
Published online 17 November 2021 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 1
https://doi.org/10.1093/nargab/lqab109

mmCSM-NA: accurately predicting effects of single
and multiple mutations on protein–nucleic acid
binding affinity
Thanh Binh Nguyen1,2,3, Yoochan Myung1,3, Alex G. C. de Sá1,2,3, Douglas E. V. Pires 1,3,4,*
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ABSTRACT

While protein–nucleic acid interactions are pivotal
for many crucial biological processes, limited exper-
imental data has made the development of compu-
tational approaches to characterise these interac-
tions a challenge. Consequently, most approaches
to understand the effects of missense mutations on
protein-nucleic acid affinity have focused on single-
point mutations and have presented a limited per-
formance on independent data sets. To overcome
this, we have curated the largest dataset of ex-
perimentally measured effects of mutations on nu-
cleic acid binding affinity to date, encompassing
856 single-point mutations and 141 multiple-point
mutations across 155 experimentally solved com-
plexes. This was used in combination with an op-
timized version of our graph-based signatures to
develop mmCSM-NA (http://biosig.unimelb.edu.au/
mmcsm na), the first scalable method capable of
quantitatively and accurately predicting the effects
of multiple-point mutations on nucleic acid binding
affinities. mmCSM-NA obtained a Pearson’s corre-
lation of up to 0.67 (RMSE of 1.06 Kcal/mol) on
single-point mutations under cross-validation, and
up to 0.65 on independent non-redundant datasets
of multiple-point mutations (RMSE of 1.12 kcal/mol),
outperforming similar tools. mmCSM-NA is freely
available as an easy-to-use web-server and API. We
believe it will be an invaluable tool to shed light on
the role of mutations affecting protein–nucleic acid
interactions in diseases.

GRAPHICAL ABSTRACT

INTRODUCTION

The interactions between proteins and nucleic acids play es-
sential roles in crucial biological processes, from gene regu-
lation (1) to replication and transcription (2,3), translation
(4), DNA repair (5–8) and DNA packaging (9,10). Missense
mutations within nucleic acid binding proteins can lead to a
range of diseases, including cancers (11,12), viral infections
(13–18) and neurodegenerative disorders (19). With the in-
creasing speed and availability of high-throughput sequenc-
ing, there is a pressing need to be able to rapidly evaluate
the molecular consequences of novel variants, however, tra-
ditional experimental approaches are time-consuming and
laborious. Despite increasing interest in the ability to pre-
dict the effects of mutations on these protein–nucleic acid
(protein–NA) interactions, it remains a significant chal-
lenge. In part, this is due to the limited availability of experi-
mental data compared to other protein interactions. Conse-
quently, most developed methods have focused on only the
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effects of single-point missense mutations and been found
to be poorly generalisable (20–22).

We have previously shown that by representing protein
structures and their interacting partners as a graph-based
signature, it can be used to train predictive models capa-
ble of unravelling the link between genotype and phenotype
by accurately predicting the effects of mutations on pro-
tein folding, stability (23–25), dynamics (26,27) and inter-
actions (28–32). This approach enabled, for the first time,
quantitative and scalable assessment of the effects of single-
point missense mutations on protein–NA binding affinities
(23,33).

Here, we have curated the largest data set with high-
quality experimentally characterised effects of mutations on
protein–NA affinity to date and developed an optimised
version of our graph-based signatures to train and test
mmCSM-NA (Figure 1), the first method capable of accu-
rately and scalably predicting the effects of multiple-point
mutations on protein–NA binding affinity.

MATERIALS AND METHODS

Data sets

Experimentally measured effects of mutations on protein–
NA binding affinity were carefully curated, combined
and manually corrected for errors from ProNIT 2.0 (34),
dbAMERPNI (35) and PrPDH (21). ProNIT provides the
effects of mutations as experimental thermodynamic val-
ues given in the form of the difference in Gibbs free en-
ergy of binding, ��G (in kcal/mol), or kinetic equilibrium
constant, KD (in molar). dbAMERPNI comprises of >570
alanine scanning data points with experimental thermody-
namic values. PrPDH is a data set consisting of 214 muta-
tions of protein-DNA interactions with experimental ��G
values. In total, our combined data set has 856 single-point
mutations across 151 unique protein–NA complexes (484
neutral, 349 decreasing and 23 increasing affinities) and 141
multiple-point mutations on 25 protein–NA complexes (77
decreasing, 62 neutral and 2 increasing affinities). The target
outcome for mmCSM-NA is the changes in Gibbs binding
free energy (or ��G). ��G was defined as the difference
between wild-type and mutant (��G = �Gwt – �Gmut),
where negative values of ��G correspond to mutations de-
creasing protein–NA affinity and positive values to those
increasing affinity.

Only single-point missense mutations were considered
within our training data set, which was further divided
into four distinct subclasses based on the interacting part-
ners: double-stranded DNA (dsDNA; 461 single-point mu-
tations across 81 complexes), single-stranded DNA (ss-
DNA; 60 single-point mutations across 13 complexes),
double-stranded RNA (dsRNA; 188 single-point mutations
across 30 complexes), and single-stranded RNA (ssRNA;
147 single-point mutations across 27 complexes). Struc-
tures where separate single-stranded nucleic acids formed
a pair were considered as double-stranded.

The Gibbs free energy can be presented as a thermody-
namic state function, i.e. the Gibbs free energy only depends
on the beginning and end states. In other words, the change
in Gibbs free energy of a mutation from the wild-type to

mutant (��Gwt→mut) is equivalent in intensity but with op-
posite sign of the reverse mutation, i.e. from the mutant to
wild-type (��Gmut→wt = –��Gwt→mut). The use of hypo-
thetical reverse mutations has been proposed to help bal-
ance naturally imbalanced thermodynamic data sets (36).
One limitation of this approach, however, is that mutations
leading to large changes in ��G are more likely to lead
to larger changes in protein structure, which are unlikely
to be accurately modelled. To avoid this, we generated mu-
tant structures and have only considered reverse mutations
where their ��Gwt→mut ≥ −2 kcal/mol. In total, we consid-
ered reverse mutations of 699 single-point mutations of 136
protein–NA complexes, including dsDNA (391 single-point
mutations across 72 complexes), ssDNA (45 single-point
mutations across 11 complexes), dsRNA (158 single-point
mutations across 29 complexes) and ssRNA (105 single-
point mutations across 24 complexes). The addition of 699
reverse mutations into 856 experimental single mutations
results in a fairly balanced training set of 1555 single-point
mutations (Supplementary Figure S1).

All 141 multiple-point mutations across 25 protein–NA
complexes were used as an independent blind test. They
included dsDNA (113 multiple-point mutations across 18
complexes), ssDNA (12 single-point mutations across 3
complexes), dsRNA (12 single-point mutations across 3
complexes) and ssRNA (4 single-point mutations across
1 complex). Data sets used are available at http://biosig.
unimelb.edu.au/mmcsm na/datasets.

Mutation modelling and feature engineering

Modelling mutant structures. Mutant structures for single-
point and multiple-point mutations were built using Mod-
eller (v.9.25) (37). The conformation of the mutant side
chain was then optimized by conjugate gradient and refined
by molecular dynamics simulations using default parame-
ters from mutate model.py in the Modeller website.

Feature engineering. Five classes of features were extracted
from protein-NA complexes (Supplementary Table S1).

i) Graph-based signatures. The mCSM graph-based signa-
tures have been applied to represent both the environ-
ment of the wild-type residue of the protein and the
nucleic acid by calculating the physicochemical and ge-
ometry of their interactions (23). The signature defines
atoms as nodes and their interactions as edges. Nodes
are labelled based on the seven physicochemical prop-
erties (aromatic, hydrophobic, negative, positive, hydro-
gen bond donor, hydrogen bond acceptor, and neutral)
of the amino acid residues/nucleic acids (i.e. pharma-
cophores). Nucleic acid nodes were labeled based on
nucleic acid pharmacophores considering the base ring
(purines or pyrimidines), and nucleic acid components
(phosphate, sugar and base) and protein nodes as per-
formed previously (33). By using the cutoff scanning
matrix algorithm, residue environments are represented
as cumulative distributions of distances.

ii) Physicochemical properties of protein amino acid
residues. The statistical quasi-chemical potential with
the composition-corrected pair scale and two substitu-
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Figure 1. mmCSM–NA workflow and application on real-world data. The method relies on graph-based structural signatures that model distance patterns
on the wild-type residue environment. In addition, the effect of mutations was also evaluated using protein dynamics, and interaction network. Comple-
mentary information including from mutated residues and predicted protein stability change upon mutation are also used to train and test the predictive
models.

tion matrices from AAindex database (38) were used to
calculate the effect of mutations.

iii) Normal mode analysis (NMA). The dynamics aspects
of the mutation effects were characterised by the vibra-
tional entropy change of the protein–NA compelx using
DynaMut (26).

iv) Protein-nucleic acid interaction network. The non-
covalent interactions between protein and nucleic acid
in both wild-type and mutated complexes were calcu-
lated using Arpeggio(39). Thirteen interaction types are
considered: clash, covalent, Van der Waals, clash in
Van der Waals, hydrogen bond, weak hydrogen bond,
proximal, halogen bond, aromatic, ionic, carbonyl, hy-
drophobic and metal interactions.

v) Nucleic acid type. Four types of nucleic acids, ssRNA,
dsRNA, ssDNA and dsDNA were considered in our
prediction model. The type was split into RNA/DNA
and double/single-stranded as binary variables.

Multiple mutation features were calculated as either the
average or accumulation of the respective single point mu-
tations.

Machine learning approach

A range of supervised machine learning algorithms for re-
gression available on Scikit-Learn version 0.20.3 (40), were
evaluated under a group-based 5-, 10- and 20-fold cross-
validation procedure and evaluated against the blind test
set. To reduce issues with redundancy, the forward muta-
tions and their respective reverse counterparts were kept in
the same set.

Under this evaluation framework, the following learn-
ing algorithms were analyzed: Gradient Boosting, Extreme
Gradient Boosting, Random Forest, Extremely Random-
ized Trees, AdaBoost, K-Nearest Neighbour, Support Vec-
tor Regressor, Gaussian Processes and Neural Networks
(with a standard Multi-Layer Perceptron). Models were op-
timized using a traditional bottom-up greedy feature selec-
tion approach. The best performing model, based on Pear-
son’s correlation coefficient (PCC) and root mean square er-
ror (RMSE) on the training set, was extremely randomized
trees. Other performance metrics were also considered and
reported including Spearman’s and Kendall’s correlations;
accuracy, F1 and Matthew’s correlation coefficient (MCC)
for classification-by-regression analyses. 13 features were se-
lected as representatives for the predicted model.
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Web-server

The server front end was built using the Bootstrap frame-
work version 3.3.7, whereas the back-end was built using
Python via the Flask framework (Version 0.10.1), on a
Linux server running Apache.

RESULTS

Data set analysis

The distributions of the changes in Gibbs free energy, ��G,
in the 856 single-point mutations and 141 multiple-point
mutations having experimental values show that majority
of the mutations are destabilizing (Supplementary Figure
S1). To avoid introducing potential bias into the final model,
hypothetical reverse mutations of the single-point missense
mutations were included in the training set. We next an-
alyzed the distribution of different amino acid types on
wild-type and on mutated residues. The majority of the 856
experimentally-determined single-point mutations involve
positively charged residues, namely Arg and Lys (17%, and
14%, respectively) (Supplementary Figure S2A), followed
by negatively charged, and aromatic residues, namely Tyr,
Asp, Phe and Glu (8%, 7%, 6% and 6%, respectively). Most
of the residues involved in single-point mutations are mu-
tated to Ala (74%), as a reflection of alanine scanning ef-
forts, while other amino acid types account for no more
than 2%. Similarly, the majority of 141 multiple-point mu-
tations consist of 16% of Arg and 19% of Lys (Supplemen-
tary Figure S2B), followed by Ser (11%), His (7%), Asp
(6%) and Glu (6%). Most of the residues in multiple-point
mutations are also mutated to Ala (41%), followed by Asn
(7%), Lys (6%), Glu (6%), Arg (5%) and Gly (5%), while
other amino acid types account for <5%.

Performance on single-point mutations

The performance of mmCSM-NA was evaluated via mul-
tiple forms of cross-validation. Using 5-, 10- and 20-fold
cross-validation, for single-point mutations mmCSM-NA
achieved Pearson’s, Spearman’s, and Kendall’s correlations
of up to 0.67, 0.65 and 0.47 respectively, with small devia-
tions across repetitions (<0.01; Figure 2A) and RMSE of
1.06 kcal/mol. Performance increases significantly on 90%
of the data, removing 10% of worst predicted data points,
achieving Pearson’s, Spearman’s, and Kendall’s correlations
of up to 0.78, 0.74, and 0.54 (RMSE = 0.84 kcal/mol).
Looking closer at the outliers revealed most of them were
associated with extreme values (��G either lower than −3
kcal/mol or higher than 3 kcal/mol). Reassuringly, how-
ever, their direction of change was still predicted correctly.

In addition to the overall model performance, we next
considered the performance of our final model on each nu-
cleic acid type. Pearson’s correlation values of mmCSM-NA
on the protein-NA complexes are 0.75, 0.77, 0.76, and 0.57,
for ssRNA, dsRNA, ssDNA and dsDNA, respectively (Fig-
ure 2B–E). After 10% outlier removal, the corresponding
Pearson’s correlations increased to 0.84, 0.78, 0.79 and 0.75.

We further assessed the robustness of the mmCSM-NA
model on a low-redundancy setting, via leave-one-complex-
out cross-validation. mmCSM-NA was able to achieve

Pearson’s, Spearman’s, and Kendall’s correlations of up to
0.50, 0.57 and 0.40, respectively (RMSE = 1.24 kcal/mol),
still consistent with its original performance.

As many experimental screening efforts have focussed
on alanine scanning, the performance of the mmCSM-NA
model on different types of mutations was evaluated. While
the Pearson’s correlation for mutations to alanine was 0.55
(RMSE = 1.09 kcal/mol), interestingly, mutations to other
residues had a Pearson’s correlation of 0.61 (RMSE = 1.26
kcal/mol) (Supplementary Table S2), indicating that our
approach has a comparable performance on non-alanine
scanning mutations.

We also analysed the dependency of the performance
of the mmCSM–NA model on the distance between NA
and protein atoms. We used a cutoff of 8 Å to distinguish
proximal from distal mutations (Supplementary Figure S3).
mmCSM–NA was able to achieve comparable performance
between mutations within and beyond 8 Å from the inter-
face, achieving Pearson’s correlations up to 0.58 (RMSE =
0.90 kcal/mol) and 0.69 (RMSE = 1.13 kcal/mol), respec-
tively (Supplementary Table S3).

To further assess the performance of the developed
method, we evaluated its ability to correctly identify the di-
rection of affinity change (i.e. either increase or decrease
affinity). For this purpose, we removed all the single-point
mutations that were considered as neutral (−0.5 ≤ ��G ≤
0.5). The mmCSM–NA model was able to accurately clas-
sify the direction of affinity change due to mutations, with
accuracy, F1 and MCC of up to 0.86, 0.88 and 0.70, re-
spectively, achieving an AUC of 0.91 (Supplementary Fig-
ure S4).

Benchmarking with other available methods

Most efforts to build computational models exploring the
effects of mutations on protein–NA binding affinity have
focused on predicting residues significantly contributing
to binding affinity (i.e. hot-spot residues). We, therefore,
sought to compare the ability of mmCSM–NA to identify
these hot-spots with other available tools. For this task, hot-
spots were considered as residues where mutation to Ala-
nine results in complete disruption of the interaction.

Three methods were used in a comparison with mmCSM-
NA, namely, iPNHOT (20), PrabHot (22) and PrPDH
(21), which predict the hot-spots of protein–NA, protein–
RNA and protein–DNA complexes, respectively. Unlike
mmCSM-NA, these methods are limited to identifying hot-
spot residues in close proximity to the binding site and are
not capable of predicting quantitative effects.

Different approaches have used different cutoff values to
define hot-spots/non-hot-spots. For direct comparison pur-
poses, we therefore used the same threshold defined in each
of the respective methods. For example, in the case of iPN-
HOT, we used the cutoff of −2 kcal/mol, while in the cases
of PrPDH and PrabHot, we used the cutoff of −1 kcal/mol.

We assessed the ability of the methods to identify hot-
spots by using all mutations to Alanine that had available
experimental values in our curated data set as a blind test.
mmCSM-NA outperformed all three methods, achieving
MCCs of 0.37, 0.39 and 0.28 when using different cutoffs
to define hot-spots in comparison with iPNHOT (MCC =
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Figure 2. Regression plot between the experimental and predicted changes in binding affinity (in kcal/mol) during cross-validation. mmCSM–NA obtained
a Pearson’s correlation of 0.67 across the original dataset (A). The performance of the model against complexes containing ssRNA (B), dsRNA (C), ssDNA
(D) and dsDNA (E) are shown, highlighting the accuracy and applicability of mmCSM–NA to handle all different types of protein–NA complexes. The
overall Pearson correlation coefficients, including outliers, is shown in red; with the correlation after removing outliers shown in black. The Pearson’s,
Spearman’ and Kendall’s correlations are written in abbreviation as p, s and k, respectively

0.28), PrPDH (MCC = 0.31) and PrabHot (MCC = 0.07),
respectively, as shown in Table 1.

Performance on multiple-point missense mutations

The predicted model was evaluated using a blind data set of
multiple-point mutations. Although the training set did not
contain any multiple-point mutations, mmCSM-NA was
able to accurately predict the change in Gibbs binding free
energy of multiple-point mutations with Pearson’s, Spear-
man’s and Kendall’s correlations of 0.65, 0.56 and 0.41, re-
spectively (RMSE = 1.12 kcal/mol) (Supplementary Fig-
ure S5). This performance shows the ability of the method
to predict multiple-point mutations using the information
from only single-point mutations. To further assess the per-
formance of the developed method, we evaluated its ability
to correctly identify the direction of affinity change (i.e. ei-
ther increase or decrease affinity). For this purpose, we re-
moved all the multiple-point mutations that were consid-
ered as neutral (−0.5 ≤ ��G ≤ 0.5). The mmCSM-NA
model was able to accurately classify the direction of affin-
ity change due to mutations, with accuracy, F1, and MCC
of up to 0.96, 0.98 and 0.55, respectively and AUC of 0.90.

The combination of multiple point mutations can be ei-
ther additive, where the overall effect equals the sum of

contributions of individual mutations, or synergistic, where
there are compensatory effects between the mutations. We
therefore assessed the performance of mmCSM–NA on
additive and synergistic multiple-point mutations. Across
our dataset of multiple point mutations, we had 104 mu-
tations across 17 complexes that had experimental infor-
mation available on all the mutations in isolation, in ad-
dition to the multiple-point mutation construct. Multiple-
point mutation constructs were defined as additive muta-
tions when the difference between the overall effect and the
contributions of the individual mutations effects was either
lower than 0.2 kcal/mol (leading to 39 additive mutations)
or varied by <10% (leading to 12 additive mutations). Mu-
tations were considered synergistic otherwise, leading to 65
and 92 synergistic mutations, respectively. Our method per-
formed consistently on both synergistic and additive muta-
tions, achieving Pearson’s correlations of 0.60 and 0.63 (for
additive and synergistic, respectively, for the ±10% criteria)
and 0.61 and 0.59 (for additive and synergistic, respectively,
for the ±0.2 kcal/mol criteria) (Supplementary Figure S6).

Assessing feature importance

The final mmCSM–NA model is composed of a diverse
set of 13 features. We assessed their relative contribu-
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Table 1. Benchmark with other servers that predict the hot-spots and non-hot-spots in protein–NA complexesa

Cutoff (kcal/mol) Method SEN SPE PRE ACC F1-Score MCC P-value

DNA+RNA −2 mCSM-NA 0.31 0.96 0.64 0.85 0.42 0.37 <0.001
iPNHOT 0.37 0.90 0.43 0.80 0.40 0.28

DNA −1 mCSM-NA 0.63 0.77 0.61 0.72 0.62 0.39 0.006
PrPDH 0.48 0.81 0.59 0.70 0.53 0.31

RNA −1 mCSM-NA 0.54 0.73 0.63 0.64 0.58 0.28 <0.001
PrabHot 0.69 0.37 0.48 0.52 0.57 0.07

aNon-predicted residues in other servers are considered as non-hot-spots.

tion to the model (Supplementary Figure S7) using SHAP
(41). This highlighted that the 3D environment of the
mutation (graph-based signatures in addition to changes
in vibration entropy and protein dynamics) and its in-
teractions with the nucleic acid (Arpeggio interactions
and distance to nucleic acid) were the most important
contributors to overall performance. In addition, amino
acid similarity matrices from AAIndex and the nature
of the nucleic acid (DNA or RNA) were also important
considerations.

Web-server

We have made mmCSM-NA available to the research com-
munity as an easy-to-use web-server. To perform a predic-
tion, users need to provide either a PDB file or a PDB code
of the protein–NA complex and specify the type of nucleic
acid (ssRNA, dsRNA, ssDNA and dsDNA) (Supplemen-
tary Figure S8). Users can select either ‘Prediction Mode’,
where users supply a list of mutations, or ‘Design Mode’,
where the server performs saturation mutagenesis across
all residues within 8Å of the protein–nucleic acid interface.
With Prediction Mode, users can either type or upload a list
of mutations. The point mutation should contain the chain
identifier of the wild-type residue in the protein, its single
letter code, its corresponding residue number, and the sin-
gle letter code of the mutant residue. The chain identifier
and the single letter code should be separated by a space.
For multiple mutations, these can be listed sequentially
using ‘;’ as a separator, while distinct constructs should
be separated by different lines. The ‘Prediction Mode’ is
also available via RESTful Application Programming Inter-
faces (APIs) and examples of its usage are described in the
web-server.

mmCSM–NA predicts the numerical values of the
change in Gibbs binding free energy (��G in kcal/mol)
(Supplementary Figure S9) in tabular format, which
is made available to download as a comma-separated
file. A negative value corresponds to the destabilizing
effect, while a positive value presents the stabilizing
effect.

The users can visualize their uploaded PDB file with its
wild-type residue environment from the server using GLmol
molecular viewer (Supplementary Figure S9), and a Pymol
session file showing all the intra- and inter-molecular inter-
actions made by the wild-type residue, calculated by Arpeg-
gio, is available for download and viewing in Pymol for
preparation of publication quality figures and to allow fur-
ther analysis.

DISCUSSION

In this work, we present mmCSM-NA as a new method that
can, for the first time, rapidly and accurately predict the ef-
fects of single- and multiple-point mutations on the protein-
nucleic acid binding affinity. Our approach, which was de-
veloped using graph-based signatures, was robust across
multiple forms of validation; and despite only being trained
using single-point mutations was able to accurately predict
the effects of multiple-point mutations on protein–nucleic
acid binding affinity.

We benchmarked our methods with other available meth-
ods, particularly iPNHOT, PrPDH and PrabHot. The
benchmark showed that mmCSM–NA outperformed those
methods, with the advantage of predicting quantitatively
the change in binding free energy even for remote regions
of the binding site.

We believe mmCSM–NA will be of great value for the
study and design of mutations affecting protein–nucleic
acid interactions.

DATA AVAILABILITY

A user-friendly web-server implementing the mmCSM–
NA’s predictive model and all curated data is freely available
at: http://biosig.unimelb.edu.au/mmcsm na/.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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