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Neuro-oncology biobanks are critical for the implementation of a precision medicine
program. In this perspective, we review our first year experience of a brain tumor
biobank with integrated next generation sequencing. From our experience, we describe
the critical role of the neurosurgeon in diagnosis, research, and precisionmedicine efforts. In
the first year of implementation of the biobank, 117 patients (Female: 62; Male: 55) had 125
brain tumor surgeries. 75% of patients had tumors biobanked, and 16% were of minority
race/ethnicity. Tumors biobanked were as follows: diffuse gliomas (45%), brain metastases
(29%), meningioma (21%), and other (5%). Among biobanked patients, 100% also had next
generation sequencing. Eleven patients qualified for targeted therapy based on identification
of actionable genemutations. One patient with a hereditary cancer predisposition syndrome
was also identified. An iterative quality improvement process was implemented to
streamline the workflow between the operating room, pathology, and the research
laboratory. Dedicated tumor bank personnel in the department of neurosurgery greatly
improved standard operating procedure. Intraoperative selection and processing of tumor
tissue by the neurosurgeon was integral to increasing success with cell culture assays.
Currently, our institutional protocol integrates standard histopathological diagnosis, next
generation sequencing, and functional assays on surgical specimens to develop precision
medicine protocols for our patients. This perspective reviews the critical role of
neurosurgeons in brain tumor biobank implementation and success as well as future
directions for enhancing precision medicine efforts.

Keywords: biobank, brain tumor, precision medicine, precision oncology, neurosurgery
INTRODUCTION

Biobank implementation requires significant infrastructure and institutional resources. Brain tumor
biobanking has been essential for advancements in diagnosis, understanding mechanisms of
pathogenesis, and the development of patient derived models (1–4). Patient derived preclinical
models that can assess therapies have transformed precision medicine platforms in oncology (5–7).
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The quality, preservation, and processing of the surgical tissue
can have downstream effects on clinical translational efforts
making the role of the surgical oncologist multifaceted.

Precision oncology utilizes molecular profiles to determine
potential therapeutic targets (8, 9). Next generation sequencing
(NGS) has allowed for the routine integration of molecular
markers such as identification of oncogenic mutations. For
certain brain tumors such as glioblastoma, molecular markers
are routinely used for diagnosis and prediction of therapeutic
response (10). We implemented a prospective adult brain tumor
bank coupled with NGS to provide data and tissue samples for
precision medicine efforts. Brain metastases remain the most
common brain tumor in adults, and the most common
malignant and non-malignant primary brain tumors are
glioblastoma and meningioma, respectively (11, 12). All adult
patients who were candidates for tumor resection at our tertiary
referral center qualified for potential biobanking in order to build
a large comprehensive compendium comprised of all
tumor subtypes. In this perspective, we review our personal
experience as well as describe the integral role of the
neurosurgeon in providing adequate tissue samples for
translational research opportunities. The goal of our efforts is
to provide precision medicine options for our neurosurgical
oncology patients.
IMPLEMENTATION

Our tumor bank protocol was implemented in January 2019. Our
paradigm was to have the neurosurgeon discuss biobanking with
the patient at the time of preoperative counseling in both the
outpatient and inpatient settings. Every patient with a brain
tumor qualified as we did not limit enrollment by tumor subtype.
Based on neurological symptoms, some patients lacked capacity
and could not consent for themselves. In certain states, only a
legal power of attorney can provide research consent, and a
family member is not adequate. Consenting criteria for
one’s institution and state can be reviewed thoroughly
with the internal review board (3). During our first year of
implementation, 15% of patients undergoing surgery for a brain
tumor were not consented for biobanking. The top three reasons
for this include workflow issues (14/29), altered mental status
without adequate power of attorney (5/29), and small tumor size
(3/29). For tumors <1 cm in diameter, the surgical team did not
feel sending tissue for research was feasible without
compromising diagnosis. Surgeons were told to aim for
sending a volume of at least 5 mm3 for research. No maximum
limit was set, and size was variable between tumor banked
samples. If a patient had more than one tumor removed
during a surgery, samples from each tumor were sent
separately. Three was the highest number of tumors removed
at one setting (n = 1) followed by two tumors (n = 2).

Once a patient has agreed to biobank consent, a nurse who
has undergone specialized training will complete the consent
process and documentation. We also asked all patients
permission for next generation sequencing of the tumor with
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matched germ line samples from blood or saliva. In the first 6
months of our experience, our neurosurgery clinical
nurses participated in this phase. However, given the time
commitment as well as need for collection of biospecimen for
germ line sequencing, our department eventually hired a separate
staff member who would fulfill this function as well as go into the
operating to streamline intraoperative needs.

In our first year the median age of patients biobanked was
59 (48%: male, 52%: female) (Figures 1A, B). 16% of patients
were from an underrepresented minority group. Over time, the
percentage of tumor patients who were consented for tumor
bank enrollment was close to 100 (Figures 1C, D). This is most
likely attributed to establishing a standard protocol, hiring
dedicated tumor biobank personnel, and having quarterly
departmental meetings discussing implementation and
enrollment goals. The main type of tumor resected was glioma
(44.9%) followed by metastases (29.2%), meningioma (21.4%),
and other tumor types (4.5%) (Figure 1E). The majority of our
patients were insured (>95%) (Figure 1F) and came from all
regions of our state (Figure 1G). Five patients were from
other states.

All patients who had tumor biobanking also agreed to NGS.
The NGS data was utilized to identify potential actionable
mutations. NGS analysis from 125 surgeries identified 11
patients had actionable mutations that could be targeted by
Food and Drug Administration approved drugs. We advocate
for germ line sequencing to accurately identify somatic
mutations and genetic predisposition syndromes. One patient
was found to have Li-Fraumeni syndrome (LFS) and underwent
genetic counseling for themselves and family members.
Furthermore, the knowledge of a genetic cancer predisposition
syndrome such as LFS, changes the clinical follow-up as these
patients often require monitoring of multiple organ systems.
Patients with cancer predisposition syndrome are sent to our
genetic counselor at the Cancer Institute.

NGS is performed on formalin fixed paraffin embedded
pathologic tissue. The NGS sequencing we use is comprised of
a targeted DNA cancer mutation panel of 595 genes and requires
>50% tissue be comprised of tumor (13). Therefore, our
neuropathology team determines which tissue blocks are
appropriate to send for NGS profiles. Many insurance
companies will not cover the cost of NGS, but we have been
successful in using a company that accepts financial assistance
forms making the testing free for patients that do not have
insurance NGS coverage. Our NGS data is routinely integrated
into both the electronic medical record and our molecular
tumor board and was helpful in diagnosis. For example, in
diffuse gliomas our pathologist already sends for IDH and
p53 mutat ional status , MGMT methylat ion, EGFR
amplification, and 1p/19q co-deletion assessment. CDK2 is a
biomarker that has implications for diagnosis, prognosis and
upon recurrence can identify potential therapies (14). The status
of this gene is verified with our NGS panel and used by our
neuropathologist and neuro-oncologist. CDK2 mutation is a
potential actionable mutations and identification of actionable
mutations can aid in identifying targeted treatments for both
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primary and metastatic brain tumors (15–18). We also obtain
PD-L1 positivity level and tumor mutational burden (TMB) on
all tumors which has implications for immunotherapy (IT) use.
Recent data indicates that glioma tumors with low TMB are
Frontiers in Oncology | www.frontiersin.org 3
more likely to respond to IT (19). Clinical trials have
demonstrated that IT can work for intracranial metastatic
disease (20, 21). Clinically significant tumor mutations are also
annotated within the tumor biobank data repository. These data
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C

FIGURE 1 | Basic patient demographics from first year of brain tumor biobank experience. (A) Gender and age by decade of cohort. (B) Percent of Male and
Female patients consented (C) Overall and (D) monthly percent patients undergoing tumor resection consented for tumor biobank. (E) Diagnostic classification of
biobanked tumors. (F) Insurance status of biobanked patients. (G) Regional distribution of patients among Arkansas counties.
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are inserted retrospectively as NGS results typically take about 2–
3 weeks to return. Our biobank tissue repository database and
NGS database are linked with unique identifications numbers to
maintain deidentification. Our data repository is maintained by
colleagues in the department of biomedical informatics and
contains patient demographics including previous treatments,
pathological diagnosis information, mutations identified by
NGS, and information on successful cells and/or patient
models available from the sample.
INTRAOPERATIVE CONSIDERATIONS

The neurosurgeon’s goals during operative resection include 1)
obtaining tissue for accurate diagnosis and 2) resecting as much
tumor as possible without causing neurological deficits. Given the
known heterogeneity of many tumors such as glioblastoma,
identification of diagnostic tumor regions is necessary for correct
pathological grading. For example, in glioma surgery, we routinely
use 5-aminolevulenic acid (5-ALA) as an adjunct to surgery. 5-
ALA is converted to the fluorescent metabolite, protoporphyrin IX,
by malignant glioma cells, which allows detection using a 410 nm
blue light (22–25). GBM is characteristically heterogenous and can
contain large areas of necrosis (26). 5-ALA is helpful to identify
regions of active tumor (27). In certain glioma tumors, the area of
enhancement is minimal and can comprise less than 5% of the
tumor bulk. In these tumors, intraoperatively there is minimal
fluorescent detection, and our institutional paradigm is to send the
areas of highest 5-ALA uptake separately to the pathologist. This
practice increases the likelihood of accurate pathological tumor
grade since these fluorescent tumor regions often correspond to
regions with high grade tumor (Figures 2A, C). Given our
experience with fluorescence heterogeneity within the same
tumor, we do send research samples from these various regions
if enough tumor is available to not compromise diagnosis. In
recurrent glioma cases, the patients have previously undergone
chemoradiation therapy and therefore portions of the enhancing
tumor may represent treatment changes. The use of 5-ALA allows
for identification of viable tumor regions which are necessary to
send to neuropathology for diagnosis and to provide tissue
amenable for NGS processing and research.

In brain tumor biobanking, the decision of what tissue is
allotted for pathology versus research applications can also be
determined intraoperatively (Figure 2). At some centers, the tissue
is sent to pathology, processed for diagnostic testing, and from
there a decision is made about what portions are appropriate for
research. Our paradigm differs in that we send tissue directly from
the operating room (OR) to the research laboratory. Early on in
the resection, we send tissue for frozen pathology and confirm a
diagnosis is possible from the tissue sent. The surgeon ensures that
along with the frozen pathology specimen, adequate tissue is
available for diagnosis (Figure 2A) and in turn NGS (Figure
2B). If there is not enough extra viable tissue to send for research,
the surgery team will notify the research team that no sample is
available. However, almost always a specimen that has been
selected by the operating surgeon is available for research
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purposes (Figures 2C–E). During tumor resection, we use
various surgical instruments, such as the NICO myriad device,
to non-thermally mechanically dissociate the tissue (28) (Figure
2D). This tissue is then stored in a sterile container that is on ice.
Intermittently the surgeon will rinse the tubing with sterile fluid
that aids in cell preservation. Cauterization is used minimally
when resecting tumor tissue for research and necrotic regions are
avoided. For specialized assays such as single cell sequencing,
tissue viability and prevention of RNA degradation is critical for
downstream experiments to be successful. Dependent on the
research goals, chemical dissociation fluid can also be included
to augment the mechanical dissociation (Figure 2E). Furthermore,
multiple specimens from various regions can be sent from the OR
and labeled to denote location. For example, in our glioma tumors,
the periventricular region that corresponds to the subventricular
zone (SVZ), the central region, and peripheral invasive region are
harvested separately and annotated accordingly to notify
the researchers receiving the tissue. Using neuronavigation,
the regions are identified preoperatively and discussed with the
research team (Figures 2C, G). We implemented this workflow
given the extensive data supporting regional heterogeneity with
disparate niches within the microenvironment (29, 30) (Figure
2F). These niches are exceedingly important when isolating stem
cell subpopulations (31, 32).

When able, metastatic tumors are removed en bloc but also
can be mechanically dissociated outside of the cerebrum and
prior to sending for research. Mechanical dissociation in the
operating room decreases processing time in the laboratory and
aids in streamlining experimentation (Figure 2E) Dependent of
the location of the brain metastasis, often a rim of the
surrounding tissue within the parenchyma can be resected as
well. Recent data also demonstrates heterogeneity between
regions of metastatic tumors and invasion into the peritumoral
border (33, 34). Therefore, even with metastatic tumor regional
information is routinely annotated with the tumor tissue.

The implemented workflow we developed allows for tissue to
leave the OR and arrive in the research laboratory within 1 h. The
tissue remains in a sterile container on ice and is not processed
by the pathology team. Decreasing the number of staff that
handle the tissue reduces the chances of contamination, as
most samples are used for cell culture. In some circumstances,
the surgery can last hours, and we have trained our surgical team
to send tissue shortly after resection at interval times rather than
waiting until the completion of surgery. If a surgery extends past
biobank staff work hours, we use a preservation solution for the
tissue which is stored sterilely overnight at 4°C. With this
protocol, we have been able to still isolate tumor cells the
following work day. Our current workflow was an iterative
process of continual improvement with feedback from the
surgical and research teams to optimize outcomes.
TRANSLATION RESEARCH EFFORTS

The focus of our biobank is to use our research towards precision
medicine efforts. We hope to impact diagnosis, treatment, and
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ultimately improve patient survival. We review our experience to
aid others in this goal. The cost of our research efforts have been
supported mainly by our academic department and Cancer
Institute. We hope to fully transition to extramural funding in
the near future and do understand that funding can be a
limitation to biobanking. At our institution, we routinely use
next generation sequencing and recently have used tissue from
our biobank to develop new methods for biomarker evaluation.
We confirmed that third generation long read sequencing in
combination with cas9 targeting can identify multiple brain
tumor biomarkers in the same sample in under 48 h (35). Our
research group is one of the first to utilize third generation
sequencing on clinical samples and hope to expand the
applications of this sequencing technology. Furthermore,
sequencing costs is a barrier for biomarker assessment in many
countries and therefore exploring new efficient techniques can
Frontiers in Oncology | www.frontiersin.org 5
allow for precision medicine efforts to be expanded in developing
countries as well (36).

For therapeutic innovation, we acknowledge the need for
accurate models of the patient’s tumor. Cell lines generated from
patient samples have been critical for many discoveries in cancer
biology. However, there are some disadvantages as these models
do not recreate the tumor microenvironment or 3D structure of
the parent tumor (37). In our first year experience, isolation of
cells that could be serially passaged was possible in 43% of diffuse
gliomas and 54% of brain metastases. We typically also culture
isolated cells in serum free conditions to maintain stem cell
populations if possible. However, it has been well established that
not all tumor samples are amenable to having a cell line
generated. For example, IDH mutant glioma cells are difficult
to maintain in culture and typically will not maintain the IDH
mutant phenotype over time (38). Currently very few brain
A B
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FIGURE 2 | Role of the neurosurgeon in biobank for precision medicine. (A) Patient tumors with heterogenous regions are sent separately to pathology. Non-
enhancing region corresponds with low grade histopathologic features. Enhancing region (<5% of tumor in this case) correlates with high grade histopathologic
features. Arrow in the image shows calcification and the inset magnifies region of high proliferation with the arrow denoting cells undergoing cell division.
(B) Pathologic tissue is sent for next generation sequencing. Heatmap of glioblastoma gene expression profiles stratified into classical, mesenchymal, neural and
proneural subtypes. (C) Intraoperative tissue handling by the neurosurgeon involves regional harvesting utilizing MRI navigation (D) varied tumor extraction techniques
such as non-thermal resection with specialized tools, and (E) intraoperative tissue processing with mechanical and chemical dissociation. (F) Once in the research
laboratory, tissue can undergo single cell sequencing to determine heterogeneity. t-distributed stochastic neighbor embedding plots demonstrate differences
between IDH mutant and IDH wildtype gliomas. (G) Tissue is also processed for patient derived models such as cell lines, organoids, and xenografts.
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metastases cell lines are available but researchers are working on
establishing repositories for these models as well (39).

Patient derived xenografts have been the mainstay of cancer
models but are expensive and have long engraftment times (40–
42). Furthermore, they also are often recapitulated in an immune
compromised host and with the advent of immunotherapy in
cancer treatment this can be a disadvantage. For precision
medicine efforts, the prolonged engraftment time can severely
limit the ability to develop and test treatment options for a
patient especially for cancer types (like GBM) that have a short
survival. However, recent advances in 3D models, namely tumor
organoids, have significantly advanced the capability of model
tumors and performing therapeutic or treatment screening (37,
43–47).

In our translational neurosurgery laboratory, we have been
successful in developing both 2D and 3D cell cultures from
tumor specimens as well as animal models (Figure 2G). We hope
to combine insights from our NGS data obtained during
diagnosis with assays derived from patient tissue to identify
therapies. This paradigm is known as functional precision
medicine wherein genomics and ex vivo drug sensitivity
screening are combined for personalized oncology therapy
(48). We are currently enrolled in a prospective functional
precision medicine trial for our high-grade glioma patients
(NCT03561207). In this trial, surgical tissue from resection or
biopsy is used to grow 3D cultures and screen a panel of drugs.
During tumor extraction for this trial, the surgeon regularly
communicates with the pathologist to ensure the tissue has viable
tumor present. This is particularly important when sending
biopsy cores in the recurrent setting. Again, the role of the
neurosurgeon is critical for functional precision trials as the assay
is dependent on having tissue that results in tumor cell isolation.
We are currently developing an internal functional precision
medicine assay for glioma and brain metastases patients.
FUTURE DIRECTIONS

Precision medicine will eventually become routine in oncological
care. Brain tumors have significant morbidity, and malignant
brain tumors typically portend a grim prognosis. We foresee that
a multi-omics approach will be used to predict response to
therapy and identify new treatments. Advances in machine
learning allow for data to be obtained from radiographic
imaging (i.e. Radiomics) and digital pathology to enhance
diagnosis and predict genomic biomarkers (49–53). These data
will likely lead to the ability of predicting tumor subtype and
prognosis prior to surgical resection.

Besides the identification of cancer specific tumor mutations,
the advances in NGS allow for assessment of transcriptomics and
epigenetics. The results of the National Cancer Institute’s
Molecular Analysis for Therapy Choice (MATCH), a precision
medicine trial based on identification of actionable mutations,
demonstrated in a cohort of 4,687 patients that only 17.8% of
patients qualified for therapy (54). In another cohort of 500
cancer patients, genomic DNA profiling was able to identify
Frontiers in Oncology | www.frontiersin.org 6
potential targets for 29.6% of patients, but increased to 43.4%
with the integration of RNA sequencing and immune
biomarkers (13). Tumor RNA sequencing therefore has utility
in identifying potential targets when DNA based genomics does
not. Vaske et al. developed a transcriptomic approach to identify
significantly targets in pediatric cancers as these typically do not
have actionable DNA mutations (55).

Proteogenomics (the combination of genomics with
proteomics) is also beginning to be utilized to toxicity and
resistance to therapies and determine precision oncology
strategies. The National Cancer Institute’s Clinical Proteomic
Tumor Analysis Consortium (CPTAC) has published several
seminal manuscripts on various cancer types including pediatric
brain cancer (56–60). We have found proteogenomics to be
useful in identifying key pathways involved in metastatic
progression to the brain (61). We foresee a transition to
utilizing multi-omics to understand cancer landscapes and
identify targetable oncogenic pathways.

Epigenetic analyses are also becoming more common to use
for diagnosis and prognosis. Epigenetic alterations do not change
the DNA sequence but do impact gene activity. Epigenetic
changes are integral for tumor progression and in mediating
chemotherapy resistance (62). The most commonly studied
mechanism for epigenetics is DNA methylation, and in brain
tumors this has thus far been the most well studied. MGMT
methylation status is a common biomarker used to ascertain
potential response to temozolomide treatment in GBM (63–65).
Methylome profiles have been demonstrated to be useful in
stratifying GBM patients in regards to treatment response and
survival (66–68). For brain metastases, DNA methylomes have
also identified unique biological features with therapeutic
implications (69–71). Recently, data from methylomes of
meningiomas have significantly impacted the classification and
clinical management of these tumors by providing insights into
prognosis and recurrence prediction (72–74). Other epigenetic
alterations of importance in brain tumor pathophysiology are
histone modifications. Pediatric high grade gliomas and some
adults gliomas have mutations in histone 3 which impact
chromatin function and gene expression (75–78). These
mutations have significant implications for potential therapies
and are now part of the diagnostic criteria for these tumors (79,
80). Currently, only certain epigenetic biomarkers (namely
MGMT methylation status and presence of histone 3
mutations) are used for diagnosis in neuro-oncology, but as
the cost of methylation sequencing decreases, we expect that
epigenetic characterization will be routine and used to predict
response to therapy and prognosis.

Tumor tissue sequencing is not the only source of
biospecimen that can be used for precision medicine. Liquid
biopsy refers to the sequencing of plasma or other biological fluid
such as cerebrospinal fluid (CSF) to identify mutations (8, 81).
Glioma tumor evolution can be tracked with CSF liquid biopsy
and this is promising potentially differentiating tumor recurrence
from treatment change (82). Methylation profiles of plasma
derived liquid biopsies can be used to discriminate common
primary intracranial tumors (83). These data indicate that liquid
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biopsies will be used clinically in the near future for brain tumor
precision medicine.
DISCUSSION

Implementation and maintenance of a brain tumor biobank are
necessary for precision medicine advancements. From our
experience, we recommend the combination of NGS and
biobanking as well as development of a data repository that
interfaces with the electronic medical record. We have used our
biobank for the development of diagnostic assays and for the
development of patient derived models. Current areas of
improvement include the generation of patient derived models
with intact immune microenvironment components, verification
of liquid biopsies as proxies for tissue analysis, and integration of
multi-omics derived from sequencing as well as radiomics and
digital pathology. For these improvements, neurosurgeons will
play a key role and ultimately are vital team members for
functional precision medicine programs.
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