mobility is an unavoidable condition in a network. A network needs to perform well in a
mobility environment. We considered Jain’s fairness index for the UE share in different schemes to
show our performance on the mobility. A network is said to be balanced in a mobility environment if
the fairness index is high in different time instances. We monitored the network for ten time instances
and noted the fairness. We adopted a random walk for the UEs. Figure 11a shows the Jain’s fairness
index in a mobility environment for uniform UE deployment. As soon as the UE changes its location
and finds a better BS (higher SINR), it changes its serving BS. This type of association sometimes gets
worse if all the UE moves closer to the macro BS. There is stability in d-choices load1 and d-choices load2
schemes. Each time the UE encounters a different load environment, it tries to balance the load of the
network. For non-uniform UE deployment, the UEs are restricted to moving around the BS. Figure 11b
shows the Jain’s fairness for non-uniform deployment. Both d-choices schemes continue to show good
results, and there is slight poor performance by the Prob. schemes, but it is better than max-SINR.
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Figure 11. Jain’s fairness for different association schemes in different deployment scenarios.

In Figure 12a,b, we show a comparison of the performance of our proposed schemes with the
optimal value. For the comparison, we consider the sum log-utility parameter. It is evident that the sum
utility of our proposed schemes show near-optimal performance for both uniform and non-uniform
deployment, which ensures the effectiveness of our proposed schemes.
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Figure 12. Performance of different association schemes in different deployment scenarios against
optimal values.

7. Discussion

The spatial distribution of network elements, such as BSs and UEs, plays an important role for the
calculation of different network parameters. From an analytical and tractability point of view, many
researchers have considered the Poisson point process (PPP), a clustered point process for BS and UE
deployment. The authors in Ref. [55] assumed a Poisson clustered process for the node location in a
wireless ad hoc network. This kind of deployment is well-suited for high-demand areas where pico and
femto BSs are clustered. The Ginibre point process (GPP) belongs to the class of determinantal point
processes. It is part-way between the lattice and PPP. Hence, GPP exhibits a real-world scenario [56].
The studies in Refs. [56,57] present a network model based on GPP. Authors in Ref. [57] provided
analytical proof to show that the GPP model allows higher accuracy compared to PPP. A similar kind
of study is considered in Ref. [58], where the authors deployed the nodes using the Gauss-Poisson
process. This distribution of the nodes illustrates the spatial distribution with attraction.

8. Conclusions

In this paper, we considered a three-tier HetNet environment, proposing user association schemes
and dynamic load-balancing through Prob. and d-choices schemes. In the K-tier HetNet, the user
association, conventionally connected to the BS with maximum SINR, results in less association
with pico and femtocells. This ultimately leads to load imbalance in the whole network. Unlike the
max-SINR, in the Prob. scheme, UE selects the BS in a probabilistic manner upon arrival into the
network by considering both SINR and the load of a BS. This technique eventually offloads the UEs
toward small cells. Inspired by the “balls and bins” load-balancing problem and the power of two
choices, we proposed the d-choices association scheme. The UE can choose d number of BSs and selects
the BS which has the lightest load among the chosen BSs. Prob. scheme 2 showed better results in
minimum user rate, while d-choices 2 showed good results for tier-wise load-balancing in both uniform
and non-uniform kinds of UE deployment. Load-balancing naturally provides the possible inclusion
of more numbers of UEs in the network, typically giving better fairness and improving UE experience.
These distributed schemes show an impressive result in dynamic environments by reducing the signal
overhead between UE and BS, increasing the throughput per UE and network load balance. Future
work includes the optimization of small cells in k-tier HetNet, while considering both energy and
spectral efficiency with high user mobility.
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