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Abstract 

Background: With rapid economic development, the world’s average life expectancy is increasing, leading to the 
increasing prevalence of osteoporosis worldwide. However, due to the complexity and high cost of dual‑energy x‑ray 
absorptiometry (DXA) examination, DXA has not been widely used to diagnose osteoporosis. In addition, studies have 
shown that the psoas index measured at the third lumbar spine (L3) level is closely related to bone mineral density 
(BMD) and has an excellent predictive effect on osteoporosis. Therefore, this study developed a variety of machine 
learning (ML) models based on psoas muscle tissue at the L3 level of unenhanced abdominal computed tomography 
(CT) to predict osteoporosis.

Methods: Medical professionals collected the CT images and the clinical characteristics data of patients over 40 years 
old who underwent DXA and abdominal CT examination in the Second Affiliated Hospital of Wenzhou Medical 
University database from January 2017 to January 2021. Using 3D Slicer software based on horizontal CT images of 
the L3, the specialist delineated three layers of the region of interest (ROI) along the bilateral psoas muscle edges. 
The PyRadiomics package in Python was used to extract the features of ROI. Then Mann–Whitney U test and the least 
absolute shrinkage and selection operator (LASSO) algorithm were used to reduce the dimension of the extracted 
features. Finally, six machine learning models, Gaussian naïve Bayes (GNB), random forest (RF), logistic regression (LR), 
support vector machines (SVM), Gradient boosting machine (GBM), and Extreme gradient boosting (XGBoost), were 
applied to train and validate these features to predict osteoporosis.

Results: A total of 172 participants met the inclusion and exclusion criteria for the study. 82 participants were 
enrolled in the osteoporosis group, and 90 were in the non‑osteoporosis group. Moreover, the two groups had no 
significant differences in age, BMI, sex, smoking, drinking, hypertension, and diabetes. Besides, 826 radiomic features 
were obtained from unenhanced abdominal CT images of osteoporotic and non‑osteoporotic patients. Five hundred 
fifty radiomic features were screened out of 826 by the Mann–Whitney U test. Finally, 16 significant radiomic features 
were obtained by the LASSO algorithm. These 16 radiomic features were incorporated into six traditional machine 
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Introduction
Osteoporosis is a systemic bone disease caused by 
decreased bone density and quality, the destruction of 
bone microstructure, and increased bone fragility [1, 
2]. With the rapid economic development, the world’s 
average life expectancy is increasing, which leads to the 
increasing prevalence of osteoporosis in the world [3]. 
Patients with osteoporotic fractures have poorer func-
tional recovery and even increased mortality compared 
with non-osteoporotic fractures [4, 5]. The gold standard 
for clinical diagnosis of osteoporosis is bone mineral den-
sity (BMD) and t score measured by dual-energy x-ray 
absorptiometry (DXA) [6]. However, DXA is not a rou-
tine test because of its high cost. Therefore, there is an 
urgent need for a simple and efficient method to screen 
osteoporosis patients in advance.

Sarcopenia is a syndrome of progressive muscle mass, 
strength, and muscle function loss with age [7]. Skeletal 
muscle mass in adults older than 40 declines by about 
1% annually [8]. More and more studies have shown that 
sarcopenia is associated with osteoporosis, and proper 
muscle exercise can effectively prevent osteoporosis [9–
11]. In addition, studies have shown that the psoas index 
measured at the third lumbar spine (L3) level is closely 
related to BMD and has an excellent predictive effect on 
osteoporosis [12].

Machine learning (ML) models are widely used in the 
medical field due to their excellent performance in pre-
dicting classification problems [13, 14]. Some studies 
have shown that applying ML models based on X-ray or 
vertebral computed tomography (CT) images can effec-
tively predict osteoporosis [15, 16]. However, there are 
currently no studies to apply machine learning models 
based on muscle tissue to predict osteoporosis. There-
fore, this study developed various machine learning mod-
els based on psoas muscle tissue at the third lumbar spine 
(L3) level of unenhanced abdominal CT to predict osteo-
porosis, thus providing some help for clinical screening 
of patients with osteoporosis.

Materials and methods
Study population
We retrospectively collected patients over 40 years old 
from the Department of Endocrinology, the Second 
Affiliated Hospital of Wenzhou Medical University, 
from January 2017 to January 2021. The inclusion crite-
ria were:1) The interval between unenhanced abdomi-
nal CT and DXA (lumbar spine and femoral neck) was 
less than three months, and 2) Age ≥ 40  years. The 
exclusion criteria were: 1) No unenhanced abdominal 
CT and DXA and 2) Previous history of hyperparathy-
roidism, tumor, hypocalcemia and fracture affecting 
the bones and muscles. According to European clinical 
guidelines [6], patients with a lumbar (L1-4) or femoral 
neck T-score of less than -2.5 are diagnosed with oste-
oporosis and patients with both lumbar and femoral 
neck T scores above -2.5 are non-osteoporosis. Figure 1 
shows the flow chart of this research method.

Psoas segmentation
Unenhanced abdominal CT data were obtained by the 
picture archiving and communication system (Philips) 
operated at 120 kV and 250 mA with a slice thickness 
of 5 mm. In addition, the CT data were obtained after 
the DXA examination within three months. Using 3D 
Slicer (version 5.0.3) software based on horizontal CT 
images of the third lumbar spine, the specialist deline-
ated three layers of the region of interest (ROI) along 
the bilateral psoas muscle edges. (Fig. 2). The computer 
automatically generates the volume of interest (VOI) of 
lesions. Another specialist checked the contour results. 
These two experts have at least 5 years of experience in 
clinical work and are skilled in using 3D Slicer software, 
which can well outline the psoas muscle of the partici-
pants. Moreover, neither expert knew how the partici-
pants were grouped.

learning models (GBM, GNB, LR, RF, SVM, and XGB). All six machine learning models could predict osteoporosis well 
in the validation set, with the area under the receiver operating characteristic (AUROC) values greater than or equal 
to 0.8. GBM is more effective in predicting osteoporosis, whose AUROC was 0.86, sensitivity 0.70, specificity 0.92, and 
accuracy 0.81 in validation sets.

Conclusion: We developed six machine learning models to predict osteoporosis based on psoas muscle images of 
abdominal CT, and the GBM model had the best predictive performance. GBM model can better help clinicians to 
diagnose osteoporosis and provide timely anti‑osteoporosis treatment for patients. In the future, the research team 
will strive to include participants from multiple institutions to conduct external validation of the ML model of this 
study.

Keywords: Osteoporosis, Psoas, Machine learning, Computed tomography, Radiomics, Middle‑aged and aged 
people
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Features extraction and selection
Feature extraction is performed using the PyRadiom-
ics [17] package in Python. A total of 826 radiomics 
features were extracted for each patient. Features were 
divided into six groups: (1) First-order statistics of psoas 
(n = 18), (2) shape (n = 14), (3) texture (n = 24, derived 
from GLCM), (4) texture (n = 16, derived from GLRLM), 

(5) wavelet-based features (n = 464), and (6) Laplacian of 
Gaussian-filtered image features (n = 290). Each feature 
was named by concatenating the image type from which 
the feature was extracted, feature group, and feature 
name by underline. For example, ’original_glcm_Idmn 
was a feature extracted from the original image, GLCM 
group, and the name was Idmn.

Fig. 1 Flow chart showing analyses and model making process for the study. Abbreviations: ML, machine learning; CT, computed tomography; 
LASSO, least absolute shrinkage and selection operator; LR, Logistic regression; GBM, Gradient boosting machine; RF, Random forest; GNB, Gaussian 
naïve Bayes; XGBoost, Extreme gradient boosting; SVM, Support vector machines
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Statistical analysis
Clinical baseline characteristics data distribution 
was tested using the Shapiro–Wilk test. As appro-
priate, patient characteristics were described using 
mean ± standard deviation, frequency, and percentage. 
Normally distributed variables were analyzed using Stu-
dent’s t-test. Categorical variables were expressed as per-
centages and analyzed using the Pearson Chi-squared 
test. All statistics were calculated using SPSS software 
(version 26.0; SPSS Inc., Chicago, IL, USA).

Firstly, the extracted radiomic features were screened 
by the Mann–Whitney U test, and extracted radiomic 
features with P < 0.05 were screened. Second, the radi-
omic features with P < 0.05 were standardized using 
the StandardScaler function. Then, the alpha param-
eter with the minimum mean square error is obtained 
through 1000 iterations after fivefold cross-validation 
based on standardized features. Based on the optimal 
alpha parameter, the least absolute shrinkage and selec-
tion operator (LASSO) feature selection algorithm is 
used to select the relevant features and calculate the 
coefficients of each feature. Moreover, the radiation 
characteristics of non-zero coefficients are obtained. 
The LASSO algorithm can reduce features’ dimensions 
and screen out the most meaningful feature effects. 
Finally, the meaningful radiomics features screened by 
the Mann–Whitney U test and LASSO algorithm were 
put into the machine learning model for prediction. We 
randomly split our dataset into two groups: the train-
ing sets (60%) for ML model development and the vali-
dation sets (40%) for performance evaluation. Besides, 
we applied six supervised machine learning algorithms: 
Gaussian naïve Bayes (GNB), random forest (RF), logis-
tic regression (LR), support vector machines (SVM), 
Gradient boosting machine (GBM), and Extreme gra-
dient boosting (XGBoost). Furthermore, we evaluated 
the predictive ability of each ML classifier in valida-
tion sets where the area under the receiver operating 

characteristic (AUROC) value and the correspond-
ing sensitivity, specificity, and overall accuracy of ML 
algorithms were all calculated. These classifiers were 
imported from a Python (version 3.7.6) machine learn-
ing library called scikit-learn. In addition, this study’s 
most important outcome measure was whether the 
participants had osteoporosis, which the ML model 
predicted.

Results
Participants
A total of 172 participants met the inclusion and exclu-
sion criteria for the study. Based on the T-scores of the 
femoral neck and lumbar spine examined by DXA, 82 
participants were enrolled in the osteoporosis group, 
and 90 were enrolled in the non-osteoporosis group. 
Table 1 presents the clinical baseline characteristics of 
the two groups of participants. There were no signifi-
cant differences between the two groups in age, BMI, 
sex, smoking, drinking, hypertension, and diabetes.

Fig. 2 The psoas muscle at the third lumbar level was segmented in A) transverse plane and B) coronal plane

Table 1 Comparison of clinical characteristics between two 
groups

Abbreviations: BMI body mass index

Non-osteoporosis 
(90)

osteoporosis(82) P value

Age (years) 62 ± 9 63 ± 13 0.448

BMI (kg/m2) 24.07 ± 3.02 23.31 ± 3.63 0.136

Gender 0.432

 Female, n(%) 59(65.6) 49(59.8)

 Male, n(%) 31(34.4) 33(40.2)

Hypertension, n(%) 57(63.3) 42(51.2) 0.108

Diabetes, n(%) 65(72.2) 64(78.0) 0.378

Current drinking, 
n(%)

10(11.1) 11(13.4) 0.645

Current smoking, 
n(%)

12(13.3) 12(14.6) 0.806
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Feature selection of radiomics
Eight hundred twenty-six radiomic features were 
obtained from unenhanced abdominal CT images of 
osteoporotic and non-osteoporotic patients. Five hun-
dred fifty radiomic features were screened out of 826 by 
the Mann–Whitney U test. The optimal alpha param-
eter of psoas muscle image features is about 0.043  
(Fig.  3). Based on the optimal alpha parameter, the 
LASSO algorithm was used to reduce the dimension of 
the above high-dimensional features and screen out the 
best features. Sixteen radiomic features were obtained, 
including ’log-sigma-1–0-mm-3D_firstorder_Uniformity’, 
’log-sigma-1–0-mm-3D_glcm_JointEnergy’, ’log-sigma-
1–0-mm-3D_glcm_MaximumProbability’, ’log-sigma-2–
0-mm-3D_glcm_Imc2’, ’log-sigma-3–0-mm-3D_glcm_Imc1’, 
’log-sigma-5–0-mm-3D_firstorder_90Percentile’, ’log-
sigma-5–0-mm-3D_firstorder_MeanAbsoluteDeviation’, 
’log-sigma-5–0-mm-3D_firstorder_Skewness’, ’log-sigma-5–
0-mm-3D_glcm_ClusterShade’, ’original_firstorder_Range’, 
’original_glcm_Idmn’, ’original_glcm_MCC’, ’wavelet-HLH_ 
glrlm_ShortRunLowGrayLevelEmphasis’, ’wavelet-HLL_glcm_
Autocorrelation’, ’wavelet-HLL_glrlm_ShortRunLowGray-
LevelEmphasis’ and ’wavelet-LLH_firstorder_Median.

Diagnostic performance of radiomics models
These 16 radiomic features were incorporated into six 
traditional machine learning models (GBM, GNB, LR, 
RF, SVM, and XGB). All six machine learning models 
could predict osteoporosis well in the validation set, with 
AUROC values greater than or equal to 0.8 (Fig.  4). In 
addition, Table 2 presents the relevant evaluation indexes 
(AUROC, sensitivity, specificity, and accuracy) of the 
effectiveness of the six machine learning models in pre-
dicting osteoporosis. GBM is more effective in predicting 
osteoporosis, whose AUROC was 0.86, sensitivity 0.70, 

specificity 0.92, and accuracy 0.81 in validation sets. 
In addition, Table  3 presents the specific parameters 
of the six ML models in this study. In this study, we 
only adjusted some parameters in the ML model, and 
most parameters were still the default parameters. For 
example, in the SVM model, we use GridSearch [18] 
to obtain the best parameters C (C = 2.33) and gamma 
(2.15e-04).

Discussion
With the increasing prevalence of osteoporosis world-
wide, a single discipline is not an excellent way to pre-
vent osteoporosis and treat its complications. More and 
more studies have shown that multidisciplinary manage-
ment of osteoporosis patients, including nursing, endo-
crinology and geriatric medicine, can significantly reduce 
the burden on the social economy and health care. For 
elderly patients with hip fractures, timely management 
of nursing and other disciplines can shorten the length 
of hospital stay, reduce acute mortality and so on, thus 
significantly reducing society’s medical burden soci-
ety [19–21]. However, the most critical step in manag-
ing osteoporosis is the timely detection and diagnosis of 
osteoporosis patients. The gold criteria for the diagnosis 
of osteoporosis were BMD and T scores measured by 
DXA [6]. However, due to the complexity and high cost 
of DXA examination, DXA has not been widely used to 
diagnose osteoporosis. Therefore, more and more studies 
are trying to find a method to predict osteoporosis effec-
tively and osteoporotic fractures. The level of bone turn-
over markers can reflect bone metabolism in the body. A 
high level of bone turnover markers can predict osteopo-
rosis and osteoporotic fractures to a certain extent [22, 
23]. Fracture risk assessment tool can effectively predict 
the probability of osteoporotic fractures in the next ten 

Fig. 3 The least absolute shrinkage and selection operator algorithm was applied to select features
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years [24]. In addition, the psoas muscle index can also 
predict osteoporosis to a certain extent [12]. In this study, 
we used multiple machine learning models to evaluate 
unenhanced abdominal psoas CT images and found that 
they were better than the psoas index in predicting osteo-
porosis. In addition, there was no significant difference 
in age, BMI and other clinical baseline characteristics 
between the osteoporosis group and the non-osteoporo-
sis group in this study. Therefore, the results of this study 
excluded a series of confounding factors such as age and 
BMI, which made the ML model for predicting osteopo-
rosis based on psoas CT images in this study reliable to a 
certain extent.

In recent years, with the development of computer 
technology, the ability of medical image processing is 

constantly improved. Texture analysis technology can 
extract quantitative data from medical images such 
as X-ray and CT images. The texture is an inherent 
property of surfaces in nature. Texture analysis refers 
to using image processing technology to analyze the 
intensity and distribution pattern of voxels or pixels in 
digital images and extract texture feature parameters 
to obtain quantitative features [25]. Therefore, texture 
analysis technology can detect data that the human eye 
cannot. The core of texture analysis is feature extrac-
tion, which quantitatively describes ROI attributes. In 
this study, we extracted a total of 826 texture features. 
Most of these 826 features are not statistically signifi-
cant or have little weight in machine learning. In addi-
tion, the number of texture features was much greater 
than the number of patients. Therefore, to reduce the 
risk of overfitting, this study uses the Mann–Whitney 
U test and LASSO algorithm to reduce the dimension 
of feature data [26, 27]. Finally, 16 radiomics features 
were selected for subsequent machine learning model 
training and learning.

Machine learning is an essential branch of artificial 
intelligence. Machine learning models have been widely 
used in various fields, especially medicine, because of 
their powerful predictive ability for classification prob-
lems. Yupeng Zhang et  al. [28] classified the causes of 
cerebral hematoma using ML models based on head CT 
images. Mutasa S et al. [29] used a deep learning model 
to classify femoral neck fracture types based on X-rays. 
Zhu J et al. [30] used a ML model to predict the presence 

Fig. 4 ROC curve analysis of machine learning algorithms for prediction of osteoporosis patients in the validation set. Abbreviations: LR, Logistic 
regression; GBM, Gradient boosting machine; RF, Random forest; GNB, Gaussian naïve Bayes; XGBoost, Extreme gradient boosting; SVM, support 
vector machines; ROC, receiver operating characteristic; AUC, area under the curve

Table 2 Predictive performance comparison of the five types of 
machine learning algorithms in the validation sets

Abbreviations: LR Logistic regression, GBM Gradient boosting machine, RF 
Random forest, GNB Gaussian naïve Bayes, XGBoost Extreme gradient boosting, 
SVM Support vector machines, AUROC area under the receiver operating 
characteristic

Model AUROC Sensitivity Specificity Accuracy

LR 0.85 0.73 0.86 0.80

XGBoost 0.82 0.70 0.75 0.72

GNB 0.80 0.73 0.86 0.80

GBM 0.86 0.70 0.92 0.81

RF 0.87 0.73 0.86 0.80

SVM 0.81 0.86 0.55 0.71
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or absence of lymph node metastasis in papillary thyroid 
carcinoma based on perioperative clinical baseline data. 
These ML models have achieved good results in classifi-
cation, and to a certain extent, they can assist clinicians 
in providing better treatment for patients. Therefore, 
similar to the above studies, this study used ML models 
to predict the classification problem of osteoporosis in 
middle-aged and older adults. For training and learning, 
the last 16 radiomics features were put into six traditional 
ML models (LR, XGBoost, GNB, GBM, RF, and SVM). 
The best model for predicting osteoporosis was selected 
from these six ML models for further research in the 
future.

Many studies have explored the relationship between 
skeletal muscle and osteoporosis. The relationship 
between skeletal muscle and bone is not only mechanical. 
As endocrine organs, skeletal muscle and bone produce 
various cytokines, such as interleukin and irisin, which 
affect the growth and differentiation of osteogenic and 
osteoclast cells, thus affecting the function of bone and 
muscle [31]. As a classical signaling pathway, the Recep-
tor activator of the Nf-kb ligand (RANKL) is closely 
related to the pathophysiological mechanism of osteopo-
rosis. Bonnet N. et al. [32] demonstrated that RANKL is 
closely associated with skeletal muscle function and that 
inhibition of RANKL activation can significantly improve 
muscle strength in patients with osteoporosis. In this 
study, the 6 ML model showed promising efficacy in pre-
dicting osteoporosis, with an AUROC of 0.80 or greater. 
These ML models have good predictive efficacy, indicat-
ing that abdominal CT examination of psoas muscle can 
predict osteoporosis. GBM model has the best predictive 
performance among the 6 ML models whose AUROC 
was 0.86, sensitivity 0.70, specificity 0.92, and accuracy 

0.81 in validation sets. The GBM model has been proven 
robust in predicting performance in many studies in the 
medical field. Ji GW et  al. [33] successfully developed 
a GBM model to predict the prognosis of patients with 
intrahepatic cholangiocarcinoma after surgery. Similarly, 
Seidler M et  al. [34] applied the GBM model to distin-
guish normal lymph nodes from abnormal lymph nodes. 
In addition, the gradient enhancement algorithm based 
on CT images can accurately diagnose sarcopenia [35]. 
The results of these studies strongly support our findings 
that GBM is an efficient model for predicting osteoporo-
sis based on abdominal CT images of the psoas muscle. 
Therefore, clinicians can use the GBM model based on 
abdominal CT psoas image to screen out patients at high 
risk of osteoporosis to diagnose osteoporosis before the 
occurrence of osteoporotic fracture and provide timely 
anti-osteoporosis intervention.

Several studies have applied various types of ML mod-
els to predict osteoporosis. Pan Y et  al. [16] have suc-
cessfully developed a deep learning model for predicting 
osteoporosis based on low-dose chest CT images. Zhang 
T et  al. [36] developed an SVM model for predicting 
osteoporosis based on bone turnover markers. Shim 
JG et  al. [37] developed various ML models to predict 
osteoporosis in postmenopausal women based on clini-
cal baseline characteristics such as age and BMI. Similar 
to the above, this study also aims to apply the ML model 
to predict osteoporosis. However, the data used in this 
study are quite different from those studies. Numerous 
studies have demonstrated that muscle mass is closely 
related to osteoporosis, especially psoas muscle mass 
at the L3 level. Therefore, this study is the first to apply 
multiple ML models to predict osteoporosis based on 
psoas CT images, and each ML model has achieved good 

Table 3 parameters of all machine learning models in this study

Abbreviations: LR Logistic regression, GBM Gradient boosting machine, RF Random forest, GNB Gaussian naïve Bayes, XGBoost Extreme gradient boosting, SVM Support 
vector machines

Model parameters

LR penalty = ’l2’, dual = False, tol = 0.0001, C = 1.0, fit_intercept = True, intercept_scaling = 1, class_weight = None, random_state = None, 
solver = ’lbfgs’, max_iter = 100, multi_class = ’auto’, verbose = 0, warm_start = False, n_jobs = None, l1_ratio = None

XGBoost n_estimators = 500, learning_rate = 0.5, objective = ’binary:logistic’, use_label_encoder = True

GNB priors = None, var_smoothing = 1e‑09

GBM loss = ’deviance’, learning_rate = 0.5, n_estimators = 500, subsample = 1.0, criterion = ’friedman_mse’, min_samples_split = 2, min_sam‑
ples_leaf = 1, min_weight_fraction_leaf = 0.0, max_depth = 3, min_impurity_decrease = 0.0, min_impurity_split = None, init = None, 
random_state = None, max_features = None, verbose = 0, max_leaf_nodes = None, warm_start = False, validation_fraction = 0.1, n_iter_no_
change = None, tol = 0.0001, ccp_alpha = 0.0

RF n_estimators = 100, criterion = ’gini’, max_depth = None, min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_leaf = 0.0, 
max_features = ’auto’, max_leaf_nodes = None, min_impurity_decrease = 0.0, min_impurity_split = None, bootstrap = True, oob_
score = False, n_jobs = None, random_state = None, verbose = 0, warm_start = False, class_weight = None, ccp_alpha = 0.0, max_sam‑
ples = None

SVM C = 2.33, kernel = ’rbf’, degree = 3, gamma = 2.15e‑04, coef0 = 0.0, shrinking = True, probability = False, tol = 0.001, cache_size = 200, class_
weight = None, verbose = False, max_iter = ‑1, decision_function_shape = ’ovr’, break_ties = False, random_state = None
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predictive performance. The results of this study further 
support the close relationship between muscle and osteo-
porosis and provide a new, efficient and simple method 
to screen for osteoporosis.

However, there are some limitations to this study. 
First, although the machine learning model in this study 
achieved good performance, this study was a single-
center retrospective study. Secondly, although LASSO 
and other methods were used in this study to avoid 
overfitting, the study’s sample size was relatively small, 
and there was still the possibility of overfitting. Thirdly, 
the different models of CT scanning equipment used by 
different institutions may lead to uneven image quality, 
affecting the results of this study. Therefore, a multicenter 
prospective study with a large sample size is needed to 
support the results of this study. In addition, some con-
founding factors, such as age, were excluded from this 
study. However, some confounding factors were still not 
included in this study, such as rehabilitation and pain 
treatment history. Finally, the study was conducted on 
subjects over 40 years of age, so the results of this study 
do not apply to patients with idiopathic osteoporosis. 
Due to the above limitations, the ML model in this study 
may not apply to all patients. A future study is needed to 
investigate this in depth.

Conclusion
In this study, we developed six machine learning models 
to predict osteoporosis based on psoas muscle images of 
abdominal CT, and the GBM model had the best predic-
tive performance. GBM model can better help clinicians 
to diagnose osteoporosis and provide timely anti-osteo-
porosis treatment for patients. In the future, the research 
team will strive to include participants from multiple 
institutions to conduct external validation of the ML 
model of this study.
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