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Abstract: Background: The risk of cardiovascular (CV) and fatal events remains extremely high in
patients with maintenance hemodialysis (MHD), and the growth differentiation factor 15 (GDF15) has
emerged as a valid risk stratification biomarker. We aimed to develop a GDF15-based risk score as a
death prediction model for MHD patients. Methods: Age, biomarker levels, and clinical parameters
were evaluated at study entry. One hundred and seventy patients with complete information were
finally included for data analysis. We performed the Cox regression analysis of various prognostic
factors for mortality. Then, age, GDF15, and robust clinical predictors were included as a risk
score model to assess the predictive accuracy for all-cause and CV death in the receiver operating
characteristic (ROC) curve analysis. Results: Age, GDF15, and albumin were significantly associated
with higher all-cause and CV mortality risk that were combined as a risk score model. The highest
tertile of GDF-15 (>1707.1 pg/mL) was associated with all-cause mortality (adjusted hazard ratios
(aHRs): 3.06 (95% confidence interval (CI): 1.20–7.82), p < 0.05) and CV mortality (aHRs: 3.11 (95% CI:
1.02–9.50), p < 0.05). The ROC analysis of GDF-15 tertiles for all-cause and CV mortality showed 0.68
(95% CI = 0.59 to 0.77) and 0.68 (95% CI = 0.58 to 0.79), respectively. By contrast, the GDF15-based
prediction model for all-cause and CV mortality showed 0.75 (95% CI: 0.67–0.82) and 0.72 (95% CI:
0.63–0.81), respectively. Conclusion: Age, GDF15, and hypoalbuminemia predict all-cause and CV
death in MHD patients, yet a combination scoring system provides more robust predictive powers.
An elevated GDF15-based risk score warns clinicians to determine an appropriate intervention in
advance. In light of this, the GDF15-based death prediction model could be developed in the artificial
intelligence-based precision medicine.
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1. Introduction

Patients receiving maintenance hemodialysis (MHD) have an exceedingly high risk of
fatal events, and cardiovascular diseases (CVD) still top list of death causes [1]. Persistent,
low-grade inflammation accompanied by malnutrition acts as a hallmark feature of chronic
kidney disease (CKD), being involved in the pathogenesis of CVD and the development of
all-cause mortality of MHD patients [2,3]. Growth differentiation factor-15 (GDF15), also
known as macrophage inhibitory cytokine-1 belonging to the transforming growth factor
β superfamily, is a stress-induced protein [4]. In general population, circulating levels of
GDF15 are highly elevated in response to pathological conditions such as oxidative stress,
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inflammation, tissue injury, metabolic dysregulation, autoimmune diseases, cancer entities,
and hypoxia-related cardiovascular (CV) ailments [5]. In CKD patients, GDF15 levels are
notably raised and responsible for the greater risks of CKD progression, CV morbidity, and
mortality [6–10].

Whilst much has been done to better understand risk factors for fatal events in CKD
patients, novel biomarkers and conventional risk stratification tools do not adequately
predict prognosis and prevent mortality. Accordingly, fatality remains alarmingly high in
CKD despite global age-standardized mortality being decreased by 30.4% for CVD, 14.9%
for cancer and 41.3% for chronic obstructive pulmonary disease [11]. Such uncertainty of
CVD progression and sudden death aggravates patients and clinicians as well. In light of
this, a recent study integrates age, GDF15 biomarker, and clinical parameters as the ABC
death risk score for clinical evaluation of patient safety and decision tree [12]. There has
been increasing interest in identifying the novel death risk score model to effectively predict
poor prognosis in CKD patients [13–15]. Emerging evidence has shown that the prognostic
questionnaires of mortality in CKD and specifically in MHD patients serve as useful risk
prediction tools for the early detection of clinical events. Currently, a series of practical
questionnaires exist, including SARC-F (sluggishness, assistance in walking, rising from a
chair, climb stairs, falls), KDQOL (Kidney Disease Quality of Life) instrument, Karnofsky
Performance Status Scale, and 36-Item Short Form Survey (SF-36) [16]. In addition to the
above prognostic questionnaires of mortality, a novel biomarker-based risk score system
could be developed as an alternative screening tool. With regard to huge prevalence of CV
morbidity and mortality in MHD populations, we aimed to assess the predictive validity of
GDF15-based risk scores to develop a reliable early warning system for timely management
of clinical events. Therefore, various risk factors for all-cause and CVD-related mortality
in MHD patients were estimated using a Cox regression model and receiver operating
characteristic (ROC) analysis in the present study.

2. Materials and Methods
2.1. Participants in the Cohort

The study had been approved by the Research Ethics Review Committee of En Chu
Kong Hospital (ECKIRB1070102) in accordance with the ethical standards of the committee
and the Helsinki declaration for research in humans. The written informed consent was
obtained from the participants of this study. The relevant details of the research methods
were described previously [1,3]. Patients undergoing MHD treatment for at least three
months were eligible for inclusion. All patients had to be older than 18 years of age and be
receiving thrice-weekly MHD, and 188 patients in end-stage kidney disease were included.
Eighteen patients were excluded from the study because of inadequate dialysis, terminal
illness, active infections, advanced cancer, active hepatitis, severe protein-energy wasting,
incomplete data, or unwilling to participate.

2.2. Assessment of Exposures

The plasma GDF15 and bio-clinical parameters were ascertained at baseline. Plasma
concentrations of GDF15 were measured by a commercial quantitative enzyme-linked
immunosorbent (ELISA) assay (Human GDF15 ELISA Kit (Catalog Number: DGD15),
R&D Systems, Minneapolis, MN, USA) in accordance with the manufacturers’ instructions.
Plasma GDF15 concentrations were categorized into tertiles: low, medium, and high levels
for tertiles 1, 2, and 3, respectively. In the primary analyses, we examined the association
between GDF15 levels, relevant clinical parameters, all-cause, and CV mortality in the Cox
regression model. The predictive value of GDF15 tertiles for all-cause and CV mortality
was examined using the ROC analysis. In the secondary analyses, we used a simple scale
system to determine GDF15-based death risk score: GDF15 tertiles 1 as score 1, tertiles
2 as score 2, and tertiles 3 as score 3. To strengthen the predictive value of GDF15-based
score system, the significant clinical predictors in primary analyses were combined with
GDF15 score as a GDF15-based death prediction model. The score (1 or 0) of the clinical
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predictors was defined by the cut-off value in the ROC analysis. All patients were then
stratified by the GDF15-based risk score system into new categories. The predictive value
of GDF15-based risk score system for all-cause and CV mortality was examined using the
ROC analysis.

2.3. Assessment of Covariates

The following bio-demographic and laboratory parameters of each patient were
recorded at baseline: age, gender, hypertension, diabetes mellitus (DM), previous CVD,
hemodialysis (HD) vintage, systolic blood pressure, diastolic blood pressure, pre-dialysis
blood urea nitrogen, normalized protein catabolic rate, creatinine, potassium, calcium,
phosphorus, alkaline phosphatase (ALP), alanine aminotransferase, albumin, uric acid,
total cholesterol, triglyceride, hemoglobin, platelet, and intact parathyroid hormone (iPTH).
Previous CV diseases (CVD) were defined as diseases attributable to myocardial ischemia
and infarction (ICD-10-CM Diagnosis Code: I20-I25), heart failure (ICD-10-CM Diagnosis
Code: I50.1-I50.9), symptomatic or life-threatening arrhythmia (ICD-10-CM Diagnosis
Code: I49), cerebrovascular diseases (ICD-10-CM Diagnosis Code: I60-I69), pulmonary
embolism (ICD-10-CM Diagnosis Code: I26), and peripheral artery diseases (ICD-10-CM
Diagnosis Code: I73). The HD vintage was defined as the duration of time between the
first day of HD treatment and the first day that the patient entered the cohort. The blood
pressure was recorded in the horizontal recumbent position before a midweek dialysis
session. Pre-dialysis blood samples were obtained from the existing vascular access for
the further analyses. We adjusted plasma calcium according to the following equation:
adjusted calcium, measured calcium + ((4.0-plasma albumin in g/dL) × 0.8). All laboratory
tests were performed by the standard procedures with certified methods.

2.4. Ascertainment of Outcomes

CV mortality in study patients was defined as death attributable to myocardial is-
chemia and infarction, heart failure, fatal arrhythmia, cardiac arrest because of other causes,
cerebrovascular diseases, pulmonary embolism, peripheral artery diseases, and sudden
otherwise unexplained death. Non-CV mortality was defined as all other causes of death,
i.e., infection, malignancies, gastrointestinal hemorrhage, accidents, and miscellaneous. All-
cause mortality included CV and non-CV death. Patients were censored at last follow-up,
switched to another dialysis unit, or received a kidney transplant.

2.5. Statistical Analysis

The continuous variables were presented as mean ± standard deviation, and the
categorical variables were expressed as number (%). The correlation coefficients between
covariates of interest were calculated. The univariate Cox regression analysis was per-
formed to investigate the independence of risk factors associated with all-cause and CV
mortality. If hazard ratios (HRs) for the variables in the univariate analysis were significant,
we would select the covariates into the multivariable regression model and GDF15-based
death prediction model. Multivariable adjusted hazard ratios (aHRs) of different mor-
tality risks were calculated for plasma GDF15 tertiles in the Cox regression model. The
cumulative survival probability and proportional hazards were presented by graphical
methods. To assess the predictive accuracy of GDF15 tertiles and GDF15-based risk score
for mortality, the area under ROC curve (AUC) was used as the criterion [3]. An AUC of
0.5 indicates no predictive ability, whereas a value of 1 represents perfect predictive ability.
A p-value < 0.05 was considered statistically significant. We used the PASW Statistics SPSS
version 22.0 (IBM, City, NY, USA) to analyze all bio-clinical data of MHD patients.

3. Results
3.1. Primary Analyses: Evaluation of the Clinical Candidate Predictors

The final study sample included 170 MHD patients with complete medical records
and follow-up. Baseline bio-clinical data of the whole study population with comparisons
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between different concentration groups are summarized in Table 1. Plasma GDF15 levels
were categorized into low levels (<1314.8 pg/mL), medium levels (1314.8–1707.1 pg/mL),
and high levels (>1707.1 pg/mL) as the tertiles 1, 2, and 3, respectively. Age, prevalence
of DM, prior history of CVD, HD vintage, and albumin levels were significantly different
among three GDF15 tertiles. The mean age of low, medium, and high tertile was 59.1 ± 6.8,
60.3 ± 8.1, and 71.1 ± 7.1 years; namely, the older adults exhibit higher GDF15 levels. The
prevalence of DM was 41.1%, 42.9%, and 50.0% in tertiles 1, 2 and 3, respectively. Patients in
tertile 3 had the highest prevalence of a prior CVD history (62.5%). Patients in tertile 3 had
the longest HD vintage (80.9 ± 34.2 months). The mean albumin level in the tertiles 1, 2 and
3 was 4.0 ± 0.4, 3.9 ± 0.4 and 3.8 ± 0.5 g/dL, respectively. In the univariate Cox regression
analysis of clinical prognostic factors (Table 2), older age, higher GDF15 and lower albumin
levels were significantly associated with all-cause mortality (HR: 1.074 (95% confidence
interval (CI): 1.037–1.112), p < 0.01; 1.001 (95% CI: 1.000–1.001), p < 0.01; 0.200 (95% CI:
0.100–0.402), p < 0.01; respectively). Furthermore, the associations between age, higher
GDF15, and lower albumin levels for CV mortality remained significant [HR: 1.086 (95%
CI: 1.040–1.133), p < 0.01; 1.001 (95% CI: 1.000–1.001), p < 0.01; 0.377 (95% CI: 0.160–0.884),
p < 0.05; respectively). Although the HD vintage was associated with all-cause mortality
(HR: 1.006 (95% CI: 1.001–1.011), p < 0.05), the association between HD vintage and CV
mortality was insignificant [HR: 1.004 (95% CI: 0.998–1.011), p = 0.17]. Collectively, patients
with older age, higher GDF15 and lower albumin levels are more likely to have greater
risks in all-cause and CV mortality. Table 3 summarizes the multivariate Cox regression
analysis of clinical candidate predictors for all-cause and CV mortality. Age, GDF15,
and albumin were independently associated with overall mortality (aHR: 1.044 (95% CI:
1.007–1.083), p < 0.05; 1.001 (95% CI: 1.000–1.001), p < 0.01; 0.281 (95% CI: 0.141–0.560),
p < 0.01; respectively).

Table 1. Age, diabetes mellitus, cardiovascular diseases, hemodialysis vintage, and albumin differ significantly in the
comparisons of baseline bio-clinical characteristics according to GDF15 tertiles.

Variables Tertile 1
<1314.8 pg/mL

Tertile 2
1314.8–1707.1 pg/mL

Tertile 3
>1707.1 pg/mL

Patients, n (%) 56 (32.9) 56 (32.9) 58 (41.4)

Age (years) 59.1 ± 6.8 60.3 ± 8.1 71.1 ± 7.1
Male, n (%) 31 (55.4) 27 (48.2) 24 (41.4)

Diabetes mellitus, n (%) 23 (41.1) 24 (42.9) 29 (50.0)
Cardiovascular diseases, n (%) 80 (47.9) 51 (40.2) 25 (62.5)

Hypertension, n (%) 26 (46.4) 32 (57.1) 34 (58.6)
Systolic blood pressure (mmHg) 135.3 ± 21.4 134.1 ± 21.7 142.3 ± 22.7
Diastolic blood pressure (mmHg) 76.4 ± 8.6 78.3 ± 11.4 79.3 ± 14.2
Hemodialysis vintage (months) 72.2 ± 58.4 62.5 ± 51.8 80.9 ± 34.2

nPCR (g/kg/day) 1.2 ± 0.3 1.1 ± 0.3 1.1 ± 0.3
GDF15 (pg/mL) 1046.6 ± 203.0 1525.4 ± 112.7 2298.6 ± 637.9
Albumin (g/dL) 4.0 ± 0.4 3.9 ± 0.4 3.8 ± 0.5

Aspartate aminotransferase (IU/L) 15.0 ± 5.1 15.5 ± 6.8 17.8 ± 8.4
Alanine aminotransferase (IU/L) 13.2 ± 8.3 14.8 ± 13.6 16.6 ± 13.0

Total cholesterol (mg/dL) 192.2 ± 51.3 184.3 ± 47.6 192.5 ± 46.7
Triglyceride (mg/dL) 243.7 ± 201.4 194.4 ± 172.1 179.8 ± 23.6

Low-density lipoprotein 108.1 ± 39.4 101.9 ± 34.1 111.8 ± 33.5
Blood urea nitrogen (mg/dL) 55.9 ± 17.8 59.5 ± 17.7 61.8 ± 20.0

Creatinine (mg/dL) 9.4 ± 2.0 10.0 ± 1.9 10.0 ± 1.6
Blood glucose (mg/dL) 141.7 ± 59.0 143.3 ± 65.0 135.1 ± 84.5

Uric acid (mg/dL) 7.4 ± 1.4 7.3 ± 1.3 7.2 ± 1.1
Potassium (mmol L−1) 4.6 ± 0.9 4.6 ± 0.9 4.3 ± 0.8

Calcium (mg/dL) 9.4 ± 0.8 9.3 ± 0.8 9.1 ± 0.7
Phosphate (mg/dL) 4.6 ± 1.7 4.3 ± 1.4 5.0 ± 1.4

Calcium-phosphate product 42.1 ± 15.1 40.2 ± 12.9 45.9 ± 13.6
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Table 1. Cont.

Variables Tertile 1
<1314.8 pg/mL

Tertile 2
1314.8–1707.1 pg/mL

Tertile 3
>1707.1 pg/mL

Intact parathyroid hormone (pg/mL) 164.1 ± 220.5 153.8 ± 145.2 184.9 ± 200.2
Hemoglobin (g/dL) 10.8 ± 1.3 10.4 ± 1.2 10.6 ± 1.3

Hematocrit (%) 32.2 ± 3.8 31.1 ± 3.5 32.0 ± 3.7
Platelet (k/µL) 209.3 ± 66.3 185.5 ± 71.4 199.9 ± 56.1

Continuous variables were expressed as mean ± SD. Categorical variables are expressed as n (%). Boldface indicates where the values
differ significantly between GDF15 tertiles. GDF15 = growth differentiation factor-15. nPCR = normalized protein catabolic rate.

Table 2. Age, GDF15, and albumin as significant prognostic parameters for all-cause and CV mortality
in the univariate Cox regression analysis.

All-Cause Mortality CV Mortality

HR (95% CI) p-Value HR (95% CI) p-Value

Age 1.074 (1.037–1.112) p < 0.01 1.086 (1.040–1.133) p < 0.01
Male 0.867 (0.476–1.578) p = 0.64 1.139 (0.556–2.335) p = 0.72
HD vintage 1.006 (1.001–1.011) p < 0.05 1.004 (0.998–1.011) p = 0.17
GDF15 1.001 (1.000–1.001) p < 0.01 1.001 (1.000–1.001) p < 0.01
SBP 1.012 (0.998–1.026) p = 0.08 1.021 (1.005–1.038) p < 0.05
DBP 0.981 (0.998–1.026) p = 0.16 0.982 (0.952–1.014) p = 0.27
Blood glucose 1.001 (0.996–1.006) p = 0.72 1.003 (0.998–1.008) p = 0.30
nPCR 0.840 (0.284–2.488) p = 0.75 0.875 (0.239–3.200) p = 0.84
Albumin 0.200 (0.100–0.402) p < 0.01 0.377 (0.160–0.884) p < 0.05
AST 0.983 (0.938–1.030) p = 0.47 0.957 (0.898–1.019) p = 0.17
ALT 1.014 (0.993–1.036) p = 0.19 1.018 (0.994–1.043) p = 0.14
T-Cholesterol 0.999 (0.992–1.005) p = 0.65 1.000 (0.993–1.008) p = 0.90
Triglyceride 0.998 (0.996–1.001) p = 0.15 0.998 (0.995–1.001) p = 0.19
LDL 0.998 (0.990–1.006) p = 0.63 1.001 (0.991–1.011) p = 0.83
BUN 1.008 (0.992–1.023) p = 0.34 1.009 (0.991–1.028) p = 0.34
Creatinine 1.029 (0.879–1.204) p = 0.73 1.113 (0.920–1.347) p = 0.27
Uric acid 1.077 (0.859–1.350) p = 0.52 1.088 (0.830–1.426) p = 0.54
Potassium 0.788 (0.552–1.125) p = 0.19 0.773 (0.504–1.185) p = 0.24
Calcium 0.795 (0.515–1.229) p = 0.30 0.602 (0.347–1.045) p = 0.07
Phosphate 1.075 (0.897–1.288) p = 0.44 1.038 (0.829–1.300) p = 0.75
Ca-P product 1.005 (0.984–1.026) p = 0.64 0.999 (0.973–1.025) p = 0.92
iPTH 1.001 (1.000–1.002) p = 0.07 1.001 (0.999–1.002) p = 0.43
Hemoglobin 1.066 (0.818–1.390) p = 0.63 1.013 (0.739–1.389) p = 0.94
Hematocrit 1.032 (0.939–1.133) p = 0.51 1.017 (0.910–1.137) p = 0.77
Platelet 1.002 (0.998–1.007) p = 0.35 1.005 (0.997–1.010) p = 0.09

Boldface indicates significant predictors for both all-cause and CV mortality. ALT = Alanine aminotransferase;
AST = aspartate aminotransferase; BUN = blood urea nitrogen; Ca-p = Calcium-phosphate; CV = cardiovas-
cular; CVD = cardiovascular diseases; CI = confidence interval; GDF15 = growth differentiation factor-15;
HD = Hemodialysis; HR, hazard ratio; iPTH = intact parathyroid hormone; LDL = Low-density lipoprotein;
nPCR = normalized protein catabolic rate; SBP = Systolic blood pressure; T-Cholesterol = Total Cholesterol.

Table 3. Age, GDF15, and albumin as significant prognostic parameters for all-cause mortality in the
multivariate Cox regression analysis.

All-Cause Mortality CV Mortality

HR (95% CI) p-Value HR (95% CI) p-Value

Age 1.044 (1.007–1.083) p < 0.05 1.062 (1.015–1.112) p < 0.01
GDF15 1.001 (1.000–1.001) p < 0.01 1.001 (1.000–1.001) p < 0.05
Albumin 0.281 (0.141–0.560) p < 0.01 0.550 (0.235–1.289) p = 0.17

CVD = cardiovascular diseases; CI = confidence interval; GDF15 = growth differentiation factor-15.
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Figure 1 illustrates cumulative survival curves of mortality risks among patients with
three GDF15 concentration tertiles after adjusting for age and albumin. The highest tertile
of GDF15 is associated with an incremental risk of all-cause mortality (aHR: 3.06 [95% CI:
1.20–7.82], p < 0.05). The association between the highest tertile of GDF15 and CV mortality
remains robust after multivariable adjustment (aHR: 3.11 [95% CI: 1.02–9.50], p < 0.05).
Figure 2 demonstrated the ROC analysis using GDF15 tertiles as a predictor of mortality in
the whole study population following up for over 30 months. The AUC provided by the
tertiles of GDF15 for all-cause and CV mortality is 0.681 (95% CI = 0.589 to 0.774, p < 0.01)
and 0.684 (95% CI = 0.577 to 0.791, p < 0.01), respectively. The ROC analysis using age as
a predictor of overall mortality is demonstrated in the Figure 1. The AUC provided by
older age for overall mortality is 0.687 (95% CI = 0.594 to 0.779, p < 0.01). The cut-off value
for age is 65 years old. The ROC analysis using the lower albumin level as a predictor of
overall mortality is demonstrated in the Figure 2. The AUC provided by the lower albumin
level for overall mortality is 0.691 (95% CI = 0.600 to 0.782, p < 0.01). The cut-off value for
the albumin level is 3.8 g/dL. As a result, age > 65 years old (score 1), GDF15 tertiles 1–3
(score 1–3) and hypoalbuminemia < 3.8 g/dL (score 1) were combined as a death score
system in the secondary analyses.
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Figure 1. The cumulative survival curves of mortality risks showed GDF15 tertiles remained significant after ad-
justing for age and albumin during 4650.9 person-months follow-up (Tertile 1 GDF15 < 1314.8 pg/mL; Tertile 2
GDF15 = 1314.8–1707.1 pg/mL; Tertile 3 GDF15 > 1707.1 pg/mL). (A) The highest tertile of GDF15 (>1707.1 pg/mL)
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3.2. Secondary Analyses: Evaluation of the GDF15-Based Death Prediction Model

Table 4 summarizes the bio-clinical data and fatal events according to our GDF15-
based risk score system. Three GDF15 concentration tertiles are designated as scores 1,
2 and 3. Scores 1 or 0 of the clinical predictors are defined by the cut-off value of the
ROC analysis. All patients are stratified by the GDF15-based risk score system into new
categories. Figure 3 shows the comparison of ROC analysis between GDF15 tertiles and the
GDF15-based risk score model for mortality in the whole study population over 30 months
of follow-up. The AUC provided by the GDF15-based risk score model for all-cause
mortality is 0.745 (95% CI = 0.666 to 0.824), and CV mortality 0.715 (95% CI = 0.625 to 0.805).
Consideration of GDF15 concentration in the risk factor analysis increases the sensitivity
and the specificity for all-cause and CV mortality. In conclusion, our GDF15-based risk
score system may serve as an early warning for timely and appropriate intervention of
clinical events in the MHD population.

Table 4. Comparison of bio-clinical parameters and fatal events according to GDF15-based risk score system in the whole
study population.

Score = 1 Score = 2 Score = 3 Score = 4 Score = 5

Patients, n (%) 32 (18.8) 55 (32.4) 25 (14.7) 39 (22.9) 19 (11.2)

All-cause death, n (%) 0 (0) 10 (18.2) 9 (36.0) 12 (30.8) 12 (63.2)
CV death, n (%) 0 (0) 7 (12.7) 6 (24.0) 10 (25.6) 7 (36.8)

Age (years) 56.3 ± 4.0 58.9 ± 6.4 61.6 ± 7.1 71.2 ± 6.6 74.2 ± 4.7
Male, n (%) 12 (37.5) 33 (60.0) 15 (60.0) 13 (33.3) 9 (47.4)
DM, n (%) 9 (28.1) 24 (43.6) 12 (48.0) 20 (51.3) 11 (57.9)
CVD, n (%) 12 (37.5) 22 (40.0) 11 (44.0) 24 (61.5) 10 (52.6)

Hypertension, n (%) 19 (59.4) 29 (52.7) 13 (52.0) 21 (53.8) 10 (52.6)
SBP (mmHg) 136.4 ± 16.4 134.3 ± 23.2 135.0 ± 25.5 141.1 ± 21.8 143.8 ± 23.7
DBP (mmHg) 79.1 ± 6.9 79.0 ± 10.7 71.2 ± 11.2 79.7 ± 14.4 79.0 ± 13.1

HD vintage (months) 72.9 ± 49.2 59.6 ± 51.9 81.9 ± 61.6 83.1 ± 41.5 70.4 ± 32.4
nPCR (g/kg/day) 1.2 ± 0.3 1.1 ± 0.3 1.1 ± 0.3 1.0 ± 0.2 1.1 ± 0.4
GDF15 (pg/mL) 1098.3 ± 181.3 1303.8 ± 324.3 1731.8 ± 638.1 2157.2 ± 633.8 2266.7 ± 592.8
Albumin (g/dL) 4.1 ± 0.3 4.0 ± 0.4 3.8 ± 0.4 3.8 ± 0.4 3.3 ± 0.4
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Table 4. Cont.

Score = 1 Score = 2 Score = 3 Score = 4 Score = 5

AST (IU/L) 15.1 ± 5.0 14.7 ± 5.5 15.7 ± 6.9 18.9 ± 9.1 17.3 ± 8.0
ALT (IU/L) 14.9 ± 8.4 14.1 ± 13.5 13.2 ± 10.6 14.8 ± 11.0 19.3 ± 15.3

T-Cholesterol (mg/dL) 188.5 ± 48.5 190.3 ± 51.3 186.6 ± 43.1 199.4 ± 52.9 186.0 ± 41.6
Triglyceride (mg/dL) 225.7 ± 180.7 222.7 ± 203.9 198.5 ± 165.0 202.1 ± 197.5 172.6 ± 141.6

LDL 107.2 ± 41.4 105.8 ± 36.3 103.0 ± 29.8 114.4 ± 37.4 103.5 ± 28.5
BUN (mg/dL) 53.5 ± 16.1 57.2 ± 17.1 65.1 ± 16.9 59.4 ± 18.0 65.5 ± 25.8

Creatinine (mg/dL) 9.6 ± 2.0 9.8 ± 2.2 10.5 ± 1.4 9.5 ± 1.5 9.9 ± 1.7
Blood glucose (mg/dL) 122.0 ± 40.2 130.9 ± 57.5 152.6 ± 63.2 133.6 ± 70.2 137.0 ± 69.7

Uric acid (mg/dL) 7.5 ± 1.3 7.3 ± 1.5 7.6 ± 1.1 6.9 ± 1.1 7.2 ± 0.9
Potassium (mmol L-1) 4.6 ± 1.0 4.5 ± 0.9 4.8 ± 0.7 4.2 ± 0.6 4.1 ± 1.0

Calcium (mg/dL) 9.3 ± 0.7 9.2 ± 0.7 9.4 ± 0.8 9.2 ± 0.7 9.1 ± 0.7
Phosphate (mg/dL) 4.5 ± 1.5 4.4 ± 1.7 5.1 ± 1.5 4.7 ± 1.2 5.0 ± 1.7

Ca-P product 41.6 ± 14.0 40.9 ± 15.2 47.0 ± 14.4 42.8 ± 10.4 44.5 ± 16.2
iPTH (pg/mL) 213.9 ± 254.0 177.5 ± 195.8 328.8 ± 320.2 236.4 ± 230.5 198.4 ± 214.2

Hemoglobin (g/dL) 10.8 ± 1.3 10.6 ± 1.3 10.7 ± 1.1 10.6 ± 1.2 10.4 ± 1.6
Hematocrit (%) 32.0 ± 3.7 31.4 ± 3.7 31.9 ± 3.2 31.9 ± 3.5 31.7 ± 4.5
Platelet (k/µL) 205.2 ± 62.6 200.0 ± 68.2 192.1 ± 78.7 190.4 ± 57.9 203.7 ± 64.1

Continuous variables were expressed as mean ± SD. Categorical variables are expressed as n (%). ALT= Alanine aminotransferase;
AST = aspartate aminotransferase; BUN = blood urea nitrogen; Ca-P = Calcium-phosphate; CV = cardiovascular; CVD = cardiovascular
diseases; DBP = Diastolic blood pressure; DM = Diabetes mellitus; GDF15 = growth differentiation factor-15; HD = Hemodialysis;
iPTH = intact parathyroid hormone; LDL = Low-density lipoprotein; nPCR= normalized protein catabolic rate; SBP = Systolic blood
pressure; T-Cholesterol = Total Cholesterol.
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Figure 3. The ROC analysis of the GDF15-based risk score model showed optimal discriminatory power with comparison to
GDF15 tertiles in the whole study population over 30 months of follow-up. (A) The AUC provided by GDF15 tertiles and the
GDF15-based risk score model for all-cause mortality was 0.681 (95% CI = 0.589 to 0.774) and 0.745 (95% CI = 0.666 to 0.824),
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(95% CI = 0.577 to 0.791) and 0.715 (95% CI = 0.625 to 0.805), respectively. Source of the curve: green line = GDF15-based
risk score model; blue line = GDF15 tertiles; yellow line = reference. AUC = area under curve; CV = cardiovascular;
GDF15 = growth differentiation factor-15; ROC = receiver operating characteristics.

4. Discussion

The optimal medical services to improve the patient safety are delivery of early de-
tection and sustained monitoring of high-risk subjects. To deploy a timely and effective
therapeutic strategy in preparation, a robust surrogate biomarker to warn clinicians in
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advance is crucial for the CKD population because of high prevalence of morbidity and
mortality. Especially in MHD patients prone to sudden cardiac death due to persistent
inflammation accompanied by malnutrition, the precise prognostic evaluation and ther-
apeutic decision-making are particularly important [15]. Considering their underlying
multiple comorbidities, it seems unlikely that a single biomarker assessment is sufficient to
understand patients’ overall burden of ailments. Hijazi et al. consolidated age, biomarkers,
and clinical parameters as a novel ABC-death risk score in the high-risk CV population [17].
Based on their ABC-death risk model, all clinical candidate predictors in our MHD patients
were evaluated using the Cox regression analysis for all-cause and CV mortality in the
first step (Table 2). Our results demonstrate MHD patients with older age, higher plasma
GDF15 concentrations, and lower albumin levels are more likely to have greater risks
for all-cause death (HR: 1.074 ((95% CI: 1.037–1.112), 1.001 ((95% CI: 1.000–1.001), 0.200
(95% CI: 0.100–0.402), respectively) but also CV mortality (HR: 1.086 (95% CI: 1.040–1.133),
1.001 (95% CI: 1.000–1.001), 0.377 (95% CI: 0.160–0.884), respectively). HD vintage lost
the predictive power for CV mortality (Table 2), despite being associated with all-cause
death and significantly different among three groups of GDF15 tertiles (Table 1). In the
multivariate Cox regression analysis for clinical candidate predictors (Table 3), age, GDF15,
and albumin were independently associated with overall mortality (aHR: 1.044 (95% CI:
1.007–1.083), 1.001 (95% CI: 1.000–1.001), 0.281 (95% CI: 0.141–0.560), respectively). Ac-
cordingly, older age, higher GDF15, and hypoalbuminemia were integrated as a novel
death risk score system in our modified prediction model. After adjusting for age and
albumin in the cumulative survival curve analysis with respect to different GDF15 tertiles
among the whole study population (Figure 1), the highest tertile of GDF15 (>1707.1 pg/mL)
was associated with an incremental risk for not only all-cause death (aHR: 3.06 (95% CI:
1.20–7.82), p < 0.05) but also CV mortality (aHR: 3.11 (95% CI: 1.02–9.50), p < 0.05). In
the ROC analysis for mortality over 4650.9 person-months follow-up, however, the AUC
provided by GDF15 tertiles for all-cause and CV mortality was 0.681 (95% CI = 0.589 to
0.774, p < 0.01) and 0.684 (95% CI = 0.577 to 0.791, p < 0.01), respectively. The prediction
model using GDF15 tertiles has inadequate discriminatory power (Figure 2). Likewise, the
AUC provided by older age (>65 years old) for overall mortality is 0.687 (95% CI = 0.594 to
0.779, p < 0.01) (Figure 1). The AUC provided by the lower albumin level (<3.8 g/dL) for
overall mortality is 0.691 (95% CI = 0.600 to 0.782, p < 0.01) (Figure 2). The above results
inspire us to combine age, GDF15, and hypoalbuminemia as a brand-new risk score system
to predict fatal events.

In the secondary analyses, age, biomarker GDF15, and hypoalbuminemia were in-
corporated into a novel GDF15-baesd death prediction model for the ROC analysis. As
expected, our GDF15-based risk score is a more comprehensive system that provides
stronger predictive values for both all-cause and CV mortality. The comparison of ROC
analyses between GDF15 tertiles and the GDF15-based risk score model for mortality
was provided in Figure 3. The AUC provided by the GDF15-based risk score model for
all-cause and CV mortality was 0.745 (95% CI = 0.666 to 0.824) and 0.715 (95% CI = 0.625 to
0.805), respectively.

GDF15 is reminiscent of a robust prognostic biomarker in the high-risk patients with
CVD, including fatal arrhythmia, myocardial infarction and heart failure [17–20]. In addi-
tion to the predictive role of cardiac biomarker, increased GDF15 levels have been known to
be associated with a greater risk of all-cause mortality [21]. However, there are few studies
linking GDF15 to the CKD-related outcome-prediction models. Previous studies demon-
strated that a higher circulating level of GDF15 was an independent predictor of CKD
mortality after multivariate adjustment, and correlated with the severity of atherosclerosis,
hypoalbuminemia, inflammation, HD vintage, and protein-energy wasting [22,23]. Nair
et al. found that plasma GDF15 levels were correlated with intrarenal GDF15 expression
in the tubulo-interstitial compartment and significantly associated with a decline in renal
function or progression to end stage renal disease. Their research team concluded that
GDF15 was not only a CKD outcome predictor, but rather directly involved in the intrarenal
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signaling pathways contributing to CKD progression [6]. Bansal et al. analyzed the baseline
characteristics of 3664 CKD patients and found that those with higher plasma GDF15 con-
centrations had older age, the higher prevalence of DM and CVD history, and higher risks
in CKD progression [8]. The results above support our findings that higher GDF15 levels
were associated older age, longer HD duration, hypoalbuminemia, and higher risks in the
fatal events. We acknowledge that the reliability of our ABC-death score model might be
insufficient in relation to the relatively small sample size; however, such ABC-death predic-
tion model was validated in a large sample study of 14,611 patients [12]. Furthermore, You
et al. measured GDF15 using the same method and enzyme-linked immunosorbent assay
kits (R&D Systems, Minneapolis, MN, USA) as we used [10]. Their main result is similar
to ours in which GDF15 is associated with all-cause mortality using adjusted death HRs.
Both their and our study subjects are hemodialysis patients, suggesting that the patient
heterogeneity may not exert a significant influence. Considering the nature of GDF15 is
a stress-induced protein, elevated circulating GDF15 levels indeed assisted physicians in
identifying the patients at a high risk for a myriad of adverse clinical outcomes.

Our study contributes differently from other mortality risk indicators based on a
previously validated ABC-death risk score model in a large sample size of 14,611 high-
risk CV patients [12]. We confirmed the external validity and generalizability of the
ABC-death prediction model in the MHD population. Furthermore, we proved that a
combination scoring system provides more robust predictive powers than a single mortality
risk indicator. Considering the multiple comorbidities in patients with organ failure, it
seems unlikely that a single biomarker assessment could comprehensively evaluate the
patients’ overall disease burden. Thus, we improve the insufficiency of single mortality
risk indicator. In light of this, our risk scoring system could be applied in the monthly
routine assessment of MHD patients. An elevated GDF15-based risk score warns clinicians
to determine an appropriate intervention in advance.

The interest is increasing rapidly in the application of risk score systems and arti-
ficial intelligence (AI)-based decision tree assisted technologies to monitor the patient
safety [14,15]. In recent years, the accessibility of electronic medical records for big data
in the healthcare and development of machine learning to AI has grown tremendously.
Using machine-learning algorithms to analyze a huge amount of clinical data/risk factors
in the patient outcome prediction has been demonstrated to be effective [23,24] and, in
some case, even surpassing the performance of clinicians [25,26]. Our GDF15-based risk
score system is designed based on the statistic regression analysis of clinical parameters
and a robust biomarker to predict the mortality of CKD patients, providing a data bank in
AI development. With the calibration settings of AI algorithms and extensive validation in
the future, we hope this model can be implemented in clinical practice to alarm clinicians
and patients for deploying a therapeutic strategy and decision-making in advance.

Several limitations of this study are noteworthy. Firstly, our study sample size was
relatively small and the majority of study participants were Asian. Thus, our model
applied to other populations should be interpreted with caution. Secondly, cross-sectional
laboratory values and GDF15 levels might not reflect substantial intra-individual variability
over time. Finally, all cases of sudden death and CV events were combined as CV mortality
because we lacked sufficient power to examine specific events. We acknowledge that the
pathophysiology of underlying CVD for various outcomes may differ.

5. Conclusions

Since the risk stratification alerts clinicians to deploy a differential diagnosis and
corresponding treatment in advance, searching for a robust biomarker-based risk prediction
model is of prime importance for MHD patients with extremely high mortality rates. Age,
GDF15, and hypoalbuminemia predict all-cause and CV death in MHD patients, yet a
combination scoring system provides more robust predictive powers. Elevated GDF15-
based risk score serves as a warning sign, indicating an urgent need for the further study to



Diagnostics 2021, 11, 286 11 of 12

determine an appropriate intervention. In light of this, the GDF15-based death prediction
model should be developed in the AI-based precision medicine.

Abbreviation
aHRs adjusted hazard ratios
AI artificial intelligence
ALT Alanine aminotransferase
AST aspartate aminotransferase
AUC area under ROC curve
BUN blood urea nitrogen
CI confidence interval
CKD chronic kidney disease
Ca-P Calcium-phosphate
CV cardiovascular
CVD cardiovascular diseases
DBP Diastolic blood pressure
DM Diabetes mellitus
GDF15 growth differentiation factor-15
HD Hemodialysis
iPTH intact parathyroid hormone
LDL Low-density lipoprotein
MHD maintenance hemodialysis
nPCR normalized protein catabolic rate
ROC receiver operating characteristic
SBP Systolic blood pressure
T-Cholesterol Total Cholesterol
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