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Overcoming resolution limits with quantum
sensing
T. Gefen1*, A. Rotem1 & A. Retzker 1

The field of quantum sensing explores the use of quantum phenomena to measure a broad

range of physical quantities, of both static and time-dependent types. While for static signals

the main figure of merit is sensitivity, for time dependent signals it is spectral resolution, i.e.

the ability to resolve two different frequencies. Here we study this problem, and develop new

superresolution methods that rely on quantum features. We first formulate a general criterion

for superresolution in quantum problems. Inspired by this, we show that quantum detectors

can resolve two frequencies from incoherent segments of the signal, irrespective of their

separation, in contrast to what is known about classical detection schemes. The main idea

behind these methods is to overcome the vanishing distinguishability in resolution problems

by nullifying the projection noise.
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Quantum metrology and quantum sensing1,2 study para-
meter estimation limits in various physical systems by
employing the fundamental laws of quantum physics. In

particular this field seeks to optimize precision by utilizing
quantum effects that have no classical analogs (such as entan-
glement and squeezing3,4).

A unique feature of quantum sensing is the ability to apply
coherent control to the probe and vary the measurement basis. In
particular this provides the ability to nullify the measurement
projection noise. However, the contribution of this phenomenon
to estimation problems has received scant attention.

In this paper, we highlight this feature and show that it is a
critical resource primarily for resolution problems, that can
improve precision by orders of magnitude. Resolution problems
are ubiquitous and highly important in science5–14, and roughly
speaking are characterized by vanishing distinguishability; i.e, the
sensitivity to the seperation between two close objects or fre-
quencies vanishes as these get close enough. This effect usually
results in divergent uncertainty, leading to a resolution limit. We
show that it is possible to overcome the vanishing distinguish-
ability by making the projection noise vanish as well, through a
suitable control. These two effects can cancel each other out,
leading to a finite uncertainty. We show that this is a general
method to overcome resolution limits in quantum sensing.

Specifically, this method can be highly useful for analyzing
complex spectrums with quantum sensors (such as quantum
NMR problems15–18). An example for such a spectrum is illu-
strated in Fig. 1. While the two extreme frequencies can easily be
estimated, the two central frequencies must be analyzed with a
more sophisticated method, which eventually yields higher
uncertainty. Here, we show that by using a quantum control, the
spectrum can be shifted such that the projection noise vanishes.
The vanishing projection noise implies a finite uncertainty irre-
spective of the frequency separation. In other words, the uncer-
tainty does not diverge when the two frequencies merge.
Furthermore, this method is extremely simple, unlike numerically
demanding classical superresolution methods.

Results
Conditions for superresolution. We first briefly review the pil-
lars of quantum parameter estimation problems. A typical pro-
blem involves a quantum state ρ θð Þ; such that θ is to be
estimated. The uncertainty in estimating θ is tightly lower
bounded by 1ffiffiffi

Iθ
p , where Iθ is the Fisher information (FI) about

θ19. For a given choice of measurement of ρ θð Þ; Iθ is determined
according to the probabilities ðpjÞ in the following way:

Iθ ¼
P

j

dpj
dθ

� �2
pj

. The FI can be optimized over all possible mea-

surements, leading to the quantum Fisher information (QFI)20,21.

Given a spectral decomposition ρ ¼Pjpjjψjihψjj the QFI about θ
reads: F ¼Ppiþpj≠0

2
pjþpi

j dρ
dθ

� �
i;j
j2.

For a multivariable estimation of θkf gk; the error is quantified
by the covariance matrix of the estimators. This covariance
matrix is lower bounded by F�1; the inverse of the QFI matrix,

where the QFI matrix is defined as Fk;l ¼ 2
P

i;j

∂ρ
∂θk

� �
i;j

∂ρ
∂θl

� �
j;i

piþpjð Þ .

We are now poised to formulate spectral resolution problems,
which are the focus of this paper. In these problems we are given
a signal (Hamiltonian) that oscillates with time. It consists of at
most two frequencies, yet the exact number of frequencies (and
their values) is unknown and need to be determined. To this end,
a quantum probe interacts with the signal so that information
about it becomes encoded on the probe and can be extracted by
measurements. Once this information is extracted this problem
boils down to a parameter estimation problem: the common
strategy in these problems6,13,22,23 is to assume that there are two
frequencies and estimate them. If the estimation shows a
significant overlap between the frequencies (significant with
respect to the estimation error), it is concluded that the
frequencies are not resolvable. However if the overlap is
negligible, one can deduce that the signal consists of two
frequencies (since the error probability is negligible). This implies
that the figure of merit is Δω1;Δω2. The challenging regime is
when ω1 ! ω2. Resolution becomes an issue when Δω1;Δω2 !1 as ω1 ! ω2. A different, and somewhat more convenient,
formulation uses ωr ¼ ω1�ω2

2 ;ωs ¼ ω1þω2
2 ; so that the resolution

condition is Δωr � ωr and the figure of merit is thus Δωr. The
key issue is thus the behavior of Δωr as ωr ! 0; if Δωr ! 1 then
a fundamental resolution limit exists which is the case in relevant
classical examples6,13,22.

This limitation appears in various resolution problems (not
only spectral resolution) and stems from a property of vanishing
distinguishability. Let us define what vanishing distinguishability
means. Given the quantum state of a probe (density matrix ρ),
that depends on a set of parameters θif gi; the state suffers from a

vanishing distinguishability if the set ∂ρ
∂θi

� �
i
is linear dependent.

An equivalent way to define it: there exists a parameter g; that is a
linear combination of θif gi; such that ∂ρ

∂g ¼ 0. Indeed, in many
resolution problems as the separation parameter ωr (the
difference between the frequencies or, in imaging, the sources)
goes to 0; there exists a parameter g such that ∂ρ

∂g ¼ 0. In this
paper, we focus on the simplest (yet very common) case that only
∂ρ
∂ωr

¼ 0 as ωr ¼ 0. In this case Δωr ! 1 if and only if the FI
about ωr (denoted as Ir) vanishes, which implies that Ir is our
figure of merit.

As an example, consider a signal that acts on a qubit and is
given by the following Hamiltonian:

H ¼ A1 cos ω1tð Þ þ B1 sin ω1tð Þ þ A2 cos ω2tð Þ þ B2 sin ω2tð Þ½ �σz:
ð1Þ

It is simple to see that this limitation appears whenever the
Hamiltonian posses a symmetry for exchange of ω1 $ ω2 (i.e.
identical amplitudes). This symmetry implies a symmetry of
ωr $ �ωr; from which it follows that the state obtained after
evolution time t has the same symmetry, ψt ωrð Þ�� � ¼ ψt �ωrð Þ�� �

,

and thus
∂ ψtj i
∂ωr

¼ 0 for ωr ¼ 0. Given the expression of the QFI21,

�

Fig. 1 A spectrum analysis problem. While it is relatively easy to estimate
the two side frequencies, the estimation of the two close frequencies is
challenging and becomes infinitely difficult when the frequencies merge
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we obtain:

Ir � 4
∂ψ

∂ωr
j ∂ψ
∂ωr

	 

� ∂ψ

∂ωr
jψ

	 
����
����
2

" #
! 0; ð2Þ

hence resolution is limited. Note that applying further control on
the probe cannot eliminate this symmetry, and thus cannot
remove this resolution limit.

It can be shown that this limitation appears for any
quadratures: there exists a parameter g such that ∂H

∂g ¼ 0 for

every t; which implies
∂ ψtj i
∂g ¼ 0 for every measurement (more

details in Supplementary Note 4).
So vanishing distinguishability is quite a common property and

appears in different resolution problems, but does it always
impose a limitation?

Eq. (2) shows that whenever the quantum state of the probe (ρ)
is pure, resolution is limited, however for some mixed states this
property does not limit the resolution, these are the states that
give rise to superresolution: dρ

dωr
! 0 yet Ir ωr ! 0ð Þ> 0. A special

case of this phenomenon was found and analyzed recently in the
context of optical imaging10–12,24 (see Supplementary Note 3).
Can such states be obtained in quantum spectroscopy and various
other problems? In order to understand this, it would be highly
desirable to characterize these states and set a sharp condition for
superresolution.

Let us show that these states can be simply characterized:
Claim Given ρ ωrð Þ such that dρ

dωr
¼ 0 (as ωr ! 0), then

Ir ωr ! 0ð Þ> 0 if and only if at least one of the eigenvalues of ρ

goes as ωk
r ; where 1< k � 2 or equivalently d

ffiffi
ρ

p
dωr

≠ 0. The optimal
measurement basis converges to an eigenbasis of ρ as ωr ! 0.

We briefly illustrate a proof: Given a spectral decomposition
ρ ¼Pjpj jj i jh j, then:

dρ
dωr

¼
X
j

dpj
dωr

jj i jh j þ i
X
j;k

ðpj � pkÞhk;j kj i jh j; ð3Þ

where h is a Hermitian operator and hk;j denote its matrix

elements in the eigenbasis of ρ. Since dρ
dωr

! 0, then for every

j; k:
dpj
dωr

! 0; ðpj � pkÞhk;j ! 0. With this notation, the QFI (F)
reads (see ref. 21):

F ¼
X
j

dpj
dωr

� �2
pj

þ 2
X
j;k

ðpj � pkÞ2
pj þ pk

jhkjj2: ð4Þ

The fact that ðpj � pkÞhk;j ! 0 implies that
pj�pkð Þ2
pjþpk

jhkjj2 ! 0;

however
dpj
dωr

! 0 does not imply that
dpj
dωr

� �2
pj

vanishes. It can be

seen that given that
dpj
dωr

! 0;
dpj
dωr

� �2
pj

> 0 if and only if there exists

pj � ωk
r for 1< k � 2. We then observe that for ωr ! 0;F ρð Þ !

P
j

dpj
dωr

� �2
pj

; which implies that the optimal measurement basis

converges to any eigenbasis of ρ.
This condition can be shown to be equivalent to d

ffiffi
ρ

p
dωr

≠ 0 (see
Supplementary Note 1). It is quite intuitive that one has to

demand d
ffiffi
ρ

p
dωr

≠ 0; since the QFI equals the minimization of all the

QFI’s of the purifications. Since purifications go as
ffiffiffi
ρ

p
;
d
ffiffi
ρ

p
dωr

¼ 0
would imply a vanishing derivative of every purification and thus
a vanishing QFI.

This criterion shows that the only way to overcome a vanishing
distinguishability is by nullifying the projection noise of one of
the outcomes.

This condition is a special case of a more general (multivariate)
criterion. In the multivariate version ð∂ρ∂θiÞ

n

i¼1
are linearly

dependent (with dimension k < n) and the relevant question is
whether the QFI matrix can be regular. Note that we can choose

θið Þni¼1 such that ∂ρ
∂θi

� �k
i¼1

are linearly independent and ∂ρ
∂θkþ1

¼
¼ ¼ ∂ρ

∂θn
¼ 0 (θkþ1; ¼ :; θn are the problematic parameters).

Then the QFI is regular if and only if the classical FI matrix (i.e.
the FI matrix obtained when measuring in the eigenbasis of ρ)
about the problematic parameters (θkþ1; ¼ :; θn) is regular.
Namely it depends only on the classical FI about these
parameters, and thus the optimal measurement basis to estimate
these parameters is the eigenbasis of ρ. The proof of this
condition is quite similar to that of the single variable case, and is
given in Supplementary Note 2.

Before we move on to applications in quantum sensing, a few
remarks are in order: An accurate formulation of the super-
resolution condition is dρ

dωr
! 0 and Ir ωr ! 0ð Þ> 0; namely the

limit needs to be positive. That is because we are interested in the
behavior of the FI for a very small difference, rather than a
vanishing difference. We mention this point since the FI at ωr ¼
0 can be discontinuous or meaningless (Cramer–Rao bound may
be violated), as one of the eigenvalues vanishes25,26. Given a
vanishing eigenvalue, the variance of maximum likelihood
estimation will vanish (which corresponds to an infinite FI) and
thus may not coincide with the limit.

We also remark that in all cases examined in this paper (as well
as in the imaging case) the eigenvalue goes as ω2

r . Any different
power, 1< k< 2; would in fact lead to a better performance: a
divergent FI.

Application: spectral resolution without coherence. Consider
now again the problem of spectral resolution, with the signal
defined in Eq. (1), and such that it suffers from shot-to-shot
noise: in each measurement the frequencies are the same but the
quadratures are random, i.e. Ai;Bi have a certain distribution.
Specifically here we assume Ai;Bi � N 0; σð Þ, and other noise
models are addressed in Supplementary Note 11. This scenario is
illustrated in Fig. 2, and is relevant for different applications, such
as communication protocols, spectrum analyzers and nano
NMR15,16,27–35, in particular when the time required to perform
projective measurement is longer than the coherence time of the
signal (this is the case with NV centers, due to the large number
of iterations needed, and with trapped ions, where the re-cooling
process might be longer than the coherence time of the qubit).

It is quite clear that the fluctuations of the quadratures remove
the purity of the probe, which can give rise to superresolution
states. Let us examine this.

Consider a standard Ramsey experiment, in which the probe is
initialized in σx � σy plane, then rotated due to the signal and
eventually measured in the initialization basis. Due to the
fluctuations of the Hamiltonian, an averaging should be
performed. Therefore the state of the probe is given by a density
matrix:

ρ ¼
Z

p Aið Þp Bið Þ��ψAi;Bi
ihψAi;Bi

j dAidBi; ð5Þ

where jψAi;Bi
i is the state given a single realization of Ai;Bi. Note
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that since the fluctuations are identical:

ρ ωrð Þ ¼ ρ �ωrð Þ ) dρ
dωr

¼ 0 ωr ¼ 0ð Þ: ð6Þ

Once again, control on the probe does not change this symmetry,
hence superresolution can be achieved only if the condition
presented above is satisfied: projection noise has to be nullified. It
is therefore desirable to find a measurement scheme that nullifies
the projection noise. It is simple to see that this can be obtained if
ϕAi;Bi

¼ 0 8Ai;Bið Þ; where ϕAi;Bi
is the phase accumulated by the

sensor (defined as half the rotation angle in the Bloch sphere) per
realization, since this implies a vanishing transition probability.

Our claim is therefore: Given the above noise model, there exist
measurement schemes that satisfy the superresolution condition
and thus achieve Ir > 0. To see that such methods exist, observe
that the phase accumulated by the sensor given the Hamiltonian
in Eq. (1) (when no control is applied) reads:

ϕAi;Bi
¼
X
i

Ai

ωi
sin ωitð Þ þ Bi

ωi
1� cos ωitð Þð Þ: ð7Þ

Note that given this time evolution the density matrix of the
sensor is diagonal in the initialization basis with eigenvalues
p; 1� p; where p is the average transition probability:
p ¼ hsin ðϕAi;Bi

Þ2i
Ai;Bi

. Hence the superresolution condition boils

down to p � ω2
r . This indeed can be satisfied by simply tuning t

such that ωst ¼ 2πn; where n is a non-zero integer. With this
tuning ϕAi;Bi

¼ 0 (for ωr ¼ 0), and more specifically :

ϕAi;Bi
� A1 � A2ð Þ

ωs
ωrt ! p � 2σ2

ω2
s
ω2
r t

2; ð8Þ

Hence the superresolution condition is satisfied and the FI reads:

Ir ¼
8σ2t2

ω2
s

: ð9Þ

So nullifying the projection noise indeed cancels the vanishing
derivative and a finite Ir is achieved.

The obtained FI can be still quite poor and far from optimal.
Note that it goes as 1=n2; where n is the number of periods
completed during the measurement. If n is large, then this factor
of 1

n2 can be significant. A much better FI can be achieved by
applying a suitable control: π�pulses which effectively change the
frequency of oscillations, and reduce n to 136–39:

Given an original Hamiltonian of H ¼
A sin ωtð Þ þ B cos ωtð Þ½ �σz; applying π�pulses in a frequency of

ωþ δ (namely a π�pulse is applied every π
ωþδ ; δ is referred to as

detuning) on the probe yields the following effective Hamiltonian
(see the “Methods” section for a derivation):

Heff ¼ tan
π

2 1þ δ
ω

� �
 !

δ

ω

� �
A sin δtð Þ þ B cos δtð Þ½ �σz: ð10Þ

Hence the π�pulses effectively change the frequency of the

Hamiltonian from ω to δ (with a prefactor of tan π
2 1þδ

ωð Þ
� �

δ
ω

� �
added to the amplitude). Since we aim to reduce the frequency of
oscillations, we focus on the limit of δ � ω; in which

tan π
2 1þδ

ωð Þ
� �

δ
ω

� � � 2
π ; and thus:

Heff �
2
π

A sin δtð Þ þ B cos δtð Þ½ �σz: ð11Þ

When dealing with a signal that consists of two frequencies
(ω1;ω2), the effective Hamiltonian becomes:

Heff �
X
i

2
π
Ai sin δitð Þ þ Bi cos δitð Þ½ �σz: ð12Þ

Hence due to the control the central frequency is shifted to δs ¼
δ1þδ2

2 ; and the relative frequency simply changes sign: δr ¼ �ωr.
The condition of vanishing p becomes: δst ¼ ±2πn; such that the
optimal strategy is setting δst ¼ ±2π. Therefore with these
(optimal) values of δs the FI reads:

Ir �
2
π

� �2 8σ2t2

δ2s
¼ 8σ2t4

π4
: ð13Þ

Observe that the scaling of Ir is optimal (goes as σ2t4)37,39,40,40–43;
however, it is unknown whether this is the best achievable FI (see
extended discussion in Supplementary Note 6). The probabilities
and the FI for different detunings are presented in Fig. 3. Note
that clear resonance peaks of the FI are observed for δst ¼ ±2πn;
any other values of detuning lead to a vanishing FI.

We tested this method numerically by generating data of two
frequency signal (with the corresponding noise model) and
performing a Maximum-likelihood estimation (MLE) to find ωr.
Some of the results are shown in Fig. 4. It can be seen that by
choosing a detuning such that δst ¼ 2π;ωr can be estimated
efficiently and the frequencies are resolved. As shown in Fig. 4,
the standard deviation matches the theoretical expectation:
Δωr ¼ 1ffiffiffiffiffiffi

IrN
p . By utilizing this control method the number of

|�(0)〉 U (t )

U (t )

|�(t )〉

|�(0)〉 |�(t )〉

Fig. 2 The problem of resolution without coherence. The quadratures of the signal in different measurements are random. The question we address is
whether resolution is limited by the length of individual measurements
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measurements (N) needed to achieve resolution is
N � p�1 ¼ π4

2σ2ω2
r t

4. Taking for example values which are well

beyond the resolution limit, such as ωrt ¼ 0:01; σt ¼ 1; resolu-
tion is achieved for N � 5 ´ 105. If the chosen detuning does not
satisfy one of these conditions (δst ¼ 2πn) we expect to observe a
divergence in the variance. We used MLE for this case as well.
Note that the fact that the FI vanishes does not mean that no
information about ωr is obtained, information is in fact obtained
from the second derivative. The estimator becomes biased and the

standard deviation reads: Δωr ¼ p 1�pð Þð Þ0:25ffiffiffiffiffi
∂2p

∂ω2r

q
N0:25

; (see Fig. 4c). The fact

that the standard deviation is proportional to N�0:25 (as opposed
to the standard scaling of N�0:5) is a manifestation of the
divergence. The resolution condition in this case is thus:
N � p 1�pð Þ

∂2p

∂ω2r

� �2

ω4
r

. Considering the same example as previously

(ωrt ¼ 0:01; σt ¼ 1) but with off-resonance detuning
δst ¼ 1:8πð Þ, the number of measurements required for resolu-
tion is N � 108; hence a difference of almost three orders of
magnitude.

This method can be understood in the following simple and
intuitive way: If there is only a single frequency and δs ¼ 2π

t then
pa ¼ 0; hence no transitions should occur, whereas a finite
(small) ωr should lead to a small transition probability pð Þ, such
that transitions will be observed after 1

p ¼ π4

2σ2ω2
r t

4 measurements.

Limitations and imperfections. The method, as analyzed so far,
assumes knowledge of all the other parameters (σ and ωs),
coherence of the signal and the probe during the measurement
period, and measurements with unit fidelity. In this section, we

analyze each one of these assumptions. The first one to be ana-
lyzed is the main caveat of the method: the requirement of
coherence during the measurement period.

This method relies on the ability to nullify projection noise, in
particular on the fact that for ωr ¼ 0 the state can become pure.
However, this is achieved only for a signal which is perfectly
coherent during each measurement. Fluctuations of the signal
during the measurement period inflict a limitation, as in this case
it is not possible to nullify the projection noise. Heuristically due
to these fluctuations the transition probability includes an
additional noise term (denoted as ϵ), such that it reads (for
ωst ¼ 2π):

p ¼ σ2t2

2π2
ω2
r t

2 þ ϵ: ð14Þ

This new term imposes a limitation: It is now impossible to
nullify p; which implies that Ir ! 0 as ωr ! 0. The FI
forωst ¼ 2π;ωrt � 1ð Þ now reads:

Ir �
σtð Þ2 ωrtð Þ2

π4 ϵþ σ2t2
2π2 ω

2
r t

2
� � ; ð15Þ

this behavior is illustrated in Fig. 5, and it can be observed that

resolution can be achieved only for ωrt >
ffiffi
ϵ

p
σt .

More specifically, assuming a realistic noise model: the
quadratures undergo Ornstein–Uhlenbeck (OU) noise process
(with variance σ2n and damping rate γ), the noise term reads (in

leading order of γt � 1ð Þ, see Supplementary Note 8) ϵ ¼ σ2nt
3

π2 .
When comparing ϵ to the original transition probability:

σ2 t2
2π2 ω

2
r t

2 ¼ σ2nt
2

4π2γ ω
2
r t

2; we get the Fourier limit: ωr
γ > 1. We remark

that whether one can remove this limitation is an open question.

0.4

a

b

0.3

P

0.2

0.1

0.2

0.15

0.1

0.05

0

0
–10

–5 –4 –3 –2 –1 0 1 2 3 4 5

1

–5 0

�rt

�s t (2 �)–1

�s t (2 �)–1

I r 
(t

2 )

I r

5 10

Fig. 3 Probability and Fisher information analysis. a Average transition probability (p) as a function of ωrt for different values of δs: δst ¼ π (blue, solid line),
δst ¼ 1:8π (orange, dashed line) and δst ¼ 2π (dotted, yellow line). For every δs;

dp
dωr

¼ 0 for ωr ¼ 0. Hence a finite Ir can be achieved only if p ¼ 0. This
requirement is fulfilled when δst ¼ 2πn. b FI about ωr (Ir) as a function of δst. Clear peaks can be observed whenever δst ¼ 2πn. The width of the peaks is
illustrated in the inset: for ωr ¼ 0; the width vanishes; however finite ωr leads to a finite width (given ωrt � 1 this width goes as ωr, see section “Limitations
and imperfections”). For this illustration: ωrt ¼ 0:001 (red, solid line), ωrt ¼ 0:05 (black, dashed line), ωrt ¼ 0:1 (blue, dotted line)
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Therefore this method is relevant mainly for experimental
scenarios with noise that is effectively shot to shot: small enough
fluctuations during each measurement but no correlations
between consecutive measurements. This is the case in many
experimental settings, where the time separation between
measurements is longer than the phase acquisition period due
to long readout and preparation stages.

Quite similarly, dephasing of the probe also imposes a
limitation. Taking into account a dephasing rate κ; the transition

probability reads: p ¼ 0:5 1� exp � σtð Þ2 ωrtð Þ2
π2 � 2κt

� �� �
. Hence

resolution can be achieved only if ωrσ
κ2ð Þ � 1. Note that in order to

retrieve the noiseless FI it is not enough to require κt � 1; as

there is also minimal time t > κ1=3

σ2=3ω2=3
r

(κt should be smaller than

σtð Þ2 ωrtð Þ2). A detailed analysis of this limitation can be found in
Supplementary Note 9.

We next address the consequences of imperfect measurements.
The effect of imperfect measurements is similar to that of
incoherence, therefore the measurement infidelity sets a resolu-
tion limit. We consider a model in which there are two different
outcomes and there is a finite probability to get each outcome
from both states (as is the case for the NV center44). Namely the
probability of detecting an outcome that corresponds to the
bright state is: p ¼ 1� ϵ0ð Þpb þ ϵ0pd; where pb (pd) denotes the
probability of the bright (dark) state and then ϵ0 is the probability
of wrong detection. Given this error probability we can observe
that dp

dωr
¼ 0 (when ωr ¼ 0) but it is impossible to nullify p. This

implies Ir ! 0 as ωr ! 0. Therefore taking ϵ0 � 1 (and
ωrt � 1;ωst ¼ 2π) we get the same expression as in Eq. (14)
(with a noise term of ϵ0): p � σ2T2

2π2 ω
2
rT

2 þ ϵ0. Hence the resolution

limit is given by: ωrT >
ffiffiffi
ϵ0

p
σT (see Fig. 5).

Let us now address the multivariable estimation protocol. In
any realistic scenario σ and ωs are unknown. Since the estimation
protocol of ωr depends on knowledge of ωs a preliminary
estimation of ωs must be performed (quite analogously to the
preliminary estimation of the centroid in quantum resolution
methods for optical imaging45,46). This can be done using the
traditional method17: Applying π-pulses in different frequencies
and fitting the transition probability as a function of the pulses
frequency (see Supplementary Note 7). This should provide a
good estimation of σ;ωs, but not a good enough estimation of ωr
(unless by chance we hit close enough to a resonance frequency).
Once a good enough estimation of ωs is obtained we can apply
the required control (δst ¼ 2π). To understand what is a good
enough estimation of ωs observe that for small enough

ωrt; δst � 2πð Þ: Ir � 8σ2t4
π4

ω2
r

ω2
r þ δs � 2π=tð Þ2 ; hence the width of the

resonance peak (in δst) goes as ωrt. Therefore once Δωs is
comparable to ωr this method works despite the small detuning.

Observe that now a multivariate estimation should be
performed, which means that at least three different measure-
ments are needed; each measurement in a detuning that is
optimal for a different parameter. Numerical results and further
analysis are presented in Supplementary Note 7.

Additional applications: quantum resolution methods for
sampling. Superresolution with quantum Fourier transform
(QFT): Consider the signal (Hamiltonian) in Eq. (1), if the
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Fig. 4 Estimation analysis. Maximum-likelihood estimation of ωr (beyond
the resolution limit; i.e. ωrt � 1) with different control methods. a and b
Histogram of the estimated ωr for the optimal control method: δst ¼ 2π;
compared to the histogram obtained slightly off the resonance: δst ¼ 1:8π.
When resonance is achieved, the two frequencies are clearly resolved
(Δωr<

1
10ωr), while off the resonance they are not resolvable (Δωr >ωr).

Note that off resonance, the standard deviation is too large; hence the
probability cannot be distinguished from p ωr ¼ 0ð Þ (see insets). For both
plots N ¼ 106; σt ¼ 5;ωrt ¼ 0:01. c The root mean square error (RMSE) as
a function of N for both control methods. For δst ¼ 2π the RMSE goes as
NIrð Þ�0:5 as expected. Off the resonance (δst ¼ 1:8π) the FI vanishes and
the RMSE goes as N�0:25 (the estimation is biased)
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Fig. 5 The effect of noise. Ir as a function of ϵ (a general noise term in the
measurement, see Eq. (14)) for different values of ωr. Ir drops to half the
maximal value for ϵ ¼ σtð Þ2 ωrtð Þ2

2π2 ; which means that the maximal ϵ for which
resolution can be achieved goes as σtð Þ2 ωrtð Þ2. In the inset: Ir as a function
of ωr for different ϵ
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coherence time of the signal is relatively long, its spectrum can be
found by sampling it (where sampling means Ramsey measure-
ments of the probe in different times). Several recent experiments
implemented this scheme37,38,47. The straightforward (and nat-
ural) way to analyze this data is by fitting the power spectrum of
the measurement outcomes, however it was shown in ref. 23 that
this method suffers from a resolution limit. The reason is again
that the (average) power spectrum is symmetric with respect to
ωr; yet the measurement noise does not vanish. We point out here
that this limit can be eliminated if instead of classical Fourier
transform, one uses a QFT. In more detail: a phase of ϕj �
τ
P

iðAi cosðωitjÞ þ Bi sinðωitjÞÞ is accumulated by the probe in
each measurement (where τ is the length of each measurement).
The idea is that instead of measuring the probe after each phase
acquisition, we can map the phases to memory qubits to form the
state: ψj i ¼ 1ffiffiffi

N
p
PN

j¼1e
iϕj jj i, and then measure in the Fourier basis.

With the appropriate choice of total sampling time (T ¼ m 2π
ωs
, for

an integer m) and measurement length (τ ¼ 2π
nωs

; for an integer
n), the only states in the Fourier basis that can be measured are
harmonics of ωs (for ωr ¼ 0), hence vanishing projection noise of
all the other outcomes. The probability to measure the other
frequencies, for ωrT � 1; is � 1

6ω
2
rT

2 στð Þ2 (see supplementary
note 10), therefore Ir ¼ 2

3 στð Þ2T2 for ωr ¼ 0. We thus get a non-
vanishing FI, and it can be shown that for any model in which the
phases are uniformly distributed, the optimal measurement basis
is indeed the Fourier basis.

A different method for the same problem is superresolution
with correlation spectroscopy: The Hamiltonian is the same, but
now perform two measurements and correlate between them
using a single memory qubit, namely the state of the memory
qubit after the two phase accumulation periods is
1ffiffi
2

p 0j i þ ei ϕ1�ϕ2ð Þ 1j i
� �

; where ϕj is the phase accumulated in

the jth period. It is simple to see that by choosing the period
between measurements to be T ¼ 2π

ωs
n; and measuring in the

initialization basis the transition probability is
p � h B1 � B2ð Þ2iτ2ω2

rT
2. Therefore a non-vanishing FI is

achieved: Ir ¼ 4h B1 � B2ð Þ2iτ2T2 ¼ 8 στð Þ2T2.

Discussion
We presented methods that are capable of resolving frequencies
beyond the resolution limits (ωrt � 1) in quantum spectroscopy.
Those methods are special cases of a general superresolution
criterion: one can overcome the vanishing derivative by making
the projection noise vanish at the same rate. The main method
that was analyzed (resolution without coherence) is applicable
with state of the art experimental capabilities and does not require
involved numerical analysis.

It would be interesting to inquire whether similar ideas are
relevant to other resolution problems, such as resolving the
locations and the frequencies of single neighboring spins.

The methods presented above are not perfect, they are limited
by the noise of the signal and the dephasing of the probe, whether
one can overcome these limitations is an open question.

Methods
Derivation of density matrix and probabilities. Given a noise model on the
amplitudes, the quantum state of the probe is described by the following density
matrix:

ρ ¼
Z

ψj i ψh jp A;Bð ÞdA dB: ð16Þ

Since the time evolution (with and without control) is described by the operator:

U ¼ cos ϕð Þ1� i sin ϕð Þσz ; ρ reads:

ρ ¼
Z

cos ϕð Þ2ρ0 þ sin ϕð Þ2σzρ0σz �
i
2
sin 2ϕð Þ σz ; ρ0


 �� �
	 p A;Bð ÞdA dB; ð17Þ

where ρ0 is the initial state. With the relevant noise model (Ai;Bi � N 0; σð Þ) it can
be seen that the terms going as sin 2ϕð Þ vanish, leading to:

ρ ¼ 1� pð Þρ0 þ pσzρ0σz ; ð18Þ
where p is the (averaged) transition probability:

R
sin ϕð Þ2p A;Bð ÞdA dB. Taking

ϕ ¼PiAi
sin δi tð Þ

δi
þ Bi

1�cos δi tð Þ
δi

; a simple calculation yields:

p ¼ 0:5 1� exp �8
X

i

σ2

δ2i
sin2

δit
2

� � ! !
: ð19Þ

Note that this expression coincides with Eq. (8) for δst ¼ 2π;ωrt � 1. The optimal
initial state would be ρ0 ¼ "xj i "xh j (or any other pure state in the X � Y plane),

leading to ρ ¼ 1� pð Þ "xj i "xh j þ p #xj i #xh j. The QFI (about ωr) of ρ is thus:
dp
dωr

� �2
p 1�pð Þ ;

which is the expression of Ir mentioned in the main text.

Effective Hamiltonian derivation. In this section, we derive the effective Hamil-
tonian that appears in the main text. Given a Hamiltonian: H ¼
A sin ωtð Þ þ B cos ωtð Þ½ �σz ; and π-pulses that are applied every τ; the Hamiltonian
in the interaction picture of these pulses is

H ¼ A sin ωtð Þ þ B cos ωtð Þ½ �h tð Þσz ; ð20Þ
where h tð Þ is the square wave function. Note that the phase accumulated by the
sensor (denoted as ϕ; and defined as half the rotation angle in Bloch sphere) in
t ¼ nτ is

ϕ ¼ A Im Φð Þ þ BRe Φð Þ where Φ ¼ PN�1

n¼0

R nþ1ð Þτ
nτ eiωt �1ð Þndt ð21Þ

where Re (Im) denotes the real (imaginary) part. Therefore in order to find ϕ we
need to calculate Φ:

Φ ¼
XN�1

n¼0

eiωnτ �1ð Þn e
iωτ � 1
iω

¼
XN�1

n¼0

ein ωτþπð Þ e
iωτ � 1
iω

: ð22Þ

The calculation then proceeds as follows:

Φ ¼ 1� eiN ωτþπð Þ

1þ eiωτ
eiωτ � 1

iω

¼ �2iei
N
2 ωτþπð Þ sin N

ωτ

2
þ N

π

2

� �
sin ω

τ

2

� � 1

cos ωτ
2

� �
ω
:

ð23Þ

Hence

Re Φð Þ ¼ 1� cos ωtþ Nπð Þð Þ sin ω τ
2

� �
cos ω τ

2

� �
ω
;

Im Φð Þ ¼ � sin ωtþ Nπð Þ sin ω τ
2

� �
ω cos ωτ

2

� � :
ð24Þ

Note that: ωt ¼ ωN π
ωþδ ¼ Nπ � δt; therefore Eq. (24) is simplified to:

Re Φð Þ ¼ 1� cos δtð Þð Þ tan ω τ
2

� �
ω

;

Im Φð Þ ¼ sin δtð Þ tan ω τ
2

� �
ω

:

ð25Þ

The accumulated phase, ϕ, thus reads:

ϕ ¼ A sin δtð Þ tan ω τ
2

� �
ω

þ B 1� cos δtð Þð Þ tan ω τ
2

� �
ω

: ð26Þ
Observe that this exact phase is obtained by the following effective Hamiltonian

(note that no approximation is used here):

Heff ¼ tan ω
τ

2

� � δ

ω

� �
A cos δtð Þ þ B sin δtð Þ½ �σz ; ð27Þ

hence we can use this effective Hamiltonian to describe the dynamics. This effective
Hamiltonian is somewhat similar to the original Hamiltonian in that the frequency
is shifted from ω to δ; and the amplitude acquires a prefactor of tan ω τ

2

� �
δ
ω

� �
.

Note that for δ � ω:

tan ω
τ

2

� � δ

ω

� �
¼ tan

π

2 1þ δ
ω

� �
 !

δ

ω

� �
� 2

π
; ð28Þ

which implies:

Heff � A
2
π

� �
cos δtð Þ þ B

2
π

� �
sin δtð Þ

� �
σz δ � ωð Þ: ð29Þ

It should be noted that this is the relevant regime for experimental
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realizations15,34,47,48. Similarly for the opposite limit δ � ωð Þ; we obtain that:

Heff � A
π

2

� �
cos δtð Þ þ B

π

2

� �
sin δtð Þ

h i
σz ω � δð Þ: ð30Þ

This derivation can be trivially extended for a signal that consists of two
frequencies.

Data availability
The code and data used in this work are available on request to the corresponding
author.
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