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Background and Purpose  Alterations in human brain functional networks with matura-
tion have been explored extensively in numerous electroencephalography (EEG) and func-
tional magnetic resonance imaging studies. It is known that the age-related changes in the func-
tional networks occurring prior to adulthood deviate from ordinary trajectories of network-
based brain maturation across the adult lifespan.
Methods  This study investigated the longitudinal evolution of resting-state EEG-based func-
tional networks from early childhood to adolescence among 212 pediatric patients (age 12.2± 
3.5 years, range 4.4–17.9) in 6 frequency bands using 8 types of functional connectivity mea-
sures in the amplitude, frequency, and phase domains.
Results  Electrophysiological aspects of network-based pediatric brain maturation were char-
acterized by increases in both functional segregation and integration up to middle adoles-
cence. EEG oscillations in the upper alpha band reflected the age-related increases in mean 
node strengths and mean clustering coefficients and a decrease in the characteristic path lengths 
better than did those in the other frequency bands, especially for the phase-domain functional 
connectivity. The frequency-band-specific age-related changes in the global network metrics 
were influenced more by volume-conduction effects than by the domain specificity of the 
functional connectivity measures.
Conclusions  We believe that this is the first study to reveal EEG-based functional network 
properties during preadult brain maturation based on various functional connectivity measures. 
The findings potentially have clinical applications in the diagnosis and treatment of age-related 
brain disorders.
Keywords  ‌�electroencephalography; rest state; functional connectivity; graph theory; child;  

brain maturation.

Variations of Resting-State EEG-Based Functional Networks 
in Brain Maturation From Early Childhood to Adolescence

INTRODUCTION

The human brain comprises a network of spatially separated functional regions. Function-
al connectivity refers to the interregional statistical relationships of brain activities with re-
gion-to-region undirectional pairwise association matrices and connections.1-3 Scalp elec-
troencephalography (EEG) is a noninvasive method for recording neurophysiological 
activities in the human brain. EEG-based functional connectivity studies generally follow 
a series of analytical approaches: statistical estimation of region-to-region functional con-
nectivity in multiple frequency bands; construction of association matrices representing 
the estimated functional connections to yield functional networks; and using graph-theo-
ry-based approaches to interpret the functional networks. Resting-state EEG-based func-
tional networks are obtained by applying functional connectivity techniques to EEG re-
cordings obtained in resting-state conditions in which participants remain awake and do not 
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engage in cognitive or behavioral tasks.1 Patterns of functional 
connectivity during the resting state have been suggested as 
network-based outcomes of intrinsic neural activities.4

Various methods have been proposed for estimating human 
brain functional connections, referred to as functional con-
nectivity measures. These methods are based on different 
mathematical backgrounds depending on how the neurophys-
iological dynamics are interpreted, and so they may produce 
different outcomes.5,6 For EEG-based functional connectivity, 
the measures are categorized into several groups based on the 
types of EEG properties exploited to estimate interregional 
functional connections, such as amplitude, frequency, phase, 
and uncertainty in information theory.4,7,8 Each functional 
connectivity measure distinctly reflects its specific interregion-
al interactions, and hence it is important to select appropri-
ate metrics for handling EEG signals efficiently and to com-
bining outcome generated by multiple functional connectivity 
measures in order to understand functional networks in a 
complementary manner.9-13 Due to the inherent spatial dis-
persion of the electromagnetic fields during EEG recordings, 
spurious interactions induced by volume-conduction effects 
need to be discarded by using specific functional connectiv-
ity measures. A spurious interaction between two EEG sig-
nals from different regions will indicate the presence of a func-
tional connection induced by the same electromagnetic source. 
It has been suggested that volume-conduction effects in EEG-
based functional connectivity can be reduced by excluding or 
unmixing zero-lag components.14,15

Resting-state functional connectivity has been widely ad-
opted to elucidate age-related network alterations during the 
brain maturation that occurs in the childhood, adolescence, 
and early adulthood periods that are associated with the con-
tinual refinement of neuronal connections and specialization 
of functional systems.16-18 Many functional magnetic resonance 
imaging (fMRI) studies have found significant changes in the 
organization of resting-state functional networks in terms of 
segregation and integration that are associated with healthy 
aging from 7 to 31 years.19-24 EEG studies have also found age-
related changes in the resting-state functional networks from 
5 to 7 years,25,26 from 8 to 12 years,27 and from infancy to 17 
years,28 in terms of variations in network characteristics such 
as strength, stability, segregation, and integration using a sin-
gle functional connectivity measure. In particular, segregation 
of the resting-state functional networks increases from child-
hood to young adulthood, whereas it decreases throughout the 
adult lifespan from 20 years of age, implying different longi-
tudinal trajectories of brain maturation over the human lifes-
pan.16 Therefore, a deeper understanding of brain maturation 
over different age periods is needed in fields such as pediatric 
neurology, cognitive neuroscience, and neurophysiology by 

performing wide explorations of age-related variations in func-
tional networks. Achieving this requires a representative sam-
ple population that includes participants whose ages are dis-
tributed across childhood and adolescence. In addition, a single 
functional connectivity measure may be insufficient to eluci-
date the complicated age-related network-level variability, par-
ticularly for EEG-based functional networks. However, no rest-
ing-state EEG-based functional connectivity study has been 
conducted to reveal the network-based information in pre-
adult brain maturation using various functional connectivity 
measures.

In this study, we aimed to characterize the longitudinal evo-
lution of resting-state EEG-based functional networks from 
early childhood to adolescence. We constructed functional 
networks across ages in six frequency bands using eight types 
of functional connectivity measures belonging to the ampli-
tude, frequency, and phase domains, with the following spe-
cific aims: 1) to clarify electrophysiological aspects of brain 
maturation during childhood and adolescence in terms of 
functional segregation and integration, 2) to identify the fre-
quency band and functional connectivity measure that opti-
mally reflect the age-related changes in functional network 
properties, and 3) to use various measures to reveal how the 
methodology affects frequency-band-specific age-related 
variations of functional network properties.

METHODS

Data set
This study was approved by the Institutional Review Board 
(IRB) of Seoul National University Bundang Hospital (IRB 
No. B-1807-478-107) and Seoul Metropolitan Government- 
Seoul National University Boramae Medical Center (IRB No. 
20-2020-151). These IRBs waived the requirement to obtain 
informed consent due to the retrospective nature of the re-
view of medical records and EEG data.

This study selected 212 pediatric patients in Seoul National 
University Bundang Hospital and Seoul Metropolitan Gov-
ernment-Seoul National University Boramae Medical Center 
aged 12.2±3.5 years (range 4.4–17.9), comprising 104 females 
aged 12.1±3.4 years and 108 males aged 12.3±3.6 years. The 
EEG records of patients who visited our pediatric neurology 
clinic for symptoms such as syncope or seizure-like events were 
included. Pediatric neurologists confirmed the presence of 
normal development based on patient histories and neurolog-
ical examinations, and ruled out seizures based on patient 
symptoms in EEG examinations. The 212 patients were cate-
gorized into the following five age groups: 4–6 years (n=10; 
3 females), 6–9 years (n=39; 21 females), 9–12 years (n=45; 
24 females), 12–15 years (n=64; 30 females), and 15–18 years 
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(n=54; 26 females). The distribution of patients according to 
age and sex is shown in Fig. 1. EEG recordings were obtained 
using a 32-channel digital EEG system (Grass Telefactor, West 
Warwick, RI, USA) at a sampling frequency of 200 or 400 Hz 
while using a 60 Hz notch filter and 19 scalp electrodes ac-
cording to the international 10–20 system. Waking and sleep 
EEG records were obtained whenever possible, and patients 
were sedated with chloral hydrate (50 mg/kg; maximum, 1 g) 
when necessary. All of the EEG recordings that were clinically 
interpreted as normal and seizure-free were selected, and the 
waking EEG records of relaxed wakefulness were checked by 
pediatric epileptologists (H.K. and H.H.) and they were re-ref-
erenced to average reference montages with 19 channels for 
subsequent processing. Down-sampling to 200 Hz was ap-
plied to the EEG recordings sampled at 400 Hz.

Estimation of functional connectivity
Artifact-free epochs (11.5±4.7 epochs) were extracted for 
each patient after visually inspecting for artifacts such as eye 
movements, muscle activities, and movements. The epoch 
length was set to 8 s not only to access the lowest frequency 
band but also to minimize instability in functional connec-
tivity.29 The following eight types of well-known functional 
connectivity measures were applied to the artifact-free epochs 

separately when estimating the interregional functional con-
nections: correlation coefficient (CC)7,30 and zero-lag-removed 
correlation coefficient (zCC)30,31 as amplitude-domain mea-
sures; coherence (Coh) and the imaginary part of coherency 
(iCoh)32 as frequency-domain measures; and phase-locking 
value (PLV),15,33,34 phase-lag index (PLI),35 weighted phase-lag 
index (wPLI),36 and lagged phase synchronization (LPS)37,38 as 
phase-domain measures. Among these eight measures, CC, 
Coh, and PLV are susceptible to volume-conduction effects, 
whereas the others are immune to such effects by excluding ze-
ro-lag components. The eight types of functional connectivity 
measures are described in detail in the Supplementary Mate-
rial (in the online-only Data Supplement).

All epochs were band-pass filtered using sixth-order But-
terworth filters into the following frequency bands: delta (0.5– 
4 Hz), theta (4–8 Hz), lower alpha (8–10 Hz), upper alpha 
(10–13 Hz), alpha (8–13 Hz), and beta (13–30 Hz). An asso-
ciation matrix for undirected weighted whole-brain func-
tional connectivity with a size of 19×19 was constructed in 
each frequency band by each functional connectivity mea-
sure for each epoch, yielding a set of association matrices 
with a size of 19 channels×19 channels×6 bands×8 measures 
×m for each patient, where m denotes the number of epochs. 
A representative association matrix for each patient was de-
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Fig. 1. A histogram of the number of patients by age and sex.
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termined by averaging the set of association matrices over 
m epochs for each patient. The patient-level representative 
association matrices were used in subsequent graph-theory-
based analyses. All of the association matrices were construct-
ed using Python (version 3.6; Python Software Foundation, 
Wilmington, DE, USA) with the PyTorch library (version 
1.4.0). Functional connectivity maps were generated across 
the five age groups by averaging the patient-level association 
matrices over patients in each age group, yielding five maps 
corresponding to each frequency band and each functional 
connectivity measure. Exemplar functional connectivity maps 
in the upper alpha band estimated using zCC, iCoh, PLV, and 
PLI are shown in Fig. 2. Detailed functional connectivity 
maps in the six frequency bands for the eight types of func-
tional connectivity measures are shown in the Supplementary 
Material (Supplementary Figs. 1–6 in the online-only Data 
Supplement).

Analysis of functional network properties
When applying graph theory to EEG-based functional network 
analysis, nodes and edges correspond to EEG channels and in-
terregional functional connections, respectively.1,39 In the pres-
ent study, each undirected weighted functional network had 19 
nodes corresponding to 19 EEG channels and 171 edges cor-
responding to the pairwise undirected interregional functional 
connections. The weight of each edge represented the strength 
of the corresponding interregional functional connection. To 
quantify functional network properties, node strengths, clus-
tering coefficients, and characteristic path lengths were se-
lected as network metrics determined by the nodes and edg-
es of the graph. The strength of a particular node quantifies 
the strength of functional connectivity at that node by taking 
the sum of weights of edges connected to it. The clustering 
coefficient quantifies the tendency of nodes to cluster togeth-
er. Both the node strength and clustering coefficient are local 
network metrics that quantify functional network properties 

Fig. 2. Exemplar functional connectivity maps in the upper alpha band across five age groups estimated based on the 95% CIs of the zCC (0.00–
0.54), iCoh (0.00–0.25), PLV (0.00–0.84), and PLI (0.00–0.30). Each map represents the functional connectivity averaged over patients in each age 
group. Maximum values of the strength of functional connectivity vary in accordance with the functional connectivity measures in order to im-
prove the visualization. CI, confidence interval; iCoh, imaginary part of coherency; PLI, phase-lag index; PLV, phase-locking value; zCC, zero-lag-
removed correlation coefficient.
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at the node level. The mean node strength and the mean clus-
tering coefficient reflect the overall strength of functional 
connectivity and the overall degree of segregation (or special-
ization) in a functional network, respectively, which are ob-
tained by averaging the local network metrics over all nodes. 
The characteristic path length quantifies the degree of inte-
gration (whose inverse corresponds to efficiency) in a func-
tional network, which is obtained by taking the mean short-
est path length averaged over all pairs of nodes. The mean node 
strength, mean clustering coefficient, and characteristic path 
length are global network metrics that quantify functional net-
work properties at the network level.1,39

In this study, 2 data matrices with a size of 212 patients×19 
channels×6 bands×8 measures were obtained for the local 
network metrics: the node strength and the clustering coeffi-
cient. By averaging these local metrics over 19 channels, 2 data 
matrices with a size of 212 patients×6 bands×8 measures were 
obtained for the mean node strength and the mean clustering 
coefficient. An additional data matrix with a size of 212 pa-
tients×6 bands×8 measures was obtained for the character-
istic path length. These three global network metrics were used 
in subsequent statistical analyses.

Statistical analyses
To estimate linear relationships between age groups and func-
tional network properties, linear regression models with the 
first-order polynomials were applied to the global network 
metrics in the six frequency bands for the eight types of func-
tional connectivity measures separately. The strength of the 
correlations were quantified as follows using the Pearson 
correlation coefficient (r): weak if |r| <0.4, moderate if |r| 
≥0.4 and <0.7, and strong if |r| ≥0.7.40 To compare means of 
the global network metrics between the five age groups, two-
tailed two-sample t-tests assuming unknown and unequal vari-
ances were performed for all possible pairwise combinations 
of the age groups in the six frequency bands for the eight types 
of functional connectivity measures. The Benjamini-Yekutieli 
method41 was applied to correct p values in multiple compari-
sons. Detailed information on the means of the global network 
metrics corresponding to each age group is presented in the 
Supplementary material (Supplementary Tables 1–3 in the 
online-only Data Supplement).

Calculation of the network metrics, visualization of the func-
tional connectivity maps, and statistical analyses were per-
formed using MATLAB (MathWorks, Natick, MA, USA) with 
the Brain Connectivity Toolbox (sites.google.com/site/bctnet) 
39 and EEGLAB (sccn.ucsd.edu/eeglab).42

RESULTS

We investigated changes in functional network properties 
over the age range from 4.4 to 17.9 years based on the linear re-
lationships between age and global network metrics. Detailed 
results from the linear regression models in the six frequency 
bands for the eight types of functional connectivity measures 
are presented in Table 1. We defined the age-related changes 
as significant if their linear regression models yielded p values 
less than 0.05, 95% confidence intervals (CIs) that did not in-
clude 0, and |r| greater than or equal to 0.4.

Regarding the mean node strengths, CC, Coh, and PLV 
showed significant age-related increases in the delta (r=0.48 
and CI=0.37–0.58, r=0.44 and CI=0.32–0.54, and r=0.47 and 
CI=0.35–0.57, respectively), upper alpha (r=0.72 and CI= 
0.64–0.78, r=0.73 and CI=0.66–0.79, and r=0.66 and CI=0.57– 
0.73, respectively), alpha (r=0.55 and CI=0.45–0.64, r=0.72 
and CI=0.65–0.78, and r=0.45 and CI=0.34–0.55, respective-
ly), and beta (r=0.75 and CI=0.68–0.80, r=0.71 and CI=0.63– 
0.77, and r=0.73 and CI=0.66–0.79, respectively) bands; while 
PLI, wPLI, and LPS showed significant age-related increases 
solely in the upper alpha band (r=0.44 and CI=0.32–0.54, r= 
0.45 and CI=0.34–0.55, and r=0.43 and CI=0.31–0.53, respec-
tively).

Regarding the mean clustering coefficients, CC, Coh, and 
PLV showed significant age-related increases in the delta (r= 
0.45 and CI=0.34–0.55, r=0.41 and CI=0.29–0.51, and r=0.43 
and CI=0.31–0.53, respectively), upper alpha (r=0.70 and CI= 
0.62–0.76, r=0.72 and CI=0.65–0.78, and r=0.66 and CI=0.57– 
0.73, respectively), alpha (r=0.54 and CI=0.44–0.63, r=0.72 
and CI=0.65–0.78, and r=0.47 and CI=0.35–0.56, respective-
ly), and beta (r=0.74 and CI=0.67–0.80, r=0.71 and CI=0.63– 
0.77, and r=0.73 and CI=0.66–0.78, respectively) bands; while 
PLI, wPLI, and LPS showed significant age-related increases 
solely in the upper alpha band (r=0.45 and CI=0.34–0.55, r= 
0.46 and CI=0.35–0.56, and r=0.44 and CI=0.33–0.55, respec-
tively), and zCC showed a significant age-related increase in 
the upper alpha band (r=0.41, CI=0.29–0.52).

Regarding the characteristic path lengths, CC, Coh, and 
PLV showed significant age-related decreases in the delta (r= 
-0.49 and CI=-0.59 to -0.38, r=-0.46 and CI=-0.56 to -0.35, and 
r=-0.50 and CI=-0.60 to -0.39, respectively), upper alpha (r= 
-0.78 and CI=-0.83 to -0.72, r=-0.77 and CI=-0.82 to -0.71,
and r=-0.72 and CI=-0.78 to -0.65, respectively), alpha (r= 
-0.62 and CI=-0.70 to -0.53, r=-0.72 and CI=-0.78 to -0.65,
and r=-0.50 and CI=-0.59 to -0.39), and beta (r=-0.77 and CI=
-0.82 to -0.70, r=-0.68 and CI=-0.75 to -0.61, and r=-0.74
and CI=-0.80 to -0.68, respectively) bands; while PLI, wPLI,
and LPS showed significant age-related decreases solely in
the upper alpha band (r=-0.45 and CI=-0.55 to -0.33, r=-0.48
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and CI=-0.58 to -0.37, and r=-0.44 and CI=-0.54 to -0.32, re-
spectively), and zCC showed a significant age-related increase 
in the delta band (r=0.46, CI=0.35–0.56).

Age-related changes in the mean node strengths, mean clus-
tering coefficients, and characteristic path lengths in the up-
per alpha band based on the 8 types of functional connectiv-
ity measures of the 212 patients are shown in Fig. 3. The age-
related changes in all six frequency bands are shown in detail 
in the Supplementary Material (Supplementary Figs. 7–9 in 
the online-only Data Supplement). No statistically significant 
change in the global network metrics was observed in the the-
ta and lower alpha bands.

We examined differences between the means of global net-
work metrics in the five age groups using two-tailed, two-sam-
ple t-tests for all possible pairwise combinations with p values 
corrected using the Benjamini-Yekutieli method. Differences 
were investigated especially closely in the upper alpha band be-
cause significant age-related changes in the global network 
metrics were predominant in that frequency band, as shown in 
Fig. 4.

Regarding the mean node strengths, all of the functional 
connectivity measures differed significantly between the 
age-group pairs of 4–6 years vs. 6–9 years, 6–9 years vs. 9–12 
years, and 9–12 years vs. 12–15 years (p<0.05), except for zCC 
(4–6 years vs. 6–9 years, 6–9 years vs. 12–15 years, and 9–12 

years vs. 12–15 years; p<0.05) and iCoh (4–6 years vs 9–12 
years and 6–9 years vs. 12–15 years, p<0.05). Regarding the 
mean clustering coefficients, all of the functional connec-
tivity measures differed significantly between the age-group 
pairs of 4–6 years vs. 6–9 years, 6–9 years vs. 9–12 years, and 
9–12 years vs. 12–15 years (p<0.05), except for zCC and iCoh 
(4–6 years vs. 6–9 years, 6–9 years vs. 12–15 years, and 9–12 
years vs. 12–15 years; p<0.05). Regarding the characteristic 
path lengths, CC, Coh, PLV, PLI, and wPLI differed signifi-
cantly between the age-group pairs of 4–6 years vs. 6–9 years, 
6–9 years vs. 9–12 years, and 9–12 years vs. 12–15 years (p< 
0.05), while zCC and iCoh differed between the age-group 
pairs of 4–6 years vs. 9–12 years, 6–9 years vs. 12–15 years, 
and 9–12 years vs. 12–15 years (p<0.05), and LPS differed 
between the age-group pairs of 4–6 years vs. 6–9 years, 6–9 vs. 
12–15 years, and 9–12 years vs. 12–15 years (p<0.05). No sta-
tistically significant difference was observed between the age 
groups of 12–15 and 15–18 years for any of the global network 
metrics.

DISCUSSION

The three main findings of this resting-state EEG-based func-
tional connectivity study are as follows: 

1) Electrophysiological aspects of network-based pediat-

CC zCC Coh iCoh PLV PLI wPLI LPS

Fig. 3. Age-related changes in the global network metrics in the upper alpha band based on the eight types of functional connectivity measures. 
Pearson correlation coefficients (r) for linear regression models with first-order polynomials are shown if p<0.05, 95% CIs did not include 0, and 
|r| ≥0.4. Yellow lines represent the first-order-polynomial trend lines. Y-axes vary according to the functional connectivity measures and global 
network metrics. CC, correlation coefficient; CI, confidence interval; Coh, coherence; iCoh, imaginary part of coherency; LPS, lagged phase syn-
chronization; PLI, phase-lag index; PLV, phase-locking value; wPLI, weighted phase-lag index; zCC, zero-lag-removed correlation coefficient.
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ric brain maturation are characterized by noticeable increas-
es in both functional segregation and integration up to mid-
dle adolescence.

2) EEG oscillations in the upper alpha band reflect longi-
tudinal variations of functional network properties from 
early childhood to adolescence better than do those in other 
frequency bands, especially for the estimation of functional 
connectivity by phase-domain measures. 

3) Volume-conduction effects have a greater influence on
the frequency-band-specific age-related changes in func-
tional network properties than does the domain specificity 
of the functional connectivity measure.

Functional segregation and integration during 
brain maturation
The present results indicate that the mean clustering coeffi-
cients increase and characteristic path lengths decrease with 
aging, particularly in the upper alpha band for phase-domain 
measures. This implies that the resting-state EEG-based func-
tional networks in the healthy human brain show significant 
increases in the degree of segregation and integration from 
early childhood to adolescence. We therefore speculate that 
normal brain maturation during childhood and adolescence 
is characterized by functional specialization and efficiency en-

hancement. The characteristics of brain maturation across the 
healthy human lifespan revealed by many resting-state func-
tional connectivity studies (particularly from early childhood 
to young adulthood) are at least partially consistent with our 
results. It may be challenging to directly compare our findings 
with those of previous studies due to variations in the techno-
logical approaches, such as EEG and fMRI, and demograph-
ic differences.

A recent EEG study found that, from 5 to 7 years, the syn-
chronization likelihood-based functional connectivity de-
creased in the 4–6, 6–11, and 11–25 Hz bands, normalized 
clustering coefficients increased in the alpha band, and nor-
malized characteristic path lengths increased in all frequency 
bands.26 That study indicated that the age-related decrease 
in the strength of functional connectivity implied pruning of 
unused neuronal connections and retention of frequently used 
connections, thereby establishing cost-effective organized 
functional networks. Another EEG study found that the syn-
chronization likelihood-based functional connectivity in-
creased between the age groups of 5–7 and 16–18 years in 
the 6–13 and 15–25 Hz bands, accompanied by increases in 
the clustering coefficients and characteristic path lengths.43 
Unlike our approaches, those studies estimated the resting-
state functional connectivity based on the pattern similarity 

CC zCC Coh iCoh PLV PLI wPLI LPS

Fig. 4. Differences between the means of global network metrics for age groups in the upper alpha band based on the eight types of functional 
connectivity measures. Each bar represents a global network metric averaged over the patients in each age group. Horizontal lines at the top and 
bottom of each bar indicates the standard deviation (two-tailed two-sample t-tests between two age groups assuming unknown and unequal 
variances; *if p<0.05 and **if p<0.01; Benjamini-Yekutieli method for p-value correction). Y-axes vary according to the functional connectivity 
measures and global network metrics. CC, correlation coefficient; Coh, coherence; iCoh, imaginary part of coherency; LPS, lagged phase synchro-
nization; PLI, phase-lag index; PLV, phase-locking value; wPLI, weighted phase-lag index; zCC, zero-lag-removed correlation coefficient.
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of EEG time series, their alpha band included both lower and 
upper alpha bands, and their age-related changes were ob-
served solely within a narrow age range, in contrast with our 
findings. Coh-based interhemispheric functional connectivity 
increased from 8 to 12 years in the 1.5–3.5, 3.5–7.5, and 7.5–
12.5 Hz bands, and was possibly related to an increase in the 
velocity of neural transmission resulting from myelination.27 
Phase shift durations approaching chaotic states increased from 
2 months to 16 years, and were related to increases in func-
tional stability and integration.28 A recent fMRI study re-
vealed age-related strengthening of the functional connectivity 
from 3 to 22 years, based on the finding that older participants 
tended to spend more time in each functional state.44

Age-related functional network reorganizations in terms of 
segregation and integration have been revealed in more detail 
by fMRI studies. The resting-state functional connectivity 
within brain systems decreases whereas the connectivity be-
tween brain systems increases with aging across the lifespan 
from 20 years of age in healthy adults.16 However, there are 
deviations in the age-related variations during childhood and 
adolescence, indicating more-complex patterns of the net-
work alterations, such as an increase in the functional con-
nectivity within a certain brain system to establish functionally 
segregated areas.16,21 For example, another fMRI study found 
that short-range functional connectivity was stronger in chil-
dren aged 7–9 years than in adults aged 19–31 years, whereas 
long-range functional connectivity was stronger in adults than 
children.19,24 The weakened short-range functional connectivity 
was interpreted as indicating the presence of selective pruning 
of synaptic connections, with the strengthened long-range 
functional connectivity associated with enhancement of neuro-
nal signal transduction between distal regions by the addition 
of myelin sheaths. Other fMRI studies found that functional 
connections between default regions were denser during young 
adulthood (21–31 years) than early school age (7–9 years)20; 
that children and adolescents aged 8–17 years had local func-
tional connectivity with short-distance interregional connec-
tions, while young adults aged 19–24 years had intermediate 
functional connectivity with long-distance connections;22 that 
global interhemispheric functional connectivity between cor-
responding regions in each hemisphere decreased from child-
hood to adolescence (at 7–18 years) to reciprocally increase 
hemispheric specialization of cognitive functions;45,46 and that 
weakening of local functional connectivity occurred in par-
allel with the setting up of long-range functional connectivity 
from late childhood to early adulthood (11–35 years),47 sup-
porting age-related increases in both functional segregation 
and integration.

We observed significant changes in the means of global net-
work metrics of age groups from 4–6 to 12–15 years, but not 

from 12–15 to 15–18 years. A recent fMRI study identified a 
two-stage trajectory of brain development from 10 to 26 years, 
with functional networks stabilizing up to early adolescence 
(13–15 years) and then subsequently exhibiting increased in-
tegration through adulthood,23 which conflicts with our find-
ings and those of other studies mentioned above. However, 
another recent fMRI study that included subcortical regions 
found that the amygdala-cortical functional connectivity 
changed meaningfully at the transition from childhood to ad-
olescence (i.e., at 10–11 years).48 Hence, we cautiously suggest 
that electrophysiological aspects of network-based brain mat-
uration are characterized by noticeable increases in both func-
tional segregation and integration, and that other types of 
network-based brain maturation beyond the corticocortical 
functional connectivity can begin from middle adolescence. In 
terms of regional effects, some fMRI studies have found that 
the strength of functional connectivity increases with aging 
(from 7 to 31 years) between regions in the cinguloopercular 
network such as the dorsal anterior cingulate cortex, anterior 
insula, and frontal operculum,19 as well as in the default net-
work such as the medial prefrontal cortex, posterior cingulate 
cortex, and retrosplenial cortex.20 However, some unclear as-
pects remain to be elucidated in future studies involving EEG, 
fMRI, and other brain imaging techniques in order to obtain a 
deeper understanding of brain maturation from early child-
hood to adolescence.

Age-related changes in the upper alpha band with 
phase-domain measures
Significant age-related changes in functional network prop-
erties were observed predominantly in the upper alpha band. 
In particular, all four phase-domain measures (PLV, PLI, wPLI, 
and LPS) showed significant age-related changes in all of the 
global network metrics in the upper alpha band. Considering 
the functional connectivity measures that are immune to vol-
ume-conduction effects, the r values for zCC and iCoh were 
higher in the upper alpha band than in the other frequency 
bands. However, their correlations in the upper alpha band 
were distinctly weaker than those of phase-domain measures.

Human physiological aging affects alpha-band EEG oscil-
lations over the entire lifespan.49-51 The aging process mod-
ulates healthy functional networks particularly in the upper 
alpha band.49 A previous EEG study revealed the following 
age-related variations in the power in the upper alpha band: in-
creasing from early childhood to adulthood, higher in 12-year-
old children than in younger children, and higher following 
brain maturation at 16 years or older.52 EEG oscillations in 
the upper alpha band reflect semantic memory processing re-
lated to knowledge acquisition, whereas those in the lower al-
pha band reflect attentional processing related to mental prep-
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aration.49,52 Furthermore, knowledge acquisition begins very 
early in childhood while semantic memory evolves during the 
preschool years.53 Therefore, observations of distinct age-relat-
ed changes in the global network metrics in the upper alpha 
band may be related to brain development associated with 
knowledge acquisition.

Delta-band EEG oscillations are related to physiological ag-
ing in adults50 but not commonly in children under 18 years. 
A previous EEG study demonstrated age-related increases in 
the intra- and interhemispheric coherence both in the delta 
and alpha bands from 8 to 12 years, locally rather than glob-
ally.27 Theta-band EEG oscillations are reportedly related to 
declines in neurocognitive functions in healthy elderly sub-
jects.49 It is presumed that only weak or nonsignificant theta-
band age-related changes were induced in the global network 
metrics of healthy patients in the present study. Age-depen-
dent characteristics of beta-band EEG oscillations have not 
been commonly reported; instead, they are affected by move-
ments rather than by neurocognitive functions.49 In particu-
lar, muscle artifacts during EEG recordings are more com-
mon in younger children than in adolescents and adults, and 
so the former might have high beta-band activity unrelated to 
aging. Regarding the age-related changes in the global network 
metrics in the delta, theta, lower alpha, and beta bands showing 
different patterns for eight measures (Table 1), further stud-
ies are required to clarify the potential effects of local network 
metrics on global ones due to regional variations in the age de-
pendency.27,54

Directly comparing functional connectivity measures was 
beyond the scope of this study. In addition, each functional 
connectivity measure has its own characteristic advantages 
and disadvantages for estimating interregional functional con-
nectivity. This means that it might not be straightforward to 
conclude that phase-domain measures are optimal for explor-
ing age-related changes in functional network properties. How-
ever, age-related changes in the global network metrics in the 
upper alpha band are revealed in the functional networks es-
timated using the phase-domain measures more distinctly and 
consistently than when using the amplitude- and frequency-
domain measures. We conjecture that phase-domain measures 
have some methodological benefits in separating amplitude 
effects from phase dynamics of EEG signals,33,38 reducing am-
plitude variations of EEG oscillations,55 and not requiring an 
assumption of stationarity.33 Furthermore, interregional cou-
plings identified by phase-domain measures are less related to 
structural networks and show stronger state dependency than 
those found by amplitude-domain measures.56 Coh statistics 
can easily reject the null hypothesis of interregional couplings 
manifesting as white-noise signals.33 Moreover, phase-domain 
measures are better for understanding interregional couplings 

within a specific frequency band, because frequency-domain 
measures estimate functional connectivity across a relatively 
wide frequency range. We therefore suggest that the changes 
in functional network properties with aging are more accu-
rately reflected by EEG oscillations in the upper alpha band 
than by those in other frequency bands, and that phase-domain 
measures more accurately reflect age-related changes in func-
tional network properties than do amplitude- and frequency-
domain measures.

Volume-conduction effects on the age-related 
changes
Functional connectivity measures that are susceptible to vol-
ume-conduction effects showed noticeable frequency-band-
specific age-related changes in functional network proper-
ties. CC, Coh, and PLV showed significant age-related changes 
in the global network metrics in the delta, upper alpha, alpha, 
and beta bands, regardless of their domain specificities. Some 
recent studies have identified unique roles of different types 
of functional connectivity measures. For example, CC and 
Coh were found to be suitable for stationary signals, where-
as phase-based measures were suitable for nonstationary sig-
nals in detecting true connections in simulated EEG data sets.9 
Significant differences were identified between normal syn-
chronization and epileptic synchronization when using non-
linear measures such as phase-based ones in the gamma band, 
and when using linear measures such as Coh in the lower fre-
quency bands.57 wPLI had high sensitivity for a mixture of 
linear and nonlinear interregional couplings in both simulat-
ed and real EEG data sets.11 Since the present study adopted 
undirected functional connectivity measures, comparisons be-
tween undirected and directed58 or between multiple directed 
functional connectivity measures59 may have been beyond the 
scope of our study.

According to previous studies, the frequency-band-specif-
ic age-related changes in functional network properties were 
anticipated to be domain specific; that is, the amplitude-do-
main measures of CC and zCC showed similar changes, as 
did other measures in the frequency and phase domains. How-
ever, CC, Coh, and PLV showed similar changes despite 
them belonging to the amplitude, frequency, and phase do-
mains, respectively. Since Coh and iCoh reflect amplitudes of 
EEG signals at a given frequency and are calculated based on 
interregional couplings independently for each frequency,34 
we categorized them as frequency-domain measures. The 
similarity of the changes might be attributable to the domain 
specificity being too subtle to be recognized in the function-
al networks. A previous study found that Coh and PLV pro-
vided essentially the same information on the coupling be-
tween healthy EEG signals during sleep.60 Another reason 
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may be the strength of interregional functional connections 
being inflated by spurious or ghost connections, particularly 
in functional networks that are susceptible to volume-con-
duction effects.15 In this regard, a recent EEG study found that 
both Coh and PLV overestimated functional connectivity, lead-
ing to greater strength than other measures when using simu-
lated EEG signals.61 Assuming that distinct volume-conduc-
tion effects exist, it is possible that CC, Coh, and PLV yield 
similar information about functional network properties. For 
these reasons, we suggest that frequency-band-specific age-
related changes in functional network properties can be in-
fluenced more by volume-conduction effects than by the do-
main specificity of functional connectivity measures.

Limitations and further work
Our study was subject to several limitations. In terms of clin-
ical limitations, we made every attempt to include neurologi-
cally intact healthy children, in order to represent normal brain 
maturation by analyzing the EEG records of patients who had 
no known brain disorder or pathology. However, functional 
study results were not available to confirm the presence normal 
cognitive functioning. In terms of technical limitations, we 
excluded certain types of functional connectivity measures 
based on information theory and amplitude-envelope corre-
lation; we investigated global aspects of age-related changes 
in functional network properties rather than local aspects. The 
inclusion of a larger number of participants would have im-
proved the ability to generalize our findings. For the future, we 
plan to enroll healthy children, perform cognitive function 
tests, add functional network measures not used in this study, 
explore local variations of functional network properties, and 
expand to multicenter investigations involving larger num-
bers of participants to examine not only age-related variations 
but also sex-related differences. In addition, we plan to estab-
lish an EEG-based automated algorithm to estimate brain 
maturity levels from early childhood to adolescence for use 
in the clinical diagnosis and treatment of age-related brain 
disorders, which has already been attempted in some previ-
ous fMRI studies.62,63

Conclusion
We investigated longitudinal variations of the resting-state 
EEG-based functional networks from early childhood to ad-
olescence in six frequency bands using eight types of func-
tional connectivity measures with different domain specifici-
ties of amplitude, frequency, and phase. Our conclusions are 
as follows: first, electrophysiological aspects of network-based 
pediatric brain maturation are characterized by increases in 
both functional segregation and integration (especially notice-
ably up to middle adolescence) that establish functionally 

specialized areas and enhance neural transmission efficiency 
concurrently, based on reorganization of corticocortical func-
tional connections. Second, the age-related changes in func-
tional network properties were more accurately reflected by 
EEG oscillations in the upper alpha band than by those in 
other frequency bands, which is presumably linked to spe-
cific roles of the upper alpha band in brain development with 
knowledge acquisition. Third, phase-domain measures ro-
bustly reflect significant age-related changes in the upper alpha 
band owing to their methodological benefits compared with 
amplitude- and frequency-domain measures. Fourth, the func-
tional connectivity measures susceptible to volume-conduc-
tion effects showed significant age-related changes in func-
tional network properties in the delta, upper alpha, alpha, and 
beta bands. However, their connectivity strengths were inflat-
ed by spurious or ghost connections, consequently indicating 
that the frequency-band-specific age-related changes are in-
fluenced more by volume-conduction effects than by the do-
main specificity.
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