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SUMMARY
Modern neuroscience has evolved into a frontier field that draws on numerous disciplines, resulting in the
flourishing of novel conceptual frames primarily inspired by physics and complex systems science. Contrib-
uting in this direction, we recently introduced a mathematical framework to describe the spatiotemporal in-
teractions of systems of neurons using lattice field theory, the reference paradigm for theoretical particle
physics. In this note, we provide a concise summary of the basics of the theory, aiming to be intuitive to
the interdisciplinary neuroscience community.We contextualize our methods, illustrating how to readily con-
nect the parameters of our formulation to experimental variables using well-known renormalization proced-
ures. This synopsis yields the key concepts needed to describe neural networks using lattice physics. Such
classes of methods are attention-worthy in an era of blistering improvements in numerical computations, as
they can facilitate relating the observation of neural activity to generative models underpinned by physical
principles.
INTRODUCTION

Systems neuroscience aims to understand how the spatiotem-

poral interaction of aggregates of neurons leads to neural dy-

namics and, ultimately, to cognitive processes and behavior.

The ever-increasing technological innovations in the design of

high-resolution recording devices have given a dramatic boost

to data gathering, and we can now simultaneously sample the

activity of hundreds of neurons with outstanding temporal reso-

lution.1–7 Yet, the immense number of observations still fails to

provide conclusive evidence on the mechanisms that govern

neural systems, the link between connectivity and dynamics,

and the emergence of composite behavioral functions. To prog-

ress, neuroscience needs to start learning governing principles

from data. To conquer this obstacle, a systematic and method-

ical integration of experiments, theory, and computational

modeling is indispensable. Neuroscience is now where particle

physics was before the introduction of the Standard Model. It

is still common to heavily rely on heuristic analysis and modeling

approaches that only partially account for the richness of the

spatiotemporal repertoire of neural states. Despite the proposal

of several landmark models,8–21 we are still far from achieving a

mechanistic understanding of the nervous system through deep

physical principles.22–24 In a recent paper,25 we introduced

methods from theoretical particle physics and quantum field the-

ory (QFT26–52) to treat systems of interacting binary variables, like

the spiking activity of interacting neurons in the brain. The intui-

tive mathematical formalism46 allows the explicit interpretation

of neural interactions through universal laws, reducing the gap

between abstraction and experiments thanks to the direct

connection between model parameters and experimental ob-

servables. Such a feature may facilitate our understanding of
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systems characterized by computational complexity, such as

the brain at a fine-grained neuronal level, which requires ap-

proaches that allow for approximate solutions. Some of these

approaches exploit a probabilistic perspective on brain compu-

tations based on methods such as Bayesian inference53–55 and

fuzzy logic.56 Importantly, the brain’s fuzzy logical characteristic

has already been suggested at the functional anatomical level,

particularly in sensory systems (i.e., cortical columnar organiza-

tion).55 Indeed, cortical activity and neuronal features, such

as receptive fields, have been shown to exhibit overlapping

and gradual boundaries, thus displaying fuzzy properties.55

These fuzzy properties are also evident at the abstract level of

cognitive processes, i.e., when considering the ability of the

brain to ‘‘compute with words’’ in uncertain context.57 Together,

Bayesian and fuzzy logic aim to explain the high-level key fea-

tures of the brain, including its operation through predictions in

encoding incoming sensory information, its ability to elaborate

motor plans for interacting with the environment, and its capacity

to make decisions in uncertain situations. Importantly, in appro-

priate experimental settings, we can measure these predictions

and decisions solely based on overt behavior. Using our physics-

guided formalism on neural data would enable a new class of

generative models of neural dynamics, providing additional ba-

sis for benchmarking some unifying brain theories53,55 relying

on a Bayesian perspective, such as the free energy principle of

Friston et al.54,58,59

BACKGROUND

In computational neuroscience, two visions are currently domi-

nant: manifold and circuit modeling. The first postulates that

embedding the high-dimensional state space of neural dynamics
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into low-dimensional surfaces, i.e., manifolds, reveals neural

computations, whereas the latter considers connectivity among

neural units as a founding mechanism. In broad terms, we can

surmise that neural manifolds provide a descriptive modeling

of neural activity based on statistical interdependencies without

links to causal mechanisms. That is because to define low-

dimensional subspaces in empirical data, a set of numerical

dimensionality reduction steps is required, which are most of

the time arbitrary and not unique. An example is principal

component analysis (PCA), which seeks low-dimensional

projections that maximize experimental data variance. These

methods have proven to be efficient not only for exploratory

analysis and as denoising tools but also for providing satisfac-

tory predictions of experimental variables in certain cases.60–65

However, they systematically yield contradictory conclusions

that are not interpretable under comprehensive principles and

several criticisms have recently arisen about the unreliability of

thesemethods’ interpretive power.66–68 An example is the formal

relationship that these methods can establish with physical

quantities. The most suggestive one for neuroscientists is

the correspondence between the set of possible configurations

of a neural system and the physical notion of energy, which re-

mains rickety, as in the case of the PCA-based ‘‘energy land-

scape’’.62,69,70 On the other hand, circuit models, despite their

ability to integrate causal assumptions through a wide range of

realistic biophysical parameters (membrane potential, cell types,

etc.), typically rely on specific tuning of model parameters to

replicate observations. Although this class of model showed

success in predicting experimental variables,71–75 performing

specific computations76 and replicating neural dynamics

evolving on low-dimensional manifolds,69,77 the frequent short-

comings are flattened stimulus selectivity,78 uniform time evolu-

tion of reconstructed activity69 and tremendous difficulties in

scaling the analytical treatments for networks of arbitrary

sizes.79,80 Moreover, even when resolving the problem of homo-

geneous stimulus tuning, accounting for activity modulated by

multiple independent variables, the so-called mixed selec-

tivity,61,81 the crafted connectivity of such models has a blurred

link with predicted activity and real circuit mechanisms. Exten-

sive discussions on the numerous open problems of how con-

nectivity leads to time-dependent activity can be found in the

works of Barack and Krakauer82 and Langdon69 et al. Although

the manifold and circuit modeling strategies are the most popu-

lar, their fragmented view falls short of formally reconciling with

general physical principles.54 One of the most exhaustive ways

of describing brain spatiotemporal dynamics is neural field

theory.20,21,25,54,58,83–96 Usually, it models large-scale average

population activity in the continuum limit, including approxi-

mated anatomical and physiological details into differential

equations, with the Wilson-Cowan model97 being probably the

most popular example. As thoroughly discussed in a recent re-

view on the topic,93 many types of approaches fall under this

definition, some of which may overlap with those discussed

above. However, in addition to the high number of parameters

that are not always attributable to experimental variables, their

main limitation is the lack of a consistent mathematical frame-

work to link the various scales at which neural dynamics unfolds.

One of the most successful ways to embed physical laws
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into neuroscience modeling has been by adapting methods

from equilibrium statistical physics to real and artificial

neural networks. Since the introduction of the Amari-Hopfield

model,12–17,19,95,98 the most fruitful formalism comes from the

physics of magnetic systems. In this language, the energy func-

tion parallelism is realized through the analogy with the energy of

a spin system. As accurately described by Brinkman80 et al., ex-

tensions to time-dependent non-equilibrium dynamical systems

have mostly involved the use of stochastic dynamics (in two

equivalent forms, the Fokker-Planck equation99–102 and the

Langevin equation103–108), stochastic variations of the Ising

model109,110 and semi-analytical studies based on bifurcation

theory.111,112 The major weakness of these formulations is that

exact solutions could become hard to obtain, as could a precise

and simple mapping between theory, simulations and empirical

data. Several authors20–25,54,58,84–96,113 have already argued

that the most promising strategy to overcome all of these short-

comings is to adopt a different perspective, pursuing the

formalism of QFT.26–52

PRELIMINARIES

Let us indulge in a few informal remarks on the Lagrangian

description of a dynamical system, pivotal to our formulation.

Except among physicists, the Lagrangian interpretation is

less known compared to other approaches, such as Newtonian

mechanics, even if it is more foundational because it considers

only energy, generalized coordinates, symmetries and conser-

vation laws. A Lagrangian treatment is particularly useful for

complex systems with multiple degrees of freedom, providing

a unified framework connecting almost every phenomenon in

nature, from classical mechanics to electromagnetism and field

equations in general relativity. It assumes the existence of a

function, i.e., the ‘‘Lagrangian,’’ canonically interpreted as the

difference between the kinetic and potential energy at a given

time. The balance between the kinetic and potential energies

is accounted for by the time integral of the Lagrangian, a scalar

function named action, which in the following we denote withA.

The most striking example of this concise representation is the

action of the Standard Model of particle physics (Yang-Mills

Theory114). The equations of motion are then recovered through

a cardinal law of physics, the least action principle, which is an

equivalent to Newton’s law of motion. It posits that the path

taken by a system between two states is such thatA is station-

ary. Crucially, A portrays the system in a defined region of

space and for all time periods, and the path can thus arise

from any process, both at or out of equilibrium in the statistical

mechanics sense. Hitherto, most of the founding models in

neuroscience do not yet reconcile with the least action princi-

ple, and a systematic Lagrangian description of neural dy-

namics is surprisingly missing. Only indirect evidence has

been given,58,84 e.g., the proof for the dynamic causal modeling

(DCM) of Fagerholm et al.58 Reconsidering neural circuits in this

light allows neuroscience to formally communicate with seem-

ingly distant fields, borrowing their theoretical schemes and nu-

merical analysis techniques. Given that almost all fields of

physics are compatible with this principle, why should neural

circuits be an exception?
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FUNDAMENTALS

Our derivation replaces continuous spacetime with a discrete

lattice, transforming fields into variables defined on lattice sites

at discrete time steps. More formally, we propose a lattice field

theory (LFT),20,21,25,36–46,84,94–96 the reference computational

approach used in QFTs to tackle numerical simulations in re-

gimes where analytical techniques are not feasible. Many au-

thors32–35 have agreed that expressing physical theories in these

terms still guarantees the symmetries and conservation laws of

continuous formulations. The lattice Lagrangian formalism itself

has been studied by multiple authors.115–120 Here, we illustrate

the formalism and the basic principles for binary activity, but

the arguments can be readily extended to any real-valued signal

so as to include the most common neurophysiological measures

(local field potentials - LFP -, Multi Unit Activity - MUA -, etc.).

More formally, this means that our treatment can account for

any Potts-like model with multi-spin interactions. Writing the ac-

tion A of a neural network using the LFT formalism requires the

following simple considerations. In computational neuroscience,

the accepted view is that the elementary blocks of the neuronal

code are electrical impulses called action potentials, or spikes. A

neuron emits a spike when it reaches the threshold integration of

the electrochemical inputs from other neurons. Hence, by as-

signing 0 to no spike and 1 to a spike, we can assume that the

functional role of a neuron can be described by a binary vari-

able25 whose support is

G : = f0;1g: Equation (1)

Despite its simplicity, this reflects a vast range of complex

biochemical interactions in a concise form. We then note that,

being intrinsically discrete objects, a set of N neurons can be

arbitrarily mapped25 onto the ordered set of lattice vertices

V : = f1 % i % Ng: Equation (2)

If we record the activity of the N neurons for a time T, we can

map the time blocks onto the vertex set

S : = f1 % a % Tg: Equation (3)

The natural temporal ordering crucially fixes the map be-

tween time intervals and a˛S. The preservation of time

ordering is a key feature of our field theoretic approach and is

reminiscent of the time-ordered product of field operators

used in QFT.27 T can be appropriately discretized according

to the minimum time t between two computational operations

of the neuron. It is convenient to choose the smallest possible

value for t, i.e., the typical duration of a spike: tz 1ms. In this

way, since for neural computations, scales below this t can

be neglected, no temporal information is lost. Neurophysiolo-

gists may have noted that t is related to the refractory period,

which thus yields the minimum relevant timescale, a natural

clock time for the system. Indeed, within a tz1ms, the i-th

neuron can be reasonably assumed to be either silent (0) or

active (1), and its activity at time a expressed with a binary

variable fa
i . The network activity can then be represented

with a binary array U of N rows and T columns that we call

the kernel:46
U : =
�
fa
i ˛ G : a ˛ S; i ˛ V

�
: Equation (4)

In actual recordings during a neurophysiology experiment, U

collects the temporal sequence of spikes of an arbitrary number

of neurons aligned with the events or stimuli specific to the cho-

sen experimental paradigm included in T. During experiments,

we handle multiple trials for the same stimulus presentation or

the same behavioral condition. For a single trial, the kernelU sim-

ply contains the spike trains for the N neurons recorded. It is es-

tablished that information encoding and transfer in neural circuits

rely on correlations, with brain functions mediated by dynamic

changes in the correlated firing of groups of neurons.121–126

Then, let us introduce the space correlation matrix

F : =
�
fij ˛ ½0;1� : i; j ˛ V

�
;fij : =

1

T

X
a˛S

fa
i f

a
j

Equation (5)

and the time correlation matrix

P : =
�
pab ˛ ½0;1� : a;b ˛ S

�
;pab : =

1

N

X
i˛V

fa
i f

b
i :

Equation (6)

F contains the pairwise correlations among the N neurons

within the whole epoch T, whileP instead encloses the temporal

relationship of the joint occurrences of the ensemble’s spikes.

These are straightforwardly obtained from the kernel46 through

the relations

U U
y
=T = F;UyU

�
N = P; Equation (7)

where y indicates the transpose operation. Since the observable

matrices can be arranged into a single composite matrix (as

shown in the graphical abstract, Figures 1 and 2), we will call

the triplets U, P, and F, the hypermatrix. P gives a time-depen-

dent measure of correlation at different lags, which enables the

detection of time structures related to the stimulus presentation,

the effect of shared inputs and the associated statistical fluctua-

tions. Each entry represents a delayed interaction of the spike

trains of the N neurons during the window T, which accounts

for the dynamic adjustments of their correlated firing. P is the

generalization to N neurons of the traditional point peristimulus

time histogram matrix121–123 (JPSTH matrix), thus quantifying

the cross-correlation as a function of time at the whole network

level. The strength of this representation is that, as firstly shown

by the seminal works of Gerstein, Aersten and Abeles,18,121,122

the analysis of the profile patterns inP can reveal groups of neu-

rons that form processing units, the so-called cell assemblies.P

exposes the sequence of coordinated spiking in which synchro-

nization spreads with a fixed temporal delay from one set of neu-

rons to the next in a temporally identifiable manner. Powerful and

fully automated methods now exist127–132 to reveal this type of

correlated activity and trace it back to the responsible cell as-

semblies. This gives insights on the network information

processing and on the possible types of functional connections

between the recorded neurons, each of which produces
iScience 27, 111390, December 20, 2024 3
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Figure 1. Toy example

A sketch of the spike trains and the hypermatrix for

a toy system of 5 neurons recorded for 13 time bins

of length t for two examples of spatiotemporal

patterns. Colors are the same as in the graphical

abstract: aquamarine for the kinetic contribution

andmagenta for the potential one. The elements on

the main diagonal of P represent the correlation of

the neurons at the same time point (synchronous

firing). A peak along the diagonal suggests that the

neurons tend to fire together at the same times. Off-

diagonal peaks instead indicate consistent lagged

relationships between the periodic firings of the

ensemble. If the network exhibit specific se-

quences of periodic firing patterns as in (A) (dashed

lines in U and Uy), this will be reflected as periodic

structures along both the diagonal and off-diagonal

elements of the P matrix. One potential model

proposed to explain this and other types of

sequential synchronous firing is the synfire

chain18,133 (see also next section). If groups of

neurons fire together periodically in the same time

bin (B), the P matrix will exhibit multiple distinct

periodic peaks that will appear not only on themain

diagonal but also off-diagonal. The hypermatrix

representation, comprising both the spatial and

temporal correlation matrix, provides a compact

and complete representation to infer the joint

spatiotemporal interactions in neural networks.

iScience
Perspective

ll
OPEN ACCESS
characteristic signatures in the matrix. A sketched example

is given in Figure 1. Finally, it is also essential to model another

parameter, the input I, which is often unknown or not precisely

measurable. For example, I could model the signal arriving

from other brain regions to the observed network or the

input noise to the same network. In the next section, we

shall see how we can properly compute averages to obtain

ensemble observables, and how A can be defined using U, P,

F and I.

MODELING NEURAL NETWORKS WITH THE ACTION

Neural dynamics is expected to follow some evolution influenced

by theprior states, i.e., a dynamical processwithmemory that can

be reasonablydescribedbyaquantumevolution.20,21,25,54,58,84–96

This may seem peculiar, but it is actually a harmless assumption

because the classical (non-quantum) evolution of a system can

always be retrieved as a sub-case of the quantum one.26–31

Essentially, we assume that the evolution in time of a system of
4 iScience 27, 111390, December 20, 2024
neurons could be described by a discrete

process of interacting binary fields, or qu-

bits42–46,137. The challenge of determining

the temporal evolution of a system of

qubits can be remarkably simplified by

treating it as a statistical mechanics prob-

lem on a lattice,36–41 which can then be

tackled through a spectrum of powerful

methods36–41,47–52 (for more references

on the LFT and QFT techniques see the
section theoretical insights or Bardella et al. 202425). To model

how fa
i changes over time, we can use the same language used

for elementary particles, a lattice-based statistical me-

chanics.36–46 Therefore, following the assumptions of QFT,26–52

we postulate the action function26–31

A : G NT/R: Equation (8)

Denoting the operation of averaging with respect to A with

angle brackets, the ensemble average of the generic observ-

able O (e.g., the trial-averaged U will be denoted as CUD) is ob-

tained through a softmax average, which is equivalent to the

Gibbs principle applied to A28, i.e., the principle of least

action,26

COD : =
X

U˛G NT

OðUÞ exp ½� lAðUÞ�P
U0̨ G NT exp ½� lAðU0Þ� : Equation (9)

l/N yields the classical behavior of the system and is thus

identified with the ground state of A25. In this limiting case,
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Figure 2. Example of application to experi-

mental data

Here in vivo recordings from the dorsal premotor

cortex (PMd) of non-human primates during a

behavioral task (adapted fromBardella et al. 202425).

(A) Cortical minicolumns sampling of the Utah

array: the listening volume of each electrode can

be estimated to be approximately the distance

between the electrodes (� 400mm).134 In PMd, with

around 1.5 mm penetration, the Utah 96 samples

activity from around the inner Baillager band.135,136

(B) Decimated lattice of the decimated kernel bU
for Utah 96 interfaces.

(C) Behavioral task that required visually guided

armmovements toward a peripheral target (Go trials)

that could appear in two opposite directions (D1 or

D2). Monkeys had to reach and hold the peripheral

target to get the reward. CT: central target; Go: Go

signal appearance; M_on: Movement onset.

(D) Experimental hypermatrix averaged over trials

for the decimated kernel bU of Equation 12. Neural

activity is aligned [-1, +1]s (T = 2s) around the

M_on to include the distributions of the stimuli (the

Go signal, orange distribution andM_on, magenta).

Here the I of Equation 10 represents the time

markers for the stimuli presented during the task.

Green traces above the C bPD matrix are the time

evolution of the spatially-averaged activity of the

network (Space average). Green traces above CbUyD
are instead the time-average activity for each

neuron i (Time average). Purple traces are the ob-

servables computed in the first 250ms (‘‘baseline’’),

which, as expected, are indistinguishable for both

conditions. The kernels and CbFD are sorted ac-

cording to the activity in the first 250 ms of D1,

before the appearance of any Go signal. Black ticks

are every 500 ms.
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the system becomes conservative, in the sense there are no

dissipative dynamics and the path pursued by the system is

always the path of least action. This limiting (classical or

conservative) case can be understood intuitively in terms of

the scaling parameter l, which effectively plays the role of

a precision or inverse temperature. A simplified action

A can be written by combining U, P, F and I into a single

expression25:

AðUj A;B; IÞ =
X
i˛V

X
a˛S

Iai f
a
i +T

X
i˛V

X
j˛V

Aij fij +N
X
a˛S

X
b˛S

Babpab;

Equation (10)

where A is the matrix of potential interactions and B is the ma-

trix of kinetic interactions. The concise derivation of Equation

10 can be found in the theoretical insights section. The entire in-

formation about the system is thus coded in the three observ-

ables U, F and P, the parameters of the theory A and B that

control the fluctuations, and the boundary conditions I. This

simplified action is expected to hold if the synaptic weights

can be considered approximately stationary and the observed

neurons share the same kinetic properties, e.g., when they

approximately share the same firing dynamics if driven by the

same input (see theoretical insights). We may appreciate the
remarkable power of the LFT formulation—its comprehensive

nature despite its simplicity. A succinctly portrays the essen-

tials about the system in a compact form without requiring intri-

cate numerical manipulations. The quantities of the theory are

directly mapped into easily accessible and straightforwardly

interpretable experimental variables, which is a consistent

advantage of this approach. While frequently employed in

neuroscience research to analyze, model and discuss empirical

findings, the temporal121–123 and spatial95,125,126,138 correla-

tions among neurons have not been previously linked to one

another through a physical interpretation. Instead, our LFT

approach gives a rigorous yet intuitive understanding of how

they contribute to the potential and kinetic energies of a neural

system. F contributes to the former andP to the latter, respec-

tively. This provides an easy recipe to relate the spatial correla-

tions to the observed dynamics and vice versa, describing their

mutual influence in terms of a fundamental quantity, energy.

The least action principle then allows to derive all the statistical

features needed to determine the properties and functions of a

neural network, enabling the formulation of neural interaction

theories directly from experimental data (see also Section 3.5

of Bardella et al. 202425). In accordance with the triplets U, P,

and F, we will call the triplets A, B, and I, the inverse hyperma-

trix. We can also introduce the covariance matrices, which
iScience 27, 111390, December 20, 2024 5
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account for all the information that do not depend on the

averages:

CdPD : = CPD � CUDyCUD
N

; CdFD : = CFD � CUDCUDy

T
:

Equation (11)

This converts (non-negative) second order matrices into covari-

ancematrices that quantify coupling in termsof positive and nega-

tive covariance by removing the average before computing the

correlations in Equations 5 and 6. The parameters A and B can

be inferred from these matrices alone,25 which can also be used

in combinationwith CUD to reconstruct the input I (seenext section).
OUTLOOKS, IMPLICATIONS AND LIMITS

Effective theories for neural recordings
So far, N includes all the neurons engaged in the neural compu-

tation we want to describe, including those that cannot be

directly observed. Indeed, in a neurophysiology experiment,

we typically have a limited spatial resolution, being able to mea-

sure only a fraction of N. To relate the microscopic theory of

Equation 10 with the marginals on a sparse subset of neurons,

we can resort to what in physics is known as an effective theory.

Effective theories are simplified representations to treat other-

wise prohibitive systems139 at specific spatial scales or energy

ranges while ignoring non-relevant variables. Various areas of

physics, from subatomic particles to cosmological structures

and network science, 140 use effective theories to study how

the parameters change when you ‘‘zoom in’’ or ‘‘zoom out’’ on

the system, a process known as renormalization. Renormaliza-

tion connects the features at different scales without needing

to solve the full theory at all scales. One way of renormalizing

is the so-called renormalization by decimation,49,51 in which

the details of the system at small scales are simplified by inte-

grating out most of the degrees of freedom, e.g., spins in mag-

netic systems, neurons in this context. Then we observe that

the brain naturally has spatial symmetries. For example, the brain

cortex exhibits highly symmetrical assemblies of neurons

approximately organizing into horizontal layers of columnar

groupings.141–146 The arrangement of layers and columns varies

in thickness, cell type, and density across different parts of the

cortex and for different species. Furthermore, the functional

and morphological definitions of columns do not always over-

lap,147 and these structures do not crystallize in time and space,

with dynamic changes occurring even on the scale of minutes

and hours. Nonetheless, the columnar organization is the

most accepted view for the structural and operational compo-

nents of neural circuitry.148 The so-called minicolumns, on

average � 40 � 50m m in diameter,141,145 are deemed to be

the basic mesoscale ones. In this paragraph, we refer to minicol-

umns, meaning vertically oriented and horizontally separated

discrete neuronal assemblies.147,148 Hence, this does not neces-

sarily overlap with the functional definition of a column as a clus-

ter of cells sharing the same tuning properties or receptive field

parameters. To show how to exploit such symmetries and apply

renormalization, we consider recordings from the Utah array

(typically 96 recording channels; Blackrock Microsystems, Salt
6 iScience 27, 111390, December 20, 2024
Lake City), one of the most widely used multi-electrode inter-

faces. Since thousands of kernels are already available from 20

years of recording with Utah arrays across many species,

including human patients,149 we hope to encourage the system-

atic and joint use of LFTs based on these datasets. Due to its

planar geometry, its electrodes that penetrate around 1.5 mm

into the cortex, and their pitch (400m m), the Utah array is able

to record from neurons belonging to horizontally separated mini-

columns sampled approximately from the same superficial

cortical layer z at a distance sufficient to limit self-interaction

terms (see Figure 2, panel A). Instead, a single shank multi-elec-

trode array with contact points spread out vertically, such as

Neuropixels4 or SiNAPS1 probes, would sample across various

layers of the same column. We name Vxyz a 3D volume of tissue

containing all the neurons within an average height from the cor-

tex surface z and a xy section in the horizontal plane (Figure 2,

panel A). Here, renormalizing by decimation assumes that if

any of the neurons in Vxyz emit a spike (are active), the entire lat-

tice cell, and hence the whole minicolumn, is activated. Consid-

ering theUtah array specifics, we can organize the xy plane into a

sub-lattice L02 at height z whose step is much greater than the

diameter of the individual column, so that the activities recorded

at different points belong to adequately spaced minicolumns.25

Using these very general steps, we can model any Utah array

recording as a decimated lattice (Figure 2, panel B). The neural

dynamics around each electrode tip are then given by an on/

off field bfa
x0y0 that identifies the state of the observed minicolumn

(see also theoretical insights). Therefore, theory is straightfor-

wardlymapped into experimental observations with a decimated

kernel

bU : =
nbfa

x0y0 ˛ G : x0y0 ˛ L0
2;a ˛ S

o
: Equation (12)

Cortical minicolumns are reduced to a system of 2+ ε dimen-

sions that could model cortical structures and areas. Note that

Equations 5 and 6 still hold, and for the decimated kernel bU
they immediately give the experimental hypermatrix (Figure 2

panel D). Therefore, the LFT formalism36–46 reveals that empirical

recordings are comparable to a renormalized field theory, with

cortical layers behaving as the interacting fields of elementary

particle theory. It is crucial to stress that the effective theory for

a generic experimental recording will depend on the chosen re-

normalization scheme, individual features of the recording inter-

face, the observed network (local circuit and/or area), and the

experimental settings. Modeling and computing the correction

for effective theories of neural interactions is precisely a compo-

nent where expertise from nuclear physics could be useful in

transferring knowledge to neuroscience. This would not only

be a formal artifice, but it would also boost a new generation of

models with the entry into neuroscience of established schemes

for analyzing, simulating, renormalizing, and, in some cases,

exactly solving such theories.47–52,150

Learning neural interactions from data
Characterizing a neural network’s collective response entails

measuring average quantities such as mean spiking activity or

correlations between neurons. Then, to infer the underlying inter-

actions, one should determine the parameters of a chosen
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statistical models based on experimental observations. This is

the so-called inverse problem151 and is a major task (for an

excellent survey and references see Nguyen et al. 2017152). A

convenient approach is to incorporate into the model the mini-

mum number of constraints possible on the network’s statistical

features. This class of models is known as maximum entropy

models, and it encompasses various fields of research that

have provided multiple strategies to address it and numerous al-

gorithms to tackle model inversion.152 To give a coarse-grain

idea of these techniques, one of the most popular algorithms

for finding parameters maximizes the model’s average log likeli-

hood so that the moments of the resulting distribution match a

set of specified values.153 A well-known application of maximum

entropy models and their related inverse problems to neurobi-

ology is thanks to Schneidman, Tkacik et al.95,154 who inferred

spatial couplings of salamander retina neurons assuming an

Ising model at equilibrium. Same approach followed by Tavoni,

Cocco et al. on prefrontal recordings in rats.131,155,156 However,

such a family of models usually considers the distribution of neu-

ral activity regardless of its temporal order, constraining only the

mean firing rate of the neurons and the pairwise spatial correla-

tions. This means that, typically, only the potential interaction en-

ergy contribution is considered. However, a complete descrip-

tion of neural interactions should encompass not only the

interaction among circuit’s elements but also, and more impor-

tantly, its relationship to the observed dynamics. Both are

comprised in Equation 10, which thus generalizes the maximum

entropy model in that explicitly contains the time evolution of the

system through a kinetic term. Indeed, as also detailed in the

theoretical insights section, Equation 10 decomposes the de-

pendencies of the coupling into space and time, describing not

only the influence that neurons located in distinct regions of

space have on one another but also how they retain information

about their past and how they are coupled over time. In

Equation10 the only constraint on the dynamics is that the

state of the system at instant a depends only on the previous

b%a � 1 so that no retrocausality is allowed. Consequently,

beyond the opportunity of directly estimating dynamics from

experimental data, the generality of B has major implications

for developing generative models based on Equation 10. For

instance, one could simulate neural time series according to a

biologically plausible model (e.g., a Leaky Integrate and Fire,

LIF), estimate the distribution of theoretical couplings over simu-

lations according to Equation 10 and compare them with those

obtained from experimental data. Likewise, Equation 10 can be

used to study the A of model families with chosen connectivity

and dynamics by constraining the matrices A and B. This would

allow analyzing various known dynamical regimes (e.g., asyn-

chronous, oscillatory, etc.) by classifying parameters as a func-

tion ofA. This may also be useful to gain knowledge about spe-

cific functionalities of neural circuits, for instance, how A is

altered by modifying the excitation/inhibition balance? What is

theA for an ‘‘optimal’’ choice of the parameters? What happens

toA when neuromodulation is altered? In other words, Equation

10 could be used to perform generativemodeling consistent with

the least action principle, accounting for a biologically and phys-

ically-inspired description simultaneously. One potential prob-

lem with this approach could be parameter degeneracy, i.e.,
diverse parameter sets produce the same network dynamics.

However, strategies are being developed to curb this problem157

andA itself could be used as ametric to explore the phase space

of different candidatemodels and score families of parameters in

simulation studies. Similarly, in experimental studies, having the

system’s dynamics derived directly from observations and not

imposed a priori can be of great advantage for inference

methods. For example, some features of the dynamics can be

extracted directly from the P matrix, which could be used to

restrict the space of the parameter distributions to infer. It would

also be possible to use such features to simplify the construction

of analytically solvable models to represent realistic circuitry. For

instance, to compute the partition function associated to theA of

the synfire chain,18,133 the model proposed to explain the

sequential spatiotemporal activation at the millisecond-scale of

multiple spike patterns. Notably, very recent works158–163 have

shown how to exploit the power of deep learning to obtain the

correspondence between modeling parameters, the statistics

of the training data, and the representations artificial networks

build of the processed information. The work of Merger

et al.161 is of particular significance because it makes an explicit

connection between the internal representation of a class of

generative deep neural network models (i.e., the Invertible Neu-

ral Networks, INNs) and the learned physical theory formulated in

terms ofA. In their work, an explicit distribution for various types

of data and the corresponding microscopic theories of interac-

tions are extracted and interpreted from the parameters of the

trained INNs in an unsupervised manner. This, beyond the broad

spectrum of applications in neuroscience, also offers promising

prospects for improving the interpretability of deep learning

models.164 In this respect, our derivations significantly alleviate

the computational burden in the case of experimentally recorded

neural activity, given that they reduce the number of parameters

needed to compute A from T2N2 to N2 +T2 (see theoretical in-

sights). From a neuroscience perspective, A in Equation 10 is

the connectivity matrix, which can be constrained to have any to-

pology or embody any assumptions about the degree of spar-

sity. For a general characterization of the dynamics, one can in

principle entertain or estimate asymmetric coupling (AijsAji). It

is essential to notice that asymmetric coupling of this sort breaks

detailed balance and introduces solenoidal (zero divergence) dy-

namics.165 This affords the opportunity to model non-equilibrium

steady-state solutions, especially in the setting of exogenous

input. This becomes a central element for a proper description

of neural activity or, more generally, of biological time series

that characteristically show solenoidal dynamics (e.g., oscilla-

tions, biorhythms, life cycles and, more generally, stochastic

chaos). Our approach is very flexible in that, for instance, it would

allow constraining A with adaptable sparsity specifications de-

pending on the scale of analysis. In the case of micro-scale net-

works, this would comprise, for example, axons adjacencies or

labeling of the recorded cell types. At the macroscale, con-

straints could come from the integration of imaging data or white

matter tractography of various cortical areas. This corresponds

to incorporating biologically informed connectivity priors166 for

empirical neural activity, which is becoming common practice

for a variety of models in neuroscience.167 A well-known

example is DCM which builds large-scale MRI effective
iScience 27, 111390, December 20, 2024 7
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connectivity models, scoring the likelihood of various symmetry

constraints on the network architecture. Correspondingly,

our methods allow us to construct multiscale effective connec-

tivity models with the additional constraint of empirical dy-

namics.166,168–170 Another example is integrating anatomical de-

tails (i.e., from tract-tracing or gene expression experiments) to

build voxel-scale models of the mouse connectome.171 There-

fore, our formulation enables a multiscale investigation of the

interaction between the structural connectivity of a network, its

intrinsic dynamics, and the emerging functional relationships

among its units. Importantly, A can be employed within a

Bayesian inference framework, similarly to the negative varia-

tional free energy in the context of DCM, where it serves as

lower bound approximation of the evidence of competing

models54,59,166,168–170,172 as well as in the domains of predictive

coding173,174 and active inference applied to neural circuits,

where it is used to model how neurons dynamically update their

internal states and synaptic weights to predict and infer the

causes of their sensory inputs.175–178

LFT and biohybrids networks
Recent progress in the growth, manipulation, and integration of

biological brain tissue and bio-inspired electronics devices has

opened up intriguing possibilities beyond the conventional use of

studying the functioning of natural neural networks in living organ-

isms. Brain organoids179–182 and neuromorphic systems3,183–185

are the most striking examples. Currently, there are efficient

methods to develop synthetic networks and hybrid circuits that

imitate biological systems and connect artificial and real brain net-

works. These circuits could be programmed using the binary LFT

language. Indeed, neuromorphic chips use event-driven process-

ing, meaning that computations are only performed when events

(spikes) occur, leading to significant energy savings.186 The LFT

languagecould thenbeusedasanefficient paradigm for abstract-

ing computations, performing simulations, and tuning the artificial

synapticweights of the chips based on the activity of the recorded

cells during the design and test phase of neuromorphic de-

vices.187,188 In addition, the potential application of transforming

organoids and neuromorphic networks into functional neural cir-

cuits hasbeenalso recentlydiscussedbyZhengetal.180 This route

seems themost viable practical implementation of utilizing natural

(and possibly biohybrid) neurons for conducting physical LFT sim-

ulations, eventually realizing the concepts suggested by Halver-

son,89 but with real neurons.

Limitations of the study
We conclude by discussing some of the open challenges of this

new framework. The effective theory, which would actually fit the

experimental data, is connected to the microscopic theory (i.e.,

at the level of singleneurons) throughextensively studied ‘‘renorm-

alization’’ procedures. However, the precise formulation and

calculation of these procedures are still in the early stages and

require more research for a comprehensive understanding. The

first approximation we employ is the two-body truncation (see

theoretical insights), which is deemed to be valid under the condi-

tion of small covariances. This approximation essentially involves

applying a maximum entropy model toA. Hence, it should be, at

worst, equivalent to the usual ‘‘stationary’’ max entropy model
8 iScience 27, 111390, December 20, 2024
described above. The second one is implementing additional sta-

tionary conditions truncation, which is applicablewhen the synap-

tic connections remainconstant across the timescale of theempir-

ically recorded brain activity and homogeneous firing dynamics of

theneurons in thenetwork.Reasonably, thiscanbeassumed tobe

valid for the time scales of most neurophysiology experiment.

Indeed, a comparison of recording sessions that are considerably

distant in timemight be a useful way to test this approximation. In

the case of single-neuron activity, our approach describes the on-

off state of the neurons over time. Therefore, themap between the

couplingsofEquation10and theactual synapticanatomical struc-

ture, or that of the ion channels, is not trivial. However, as dis-

cussed above, we argue that it should be possible to reconstruct

the parameters ofA from knowledge of the anatomical structures

in the LFT formulation. It is still unclear to what extent one can

determine the anatomical structuresonlybasedonobservabledy-

namics, even if it is reasonable to expect an overlapping similarity

formeasuresobtainablewithasufficient amountofprecision,such

as the Amatrix or the grand covariance (see Equation 17, theoret-

ical insights). Generally speaking, this approach also suffers of the

curse of inverse problems, which are, to some extent, ill-posed.

This is because a high number of parameters need to be deter-

mined froma relatively small subset of observation,with an inverse

operator needed tomap themeasurement vector to the estimated

‘‘ground-truth’’, as for example, in the magnetoencephalography

(MEG) or electroencephalography (EEG) source localization prob-

lem, where statistical models try to assign the true sources activa-

tion to the observed measurements.
THEORETICAL INSIGHTS

The action of a neural network
Weresumehere the fundamentals of the theory. For a comprehen-

sive treatment please refer to Bardella et al. 202425 and Franchini

2023.46 Following the principles of statistical field theory,28–31 we

postulate the analytic Euclidean action function26–31A, that can

be written as a Taylor’s expansion as follows25:

AðUj F; IÞ : =
X
i˛V

X
a˛S

Iai f
a
i +

X
i˛V

X
j˛V

X
a˛S

X
b˛S

Fab
ij fa

i f
b
j

+
X
i˛V

X
j˛V

X
h˛V

X
a˛S

X
b˛S

X
g˛S

Fabg

ijh fa
i f

b
j f

g

h

+
X
i˛V

X
j˛V

X
h˛V

X
k˛V

X
a˛S

X
b˛S

X
g˛S

X
d˛S

Fabgd

ijhk fa
i f

b
j f

g

hf
d
k +.

Equation (13)

The terms are the one-, two-, three-, and four–vertex interac-

tions, etc., while the tensors F collects the parameters of the the-

ory. We postulate95 that terms with more than two vertices can

be neglected,

Fabg

ijh = 0; Fabgd

ijhk = 0;. Equation (14)

Therefore, the proposed action reduces to:

AðUj F; IÞ =
X
i˛V

X
a˛S

Iai f
a
i +

X
i˛V

X
j˛V

X
a˛S

X
b˛S

Fab
ij fa

i f
b
j :

Equation (15)
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Notice that is formally equivalent to the max entropy model

considered in the works of Schneidman et al.95 but with a key dif-

ference: the same neuron at different times is considered as two

different neurons. It is the action that ultimately makes them look

the same evolving in time. We introduce the grand covariance

(see also section 3 of Bardella et al. 202425),

C ab
ij : = Cfa

i f
b
j Dm � Cfa

i DmCf
b
j Dm Equation (16)

from which the couplings can be reconstructed via inference

methods.25 We can further simplify the theory by dropping inter-

action terms where both indices are different, that we improperly

call ‘‘non-relativistic (‘‘Non-relativistic’’ here is in the ‘‘non gen-

eral’’ relativistic sense. Indeed, in Equation 129 of Bardella

et al. 2024 we showed how to reduce to the Klein-Gordon

Lagrangian as a special case)’’ approximation because it inter-

prets the columns of the kernel U as sequence of causally or-

dered isochronic surfaces,25 or Markov blankets189:

AðUj A;B; IÞ : =
X
i˛V

X
a˛S

Iai f
a
i +

X
i˛V

X
j˛V

X
a˛S

Faa
ij fa

i f
a
j

+
X
a˛S

X
b˛S

X
i˛V

Fab
ii fa

i f
b
i

Equation (17)

‘‘Non-relativistic’’ here is in the ‘‘non general’’ relativistic sense.

Indeed, in Equation 129 of Bardella et al. 2024 we showed how to

reduce to the Klein-Gordon Lagrangian as a special case. This

approximation is already useful, as it can account for variable syn-

apses andmultiple neuron species with ‘‘only’’NTðN +TÞ param-

eters. We show a test of this specific step in Figure 21 of Bardella

et al. 2024.25 Finally, we assume that the terms with is j are sta-

tionary in time and those with asb are stationary among the

considered neurons, i.e.,25

Faa
ij = Aij;F

ab
ii = Bab; Equation (18)

which is equivalent to assuming that the connections do not

change at the considered timescale and that the observed neu-

rons have all the same kinetic properties. This is reasonable for

the scale of most behavioral neurophysiology experiments. Our

approximation reduces the number of parameters that should

be computed to reconstruct the action from T2N2 to N2 + T2,

significantly enhancing the computational tractability. The action

can be rewritten using the correlation matrices25:

AðUj A;B; IÞ =
X
i˛V

X
a˛S

Iai f
a
i +T

X
i˛V

X
j˛V

Aij fij +N
X
a˛S

X
b˛S

Babpab

Equation (19)

The information is thus coded in the three observables CUD, CFD
and CPD, which form the hypermatrix.25 Finally, we introduce the

covariance matrices of Equation 11. The parameters A, B can be

inferred from these matrices alone. The covariances can then

also be used in combination with CUD to reconstruct the input

I25. As described in the main text, note that anatomical connec-

tions of any topology can be encoded in the interaction matrix A,

potentially integrating any developments in the mapping of the

cortex.
Renormalization
To link theory and experimental observations we apply a simple

renormalization47,49 scheme based on Franchini 2023.46 For

more formal details, please refer to section 3 and 4 of Franchini

202346 and section 4 of Bardella et al. 2024.25 Following themain

text, let us indicate a cubic lattice with L3 and with z (xyz˛ L3) the

average height from the surface of the cortex at which a given

cortical layer is located. Let xy be the position of the center of

gravity of the cortical minicolumn section in the horizontal plane.

To model the minicolumn layers, we will define a partition of the

spaceR3 into volumes of equal size according to the lattice cells.

To simplify, we will approximate the cortical minicolumns as

square-based minicolumns. We remark that we use a Euclidean

reference frame to allow comparisons with existing histological,

fMRI, and other structural data.190 However, note that the under-

lying Euclidean geometry does not, in principle, restrict the LFT

parameters. Also, this may help highlight effects due to possible

correlations with Euclidean topology.191 The layers of the mini-

columns are thus represented by the lattice cells

Uxyz : = UxUyUz3R3 Equation (20)

Now,calling vðiÞ˛R3 thepositionof the i� thneuron (possiblyof

its cell body),wecangroupby the volume inwhich theyare located

Vxyz : =
�
i ˛ V : vðiÞ ˛ Uxyz

�
: Equation (21)

Each of these groups of neurons will have its own associated

kernel

Uxyz : =
�
fa
i ˛ f0;1g : i ˛ Vxyz;a ˛ S

�
: Equation (22)

Then, one could further group the neurons, first by index z, so

as to form the cortical minicolumns. The vertices belonging to the

minicolumn are

Vxy : = W
z˛ L

Vxyz Equation (23)

that is the set of neurons that constitutes the minicolumn at

position xy. The kernel is

Uxy : =
n
Uxyz ˛ f0;1gVxyz : z ˛ L;a ˛ S

o
Equation (24)

and describes the activity of the single cortical minicolumn in

xy. It is possible to observe this activity directly through some in-

terfaces, like Neuropixels4 or SiNAPS1 probes or deepmultielec-

trode shanks. The minicolumns are in the end grouped again to

form the cortex structures and areas,

V : = W
xy˛ L2

Vxy Equation (25)

and the original kernel can thus be expressed in terms of the

minicolumns:

U =
n
Ua

xy ˛ f0;1gVxy : xy ˛ L2;a ˛ S
o
; Equation (26)

so that it represents a two-dimensional lattice of cortical mini-

columns, a system in 2+e dimensions. For the above, we can

consider the experimental kernel for a specific tubular layer
iScience 27, 111390, December 20, 2024 9
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Uz : =
n
Ua

xyz ˛ f0; 1gVxyz : xy ˛ L2;a ˛ S
o
: Equation (27)

The points are organized in a planar sub-lattice x0y0 ˛ L02 (of the
observed cortical layer z) whose step is much greater than the

diameter of the individual minicolumn, so that the activities re-

corded at the various points belong with high probability to

different and well-spaced minicolumns. To model the spacing

between the probing points, we apply a renormalization by deci-

mation on U, and obtain the decimated activity kernel of Equa-

tion 12 of the main text

bU : =
nbfa

x0y0 ˛ f0;1g : x0y0 ˛ L0
2;a ˛ S

o
; bfa

x0y0 :

= I
�
Ua

x0y0z s0
�
:

Equation (28)

Considering potential corrections for systematic errors and

approximations, such kernel is intended to model the sensor

recording. According to our arguments, it should be comparable

with a renormalized theory. Notice that here renormalization oc-

curs only in space and the information coming from the digitali-

zation of neuronal signals is largely preserved.
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