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Enhances Podocyte Protection and Ameliorates Kidney
Function in a Diabetic Nephropathy Rat Model
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Abstract: (1) Background: Diabetic nephropathy (DN) is common complication of diabetes. Current
therapy for DN does not include promotion of podocyte protection. Therefore, we investigated
the therapeutic effect of melatonin (Mel) combined extracorporeal shock wave (SW) therapy on
a DN rat model. (2) Methods: The DN rats were treated with Mel (5 mg/kg) twice a week for
6 weeks and SW treatment once a week (0.13 mJ/mm2) for 6 weeks. We assessed urine microal-
bumin, albumin to creatinine ratio (ACR), glomerular hypertrophy, glomerular fibrosis, podocyte
markers (Wilm’s tumor protein-1, synaptopodin and nephrin), cell proliferation, cell survival, cell
apoptosis, renal inflammation and renal oxidative stress. (3) Results: The Mel combined SW therapy
regimen significantly reduced urine microalbumin excretion (3.3 ± 0.5 mg/dL, p < 0.001), ACR
(65.2 ± 8.3 mg/g, p < 0.001), glomerular hypertrophy (3.1 ± 0.1 × 106 µm3, p < 0.01) and glomerular
fibrosis (0.9 ± 0.4 relative mRNA fold, p < 0.05). Moreover, the Mel combined SW therapy regimen
significantly increased podocyte number (44.1 ± 5.0% area of synaptopodin, p < 0.001) in the Mel
combined SW group. This is likely primarily because Mel combined with SW therapy significantly
reduced renal inflammation (753 ± 46 pg/mg, p < 0.01), renal oxidative stress (0.6 ± 0.04 relative
density, p < 0.05), and apoptosis (0.3± 0.03 relative density, p < 0.001), and also significantly increased
cell proliferation (2.0 ± 0.2% area proliferating cell nuclear antigen (PCNA), p < 0.01), cell survival,
and nephrin level (4.2 ± 0.4 ng/mL, p < 0.001). (4) Conclusions: Mel combined SW therapy enhances
podocyte protection and ameliorates kidney function in a DN rat model. Mel combined SW therapy
may serve as a novel noninvasive and effective treatment of DN.

Keywords: melatonin; podocyte protection; extracorporeal shock wave; diabetic nephropathy

1. Introduction

Diabetic nephropathy (DN) is a common complication of diabetes mellitus [1,2]. The
decline in renal function eventually progresses to end stage renal disease (ESRD) [3–5]. The
pathogenesis of DN is inflammation [5,6], oxidative stress [6], and hyperglycemia [4]. Clini-
cal manifestations of DN are glomerular hypertrophy, urine albumin excretion, glomerular
fibrosis, and increased extracellular matrix (type I collagen and fibronectin) production [3,7].
Podocytes play a key role in preserving the glomerular filtration barrier integrity [8].
Podocyte foot processes prevent the urinary leakage of plasma proteins [9]. Thus, podocyte
apoptosis or dysfunction not only leads to proteinuria but is also a key factor that drives
glomerulosclerosis in the pathogenesis of DN [8,10]. Nephrin deficiency is considered
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a pathologic feature of glomerular injury [11]. Nephrin is required to maintain slit di-
aphragm integrity to preserve podocyte viability and glomerular structure and function in
kidneys [11].

Melatonin (Mel) is mainly secreted by the pineal gland and has a renal protective
effect [12]. Mel has been found to be a powerful antioxidant used to inhibit oxidative stress
and the production of active oxidative substances [12–15]. Mel also has anti-inflammatory
properties [12,13]. Oxidative stress and inflammation can cause podocyte damage or
apoptosis [16]. Therefore, Mel might have a protective effect on podocytes. The main
reason is that Mel has an anti-apoptotic effect on podocyte damage caused by oxidative
stress and inflammation.

Extracorporeal shock wave (SW) acts through mechano-transduction at the cellular
level in the body tissues [17–19]. The SW exerts its effects through other mechanisms,
such as increased cell proliferation [17,18], anti-apoptotic [17,18], inhibition of oxidative
stress [17,18,20], anti-inflammation [17,18,20], activating axonal regeneration [19], im-
proved nerve regeneration [21,22], and promoted pancreatic beta cells regeneration [18];
and SW therapy polarizes M1 macrophages to anti-inflammatory M2 macrophages to
inhibit inflammation [17,23].

Mel is anti-inflammatory and inhibits oxidative stress. SW inhibits oxidative stress,
has anti-inflammation effects, has anti-apoptotic effects, increases cell proliferation, and
promotes cell regeneration. Mel combined SW therapy may benefit the DN kidney. Our
hypothesis is that Mel combined with SW therapy reduces oxidative stress, reduces in-
flammation and apoptotic, increases podocyte number, and reduces urine microalbumin
excretion, glomerular hypertrophy and glomerular fibrosis in a DN rat model.

2. Materials and Methods
2.1. Animals

Wistar rats (250–300 g) were purchased from BioLASCO (Taipei, Taiwan). The animal
center at Kaohsiung Chang Gung Memorial Hospital (CGMH) provided veterinary care
to the Wistar rats for the care and use of experimental animals. All rats were housed at
22–24 ◦C under a 12-h light and dark cycle and were given food and tap water. Wistar
rats were randomized to the normal group (N = 8), the DN group (N = 8), and the Mel
combined SW group (N = 8). This study was approved by the Institutional Animal Care
and Use Committee (IACUC: 2019092002) at CGMH.

2.2. Establishment of the DN Rat Model

The DN rat model was induced according to our previously published study [17].
DN was induced in the overnight fasted rats by a one-time intraperitoneal injection of
streptozotocin (STZ) (50 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) dissolved in citric
acid buffer 40 mg/mL (pH 4.5, Sigma, St. Louis, USA) [17,24,25]. Rat blood glucose
was maintained at 350 mg/dL by injection with insulin (0.4 unit/rat) and maintained for
12 weeks to establish the DN rat model successfully [17,26,27].

2.3. Mel Combined SW Treatment

Six weeks after injection of STZ, the DN rats received Mel (5 mg/kg) [28] injection via
intraperitoneal twice a week for 6 weeks and the SW treatment once a week for 6 weeks.
The SW treatment was performed according to our previously published protocols [17,18].
Briefly, ultrasound (Toshiba, Tokyo, Japan) was used to locate the kidneys. The source of
SW was a EvoTron R05 (High Medical Technologies, Lengwil, Switzerland). EvoTron R05
(High Medical Technologies, Lengwil, Switzerland) was placed on the mark of kidney and
a total of 200 impulses (0.13 mJ/mm2) was delivered.
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2.4. Measurement of Urine Microalbumin and Creatinine

We collected 24-h urine samples from the normal group, the DN group, and the
Mel combined SW group. Urine microalbumin levels were determined by microalbumin
ELISA kit (Abcam, Cambridge, UK), and the urinary creatinine was measured by using a
microplate assay kit (Abcam, Cambridge, UK) according to the manufacturer’s protocol.

2.5. Hematoxylin and Eosin (HE) Stain and Glomerular Volume

HE stain was performed according to our previously published protocols [17,18].
Kidney tissues were fixed with 4% paraformaldehyde and embedded in paraffin. Paraffin
sections were stained with HE according to the manufacturer’s protocol. Mean glomerular
volume was calculated according to the Weibel and Gomez formula [24,29].

2.6. Immunohistochemistry (IHC)

IHC was performed according to our previously published protocols [17,18]. Kidney
tissue slides were heat sectioned in 10 mM citrate buffer with a pressure cooker. After that,
the sections were incubated with primary antibodies for NOX4 (Abcam, Cambridge, UK),
PCNA (Abcam, Cambridge, UK), fibronectin (Abcam, Cambridge, UK), CD68 (Abcam,
Cambridge, UK), or collagen I (Abcam, Cambridge, UK) overnight at 4 ◦C. Slides were then
probed with secondary antibody (Vector Laboratories, Burlingame, CA USA) for 1 h at room
temperature. Slides were processed for color reaction with peroxidase treatment using
3,3′-diaminobenzidine substrate kit (SK-4100, Vector Laboratories, Burlingame, USA) and
counterstained with hematoxylin. Ten glomeruli in each section were randomly selected
for microscopy (Carl Zeiss, Gottingen, Germany). Six regions within glomeruli from three
sections obtained from six rats were detected. Positive labeled and total cells in each section
were counted, and percentage of positively labeled cells was calculated as percentage of
the area (Image-Pro Plus software, Media Cybernetics, Silver Spring, MD, USA).

2.7. Real-Time Quantitative Polymerase Chain Reaction (PCR) Analysis

Total RNA from the kidneys was isolated by using Trizol reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol. The TaqMan Reverse Transcription
Kit (Applied Biosystems, Foster City, CA, USA) and a Gene Amp by Bio-Rad My Cycler
(Bio-Rad, Hercules, CA, USA) were used to generate cDNA. Gene expression analysis
was determined by quantitative real-time PCR using the SYBR Green Master Mix and
a 7500 Real-time PCR System (Applied Biosystems, Foster City, CA, USA). The expres-
sions of mRNA were normalized to the expression level of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA and are relative to the average of all ∆Ct (calculated by
subtracting the Ct number of target sample from that of control sample) values in each
sample using the cycle threshold Ct method.

2.8. Immunofluorescence (IF)

IF was performed according to our previously published protocols [17,18]. Kidney
sections were blocked with 10% horse serum for 1 h. Kidney tissue slides were probed
with primary antibodies CD206 (Abcam, Cambridge, UK), HO-1(Abcam, Cambridge,
UK), synaptopodin (Abcam, Cambridge, UK), or F4/80 (Santa Cruz, Dallas, TX, USA)
and incubated at 4 ◦C overnight. Kidney tissue slides were subsequently incubated with
fluorescent secondary antibodies (Invitrogen, Carlsbad, CA, USA). Ten glomeruli in each
section were randomly selected for the Olympus confocal microscope (Olympus, Tokyo,
Japan). Six regions within renal glomeruli from three sections obtained from six rats were
detected. Percentage of positive labeled cells was calculated as percentage of the area
(Image-Pro Plus software, Media Cybernetics, Silver Spring, MD, USA).
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2.9. Western Blot (WB)

WB was performed according to our previously published protocols [17,18]. Kidney
tissue was dissociated with radioimmunoprecipitation assay (RIPA) lysis buffer and protein
concentrations were determined. Fifty µg protein was separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE), transferred to polyvinylidene fluoride
(PVDF) membrane (Millipore, Burlington, USA) and probed with primary antibodies
NOX4 (Abcam, Cambridge, UK), WT-1 (Abcam, Cambridge, UK), Bax (Abcam, Cambridge,
UK), pAKT (Abcam, Cambridge, UK), HO-1 (Abcam, Cambridge, UK) or CD68 (Abcam,
Cambridge, UK) at 4 ◦C overnight. Horseradish peroxidase-conjugated IgG was the
secondary antibody and visualized by chemiluminescence.

2.10. Enzyme-Linked Immunosorbent Assay (ELISA)

Kidney expression of nephrin, IL-6, IL-4 and IL-10 was determined using the Quan-
tikine ELISA Kit in accordance with the protocol specified by the manufacture (R&D
Systems, Minneapolis, MN, USA).

2.11. Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Staining

Apoptotic cell death was determined by using TUNEL staining (Roche Diagnostics,
Basel, Switzerland) according to our previously published protocols [17,18].

2.12. Statistical Analysis

All experiments were repeated three times. All calculations were executed using
SPSS statistical software (version 13.0, SPSS, Chicago, IL, USA). Results are expressed as
mean ± standard error of the mean. Comparisons between groups were made by using
one-way ANOVA (‡ p < 0.001, † p < 0.01, and * p < 0.05).

3. Results
3.1. Mel Combined SW Therapy Significantly Reduced Urine Microalbumin Excretion, Albumin to
Creatinine Ratio (ACR) and Glomerular Hypertrophy in DN

Potential therapeutic effects of Mel combined with SW therapy on DN rats were
evaluated using a treatment protocol (Figure 1A). The DN group had significantly increased
blood hemoglobin A1c (HbA1c) compared with the normal (Nor) group; however, the
Mel combined SW (Mel + SW) group had nearly the same blood HbA1c level as the DN
group (Figure 1B). Urine albumin excretion reflects renal dysfunction of DN [3]. The
DN group had significantly increased urine microalbumin excretion compared with the
Nor group (Figure 1C). The Mel combined SW group had significantly reduced urine
microalbumin excretion compared with the DN group (Figure 1C). The DN group had
significantly increased albumin to creatinine ratio (ACR) compared with the normal group
(Figure 1D). The Mel combined SW group had significantly reduced ACR compared with
the DN group (Figure 1D). Glomerular hypertrophy is another clinical manifestation of
DN [3,7]. Hematoxylin and eosin staining (HE stain) demonstrated that the DN group had
significantly increased glomerular volume indicative of glomerular hypertrophy compared
with the normal group (Figure 1E,F), whereas the Mel combined SW group prevented
glomerular hypertrophy in the DN group (Figure 1E,F).
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Figure 1. Melatonin (Mel) combined extracorporeal shock wave (SW) therapy improved renal function in diabetic nephropa-
thy (DN). (A) Mel combined SW treatment protocol for DN rats. Red arrows indicate that DN rats received SW (200 pulse,
energy density of 0.13 mJ/mm2) for 6 weeks. Green arrows indicate that DN rats had Mel (5 mg/kg) via an intraperitoneal
injection (2 doses/week) for 6 weeks and then were killed at 12 weeks for study. (B) Blood hemoglobin A1c (HbA1c). Data
are represented as mean ± SEM (N = 8); ‡, p < 0.001. (C) Urine microalbumin excretion. ‡, p < 0.001, (N = 8). (D) Albumin to
creatinine ratio (ACR). ‡, p < 0.001, (N = 8). (E) Representative images of kidney tissue stained with hematoxylin and eosin
(HE stain); bar = 50 µm. (F) Glomerular volume determined from hematoxylin and eosin (HE) stain sections. ‡, p < 0.001,
†, p < 0.01 (N = 6).

3.2. Mel Combined SW Therapy Significantly Reduced Glomerular Fibrosis in DN

Glomerular fibrosis is one of the clinical manifestations of DN [3,7]. Glomerular fibrosis
significantly increased both type I collagen and fibronectin level compared with the normal
group [17,30]. Immunohistochemistry (IHC) staining and real-time quantitative PCR analyses
showed that the DN group had significantly elevated extracellular matrix production (type
I collagen and fibronectin) in the kidneys compared with the normal group; however, the
Mel combined SW group prevented renal fibrosis in the DN group (Figure 2A–E). The Mel
combined SW therapy significantly reduced glomerular fibrosis in DN.

3.3. Mel Combined SW Therapy Significantly Enhanced Podocyte Number, Podocyte Viability and
Glomerular Function

Progression of DN is related to podocyte injury and loss, whereas reversal of DN re-
quires restoration of podocytes [8,10,31]. Wilm’s tumor protein-1 (WT-1) and synaptopodin
are podocyte markers [31,32]. The DN group had a significantly decreased podocyte
number compared with the normal group; however, the Mel combined SW group had a
significantly enhanced podocyte number compared with the DN group (Figure 3A–D),
suggesting that the Mel combined SW therapy significantly enhanced podocyte number
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in terms of DN. High nephrin levels are required to preserve glomerular function and
podocyte viability in kidneys [11]. The DN group had significantly reduced nephrin level in
the kidneys compared with the normal group; however, the Mel combined SW group was
a significantly enhanced nephrin compared with the DN group (Figure 3E), suggesting that
the Mel combined SW therapy significantly enhanced podocyte viability and glomerular
function in kidneys.
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Figure 2. Mel combined SW therapy significantly reduced glomerular fibrosis in DN. (A,B,D) The glomerular fibrosis was
determined by IHC staining detection for type I collagen (Collage 1) and fibronectin and quantification of IHC staining by
image analysis; bar = 50 µm. (C,E) Real-time quantitative PCR analyses of collage 1 and fibronectin expression in renal
tissue. †, p < 0.01, *, p < 0.05, ‡, p < 0.001. (N = 6–8).

3.4. Mel Combined SW Therapy Significantly Increased Cell Proliferation and Cell Survival and
Significantly Reduced Cell Apoptosis

The DN group showed significantly reduced cell proliferation in the kidneys compared
with the normal group; however, the Mel combined SW group showed significantly
increased cell proliferation in the kidneys compared with the DN group (Figure 4A,B).
The DN group showed significantly reduced cell survival in the kidneys compared with
the normal group, but the Mel combined SW group demonstrated significantly enhanced
cell survival in the kidneys, more than the DN group (Figure 4C,D), therefore the Mel
combined SW therapy significantly enhanced cell survival potency. The DN group showed
significantly increased cell apoptosis compared with the normal group (Figure 4E–H).
The Mel combined SW group showed significantly reduced cell apoptosis compared with
the DN group (Figure 4E–H). The Mel combined SW therapy significantly increased cell
proliferation and cell survival and significantly reduced cell apoptosis.
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glomerular function. (A,B) Western blot (WB) analyzed WT-1 expression in renal tissue and quantification of WB by
densitometric analysis. (C,D) Representative fluorescent images of glomeruli by IF stained with synaptopodin (green)
indicating podocytes and quantification of IF stained by image analysis; bar = 50 µm. (E) ELISA analyzed nephrin level
in renal tissue to represent the degree of preserved podocyte viability and glomerular function in kidneys. ‡, p < 0.001,
(N = 6–8). Normal (Nor) group; 4’,6-diamidino-2-phenylindole (DAPI).

3.5. Mel Combined SW Therapy Significantly Reduced Renal Inflammation and Significantly
Increased Renal Anti-Inflammation

Inflammation is a crucial pathogenetic mechanism in DN [5]. The DN group exhibited
a high level of IL-6 expression in renal tissue, whereas Mel combined SW therapy signif-
icantly reduced the level of the inflammatory cytokine IL-6 (Figure 5A). Moreover, Mel
combined SW therapy significantly increased the anti-inflammatory mediators IL-4 and
IL-10 in the kidneys compared with DN group (Figure 5B,C). Mel combined SW therapy
prevented diabetes-induced renal inflammation.

3.6. Mel Combined SW Therapy Significantly Reduced M1 Macrophages and Significantly
Increased Anti-Inflammatory M2 Macrophages

The DN group had significantly increased M1 macrophages in the kidneys compared
with the normal group; however, the Mel combined SW group had significantly less
M1 macrophages compared with the DN group (Figure 6A–D). CD206 is the marker of
anti-inflammatory M2 macrophages [33]. Moreover, the Mel combined SW group had
significantly increased anti-inflammatory M2 macrophages in the kidneys compared with
the DN group (Figure 6E–G). These results suggested that Mel combined SW therapy
might polarize M1 macrophages to anti-inflammatory M2 macrophages in order to in-
hibit inflammation.
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Figure 6. Mel combined SW therapy significantly reduced M1 macrophages and significantly increased anti-inflammatory
M2 macrophages. (A,B) The number of M1 macrophages was determined by IHC staining detection for CD68 and
quantification of IHC staining by image analysis; bar = 50 µm. (C,D) WB analyzed CD68 expression in renal tissue and
quantification of WB by densitometric analysis. (E,F) Representative images of renal tissue IF stained with F4/80 (green);
CD206 (red) indicating anti-inflammatory M2 macrophages and quantification of IF staining by image analysis; bar = 50 µm.
(G) Real-time quantitative PCR analyses of CD206 expression in renal tissue. *, p < 0.05, †, p < 0.01, ‡, p < 0.001, (N = 6–8).

3.7. Mel Combined SW Therapy Significantly Reduced Renal Oxidative Stress and Significantly
Increased Renal Antioxidative Stress

Oxidative stress is a crucial factor in the pathogenesis of DN [6]. The DN group had sig-
nificantly increased oxidative stress level compared with the normal group (Figure 7A–D).
The Mel combined SW group had significantly reduced oxidative stress level compared
with the DN group (Figure 7A–D). The DN group had a significantly reduced level of
antioxidative stress in the kidneys compared with normal group (Figure 7E–H). Moreover,
The Mel combined SW group had a significantly increased level of antioxidative stress
compared with the DN group (Figure 7E–H).



Antioxidants 2021, 10, 733 10 of 16Antioxidants 2021, 10, x FOR PEER REVIEW 11 of 17 
 

 

Figure 7. Mel combined SW therapy significantly reduced renal oxidative stress and significantly increased renal antioxi-

dative stress. (A,B) Representative images of renal tissue immunohistochemistry (IHC) stained with NOX4 indicating 

oxidative stress and quantification of IHC staining by image analysis; bar = 50 μm. (C,D) WB analyzed NOX4 expression 

in kidney and used densitometric analysis to quantify WB data. (E,F) Representative IF stained with HO-1 (green) indi-

cating antioxidative stress of glomeruli and used image analysis to quantify IF stained data; bar = 50 μm. (G,H) WB ana-

lyzed HO-1level in kidney and used densitometric analysis to quantify WB data. ‡, p < 0.001, *, p < 0.05, †, p < 0.01, (N = 6–

8). 

4. Discussion 

Oxidative stress, inflammation and hyperglycemia are major factors in the pathogen-

esis of DN [4–6]. Inflammatory cytokines, mainly IL-6, are involved in the development 

and progression of DN [4]. Mel combined SW therapy polarized M1 macrophages to anti-

inflammatory M2 macrophages in order to significantly increase the anti-inflammatory 

mediators IL-10 and IL-4 and significantly decrease the inflammatory cytokine IL-6. SW 

therapy significantly increases anti-inflammation in a DN rat model [17], in a rat model of 

acute myocardial infarction [23] as well as in a rat model of streptozotocin induced diabe-

tes mellitus (DM) [18]. Fibroblast growth factor 1 (FGF1) therapy through an anti-inflam-

matory mechanism ameliorates kidney function in a DN model [34]. FGF1 was highly 

effective in preventing the activation of NF-kB in renal tissue of a DN mouse model 

[34,35]. Reactive oxygen species generated from NADPH oxidase (NOX) isoforms induce 

inflammation and apoptosis [36]. Our results show that activation of NOX4 occurred in 

kidney tissue of DN rats and, importantly, Mel combined SW therapy prevented NOX4 

activation and significantly reduced apoptosis and oxidative stress. Low-energy SW ther-

apy is also reported to alleviate oxidative stress and reduce apoptosis in a rat model of 

DN and DM [17,18]. Mel combined SW therapy did not change the hyperglycemia of DN 

rats. FGF1 significantly reduced blood glucose levels in db/db mice [34].  

Figure 7. Mel combined SW therapy significantly reduced renal oxidative stress and significantly increased renal antiox-
idative stress. (A,B) Representative images of renal tissue immunohistochemistry (IHC) stained with NOX4 indicating
oxidative stress and quantification of IHC staining by image analysis; bar = 50 µm. (C,D) WB analyzed NOX4 expression in
kidney and used densitometric analysis to quantify WB data. (E,F) Representative IF stained with HO-1 (green) indicating
antioxidative stress of glomeruli and used image analysis to quantify IF stained data; bar = 50 µm. (G,H) WB analyzed
HO-1level in kidney and used densitometric analysis to quantify WB data. ‡, p < 0.001, *, p < 0.05, †, p < 0.01, (N = 6–8).

4. Discussion

Oxidative stress, inflammation and hyperglycemia are major factors in the pathogen-
esis of DN [4–6]. Inflammatory cytokines, mainly IL-6, are involved in the development
and progression of DN [4]. Mel combined SW therapy polarized M1 macrophages to
anti-inflammatory M2 macrophages in order to significantly increase the anti-inflammatory
mediators IL-10 and IL-4 and significantly decrease the inflammatory cytokine IL-6. SW
therapy significantly increases anti-inflammation in a DN rat model [17], in a rat model of
acute myocardial infarction [23] as well as in a rat model of streptozotocin induced diabetes
mellitus (DM) [18]. Fibroblast growth factor 1 (FGF1) therapy through an anti-inflammatory
mechanism ameliorates kidney function in a DN model [34]. FGF1 was highly effective in
preventing the activation of NF-kB in renal tissue of a DN mouse model [34,35]. Reactive
oxygen species generated from NADPH oxidase (NOX) isoforms induce inflammation and
apoptosis [36]. Our results show that activation of NOX4 occurred in kidney tissue of DN
rats and, importantly, Mel combined SW therapy prevented NOX4 activation and signifi-
cantly reduced apoptosis and oxidative stress. Low-energy SW therapy is also reported to
alleviate oxidative stress and reduce apoptosis in a rat model of DN and DM [17,18]. Mel
combined SW therapy did not change the hyperglycemia of DN rats. FGF1 significantly
reduced blood glucose levels in db/db mice [34].
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Clinical manifestations of DN are urine albumin excretion, glomerular hypertrophy,
and glomerular fibrosis [3,7]. Podocyte apoptosis or dysfunction not only lead to protein-
uria but are also key factors that drive glomerulosclerosis in the pathogenesis of DN [8,10].
Nephrin is required to maintain slit diaphragm integrity to preserve podocyte viability
and glomerular structure and function in kidneys [11]. Glomerular parietal epithelial cells
(PEC) contribute to adult podocyte regeneration [37–39]. Our results confirmed that there
were significantly reduced podocyte numbers and nephrin level in the kidneys of DN rats
and, importantly, Mel combined SW therapy significantly increased podocyte numbers
and nephrin level in renal tissue of a DN rat model. Thus, Mel combined SW therapy
significantly reduced urine microalbumin excretion, ACR and glomerular fibrosis in the DN
rat model. CXCL12 blockade increased podocyte numbers and attenuated proteinuria in
mice with adriamycin-induced nephropathy [40]. Low-energy SW therapy is also reported
to significantly increase podocyte numbers and significantly reduce urinary albumin level
in a rat model of DN [17]. Podocyte regeneration was further increased to 32.6% when
the GSK3 inhibitor BIO was administered in a focal segmental glomerulosclerosis mice
model [41]. SW therapy enhances beta cells number in a DM rat model [18].

The Mel combined SW group showed significantly decreased (near the normal group
range) urine microalbumin compared with the DN group (Table 1). The SW therapy group
showed significantly decreased (near the normal group range) urinary albumin level com-
pared with the DN group [17] (Table 1). The Mel combined SW group showed significantly
decreased ACR compared with the DN group, but there are no ACR data on the SW
therapy [17]. The Mel combined SW group showed significantly decreased glomerular
volume compared with the DN group. The SW therapy avoided glomerular hypertrophy
in the DN group [17] (Table 1). The Mel combined SW group showed significantly de-
creased (near the normal group range) glomerular fibrosis compared with the DN group
(Table 1). The SW therapy group had a significantly decreased glomerular fibrosis level
compared with the DN group, but it was higher than the normal group level [17] (Table 1).
The Mel combined SW group had significantly increased (near the normal group range)
podocyte number compared with the DN group (Table 1). The SW therapy group had a
significantly increased (near the normal group range) podocyte number compared with
the DN group [17] (Table 1), but there are no synaptopodin data on the SW therapy [17].
The Mel combined SW group showed significantly increased podocyte viability compared
with the DN group and lower viability compared to the normal group level. There are no
podocyte viability data on the SW therapy [17]. Therefore, combined Mel and SW therapy
shows synergetic effects compared with SW therapy only.

The Mel combined SW group showed significantly reduced (near the normal group
range) oxidative stress levels compared with the DN group (Table 2). The SW group
showed significantly reduced oxidative stress compared with the DN group, but the levels
were higher than the normal group level [17] (Table 2). The Mel combined SW group had
significantly increased (near the normal group range) antioxidative stress compared with
the DN group (Table 2). The SW group had significantly increased antioxidative stress
compared with the DN group [17] (Table 2). The Mel combined SW group had significantly
reduced inflammation compared with the DN group, but it was higher than the normal
group (Table 2). The SW group also had significantly reduced inflammation compared
with the DN group, but it was higher than the normal group [17] (Table 2). The Mel
combined SW group had significantly increased anti-inflammation compared with the DN
group, and it was higher than the normal group (Table 2). The SW group had significantly
increased anti-inflammation compared with the DN group, and it was higher than the
normal group [17] (Table 2). The Mel combined SW group had significantly increased (near
the normal group level) cell proliferation compared with the DN group (Table 2). The
SW group had significantly increased cell proliferation compared with the DN group [17]
(Table 2). The Mel combined SW group had significantly reduced cell apoptosis compared
with the DN group (Table 2). The SW group had significantly reduced cell apoptosis
compared with the DN group, but it was higher than the normal group level [17] (Table 2).
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Therefore, the Mel combined SW therapy showed synergistic effects compared with the
SW therapy alone.

The Mel group showed significantly reduced urine microalbumin and inflammation
compared with the DN group [42]. Mel therapy also decreased glomerular fibrosis and
morphological changes in the kidney [42].

Table 1. Effect of Mel combined SW therapy and SW therapy on DN Rat Model.

Mel Combined SW Therapy SW Therapy §

Urine Microalbumin Mel + SW: 3.3 ± 0.5 ‡ SW: 2.3 ± 1.5 †

(mg/dL) Nor: 2.0 ± 1.4 Nor: 2.0 ± 1.4
DN: 14.5 ± 2.7 DN: 6.2 ± 2.1

Glomerular volume Mel + SW: 3.1 ± 0.1 † SW: 2.1 ± 0.4 ‡

(106 µm3) Nor: 2.3 ± 0.1 Nor: 2.4 ± 0.24
DN: 5.3 ± 0.3 DN: 3.5 ± 0.4

Glomerular Fibrosis
Type I collagen Mel + SW: 90% * SW: 111% ‡

(percent of Nor) Nor: 100% Nor: 100%
DN: 230% DN: 248%

Podocyte number
WT-1 Mel + SW: 114% ‡ SW: 110% ‡

(percent of Nor) Nor: 100% Nor: 100%
DN: 57% DN: 48%

§ [17], ‡, p < 0.001VS DN, †, p < 0.01 VS DN, *, p < 0.05 VS DN.

Table 2. Antioxidative stress and anti-inflammation effects of Mel combined SW therapy and
SW therapy.

Mel Combined SW Therapy SW Therapy §

Oxidative stress Mel + SW: 107% * SW: 130% ‡

(percent of Nor) Nor: 100% Nor: 100%
DN: 171% DN: 262%

Antioxidative stress Mel + SW: 1.02 ± 0.14 * SW: 3.0 ± 0.4 *
HO-1 Nor: 1.24 ± 0.1 Nor: 0.1 ± 0.04

Relative density DN: 0.6 ± 0.06 DN: 0.5 ± 0.2
(HO-1/Actin)

Inflammation Mel + SW: 116% † SW: 130% *
IL6 Nor: 100% Nor: 100%

(percent of Nor) DN: 158% DN: 172%

Anti-inflammation
IL10 Mel + SW: 111% * SW: 132% †

(percent of Nor) Nor: 100% Nor: 100%
DN: 72% DN: 88%

Cell proliferation
PCNA Mel + SW: 100% † SW: 162% *

(percent of Nor) Nor: 100% Nor: 100%
DN: 70% DN: 96%

Cell apoptosis
(percent of Nor) Mel + SW: 130% ‡ SW: 114% *

Nor: 100% Nor: 100%
DN: 304% DN: 157%

§ [17], ‡, p < 0.001 vs. DN, †, p < 0.01 vs. DN, *, p < 0.05 vs. DN.

SW therapy mechanisms of various diseases have been published, including increase
of anti-inflammation [17,18,20,43,44] and anti-oxidative stress [17,18,20,45]. The mecha-
nisms of Mel therapy in various diseases have also been published, including increase of
anti-oxidative stress [15,46–50] and anti-inflammation [50–53]. Based on our findings, the
proposed mechanisms of Mel combined SW therapy on DN are summarized in Figure 8.
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5. Conclusions

The Mel combined SW therapy significantly reduced urinary microalbumin excretion
and ACR, and significantly decreased glomerular hypertrophy and renal fibrosis in the DN
rat model. Moreover, Mel combined SW therapy significantly enhanced podocyte regener-
ation, podocyte viability and glomerular function in DN. This was primarily attributed to
the fact that Mel combined SW therapy significantly reduced renal oxidative stress and
inflammation, significantly increased renal antioxidative stress and anti-inflammation, and
significantly increased cell proliferation and cell survival, while significantly reducing
cell apoptosis. Mel combined SW therapy is a novel noninvasive and effective treatment
for DN.
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