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Abstract

The identification of significant individual factors causing complex diseases is challenging in genome-wide association
studies (GWAS) since each factor has only a modest effect on the disease development mechanism. In this study, we
hypothesize that the biological pathways that are targeted by these individual factors show higher conservation within and
across populations. To test this hypothesis, we searched for the disease related pathways on two intracranial aneurysm
GWAS in European and Japanese case–control cohorts. Even though there were a few significantly conserved SNPs within
and between populations, seven of the top ten affected pathways were found significant in both populations. The
probability of random occurrence of such an event is 2.44E236. We therefore claim that even though each individual has a
unique combination of factors involved in the mechanism of disease development, most targeted pathways that need to be
altered by these factors are, for the most part, the same. These pathways can serve as disease markers. Individuals, for
example, can be scanned for factors affecting the genes in marker pathways. Hence, individual factors of disease
development can be determined; and this knowledge can be exploited for drug development and personalized therapeutic
applications. Here, we discuss the potential avenues of pathway markers in medicine and their translation to preventive and
individualized health care.
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Introduction

Many examples of genome-wide association studies (GWAS)

have pointed out the scarcity of the many possible variants that

can contribute to the explanation of a small percentage of the

estimated heritability for complex diseases. Identifying marker

single nucleotide polymorphisms (SNPs) specific to a complex

disease or developing genetic risk prediction tests [1–10] thus

constitutes a major challenge. Multiple factors (e.g. SNPs,

miRNAs, metabolic and epigenetic factors) may target different

sets of genes in the same pathway, thus affecting the pathway’s

function. In contrast to isolated molecules, network and pathway-

oriented analyses are thought to capture pathological perturba-

tions and hence, better explain predisposition to disease [11]. The

alterations in the functionality of common, disease specific

combinations of pathways may be the universal cause of the

disease development mechanism. This realization suggests that

therapeutics of the future may possibly be created while keeping

cellular networks and biological pathways in mind [12]. In this

regard, pathway based approaches to GWAS search for multiple

genes in the same biological pathway, where the common

variations in each of these genes have little effect on disease risk

[13–21]. The potential of GWAS on disparate populations to

uncover the links between genetics and pathogenesis of human

complex diseases has been discussed in the literature [22]. One

reason cited is the risk variants can vary in their occurrence across

populations [23,24]. For example, while the high-risk variant at

MYBPC3 gene is observed with a frequency of ,4% in

cardiomyopathy patients in Indian populations; this variant is

rare or absent in other populations [25]. Another reason is the

difference in allele frequencies and biological adaptations among

populations, which in turn affects the detectability and importance

of risk variants. The identification of a variant might be easier in

some populations when compared to that of other populations

since the particular histories of recombinations, mutations, and

divergences of genealogical lineages in the various populations

affect the mappability of a variant. This situation is observed in the

variants of TCF7L2 and KCNQ1 genes in type 2 diabetes [26,27].

Also, a review paper by Stranger et al. has been pointed out that

studying additional populations in GWAS may provide valuable

insights for current and future research in medical genetics [28].

Inspired by these research efforts, in this study, we hypothesize

that the few SNPs that are identified in GWAS and their

associated genes may be targeting the same pathway combina-

tions, and these biological pathways show higher conservation

across populations. If the combination of these pathways does not

function properly, a specific disease may develop. Therefore,

affected pathways may be conserved across populations, making

them potential markers for multifactorial diseases. Until now, no
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SNP or gene markers have been identified for complex diseases,

that have high explanatory power and that can be applied across

populations. We propose pathway markers, as an alternative that

shows more conservation across populations. That’s why these

markers can even be used at individual level, enlightening

individual disease development mechanisms.

Intracranial aneurysm (IA, OMIM 105800) is a cerebrovascular

disease that affects approximately one individual out of fifty [29].

IA is thought to be a major public health concern since the rupture

of an IA leads to subarachnoid hemorrhage (SAH), which is a

destructive subset of stroke [30]. One third of the patients with

SAH die within the initial weeks after the bleed and the rest end up

with severe physical disabilities [31]. Both environmental risk

factors such as smoking, hypertension, excessive alcohol intake;

and non-modifiable risk factors such as family history of IA, female

gender and systemic diseases (e.g. polycystic kidney disease and

vasculr type of Ehlers Danlos disease) are accepted to have a role

in the development of IA and SAH [32–38]. Since the subjects

with familial preponderance of IA have a higher risk of IA, genetic

components are thought to correlate with the tendency of

developing IA. Four recent GWAS identified some variants

associated with IA [39–42]. In JP population, five SNPs

(rs1930095 (P = 1.31610–5), rs4628172 (P = 1.32610–5),

rs7781293 (P = 2.78610–5), rs7550260 (P = 4.93610–5),

rs9864101 (P = 3.63610–5)) were associated with IA [40,42]. In

EU population, five loci were found to be strongly related with IA;

chromosomes 18q11.2 (rs11661542, OR = 1.22, P = 1.1610212),

10q24.32 (rs12413409, OR = 1.29, P = 1.261029), 13q13.1

(rs9315204, OR = 1.20, P = 2.561029), 8q11.23–q12.1

(rs10958409, rs9298506, OR = 1.28, P = 1.3610212), 9p21.3

(rs1333040, OR = 1.31, P = 1.5610222) [39] and a further 14

loci displayed suggestive association [43]. However, these variants

explain only a small percentage of the familial risk of IA, and this

situation makes genetic risk prediction tests currently unfeasible for

IA [31]. Previously, we developed PANOGA (Pathway and

Network Oriented GWAS Analysis), a novel methodology to

devise functionally important KEGG pathways through the

identification of SNP targeted genes within these pathways [44–

46]. PANOGA combines nominally significant evidence of genetic

association with current knowledge of protein-protein interaction

(PPI) networks and functional information of selected SNPs. Here,

we applied PANOGA on two IA GWAS separately: i) Finnish,

Dutch (European, EU) population of 1701 cases and 7409 control

cohorts [39,41], ii) Japanese (JP) population of 1069 cases and 904

controls [40]. Even though there were not so many common

disease predisposing SNPs and commonly targeted genes between

these two populations, the identification of 7 common pathways in

the top 10 pathways demonstrated the relevance of our pathway-

oriented approach. In the following sections, we will discuss our

findings.

Results

In our analysis, we have included 44,351 SNPs from the EU

population specific dataset, and 14,034 SNPs from the JP

population specific dataset with p-values ,0.05, where the

genotypic p-value of a SNP is calculated via Cochran-Armitage

trend test. Only 576 of these SNPs were common between the two

populations. To identify the biological pathways with the genes

responsible for IA susceptibility, for each dataset, we applied the

affected SNP functionalization, SNP to gene mapping, gene-wise

weighted p-value calculation, sub-network identification and

functional enrichment steps of PANOGA. The details of these

steps are explained in the Materials and Methods section.

All available human KEGG pathways, 246 in total, were tested

for their possible role in IA development mechanism. Among these

pathways, 103 pathways were detected in EU population (as

shown in Table S1) and 102 pathways were detected in JP

population (as shown in Table S2) with corrected p-values less

than E24. 91 of these pathways were commonly found in both

populations (as shown in Table S3). Next, we calculated the

rankings of each identified pathway in each population and found

that the correlation between the two studies was significant

(Spearman’s r2 = 0.71, P,10–6). Pairwise correlation of pathway

statistics between two studies (which were carried out on

independent populations with different ethnicities) should indicate

common genetic variation associated with IA. As shown in Table 1,

12 of the top 20 (P = 4.09E260) and 7 of the top 10

(P = 2.44E236) affected pathways were commonly identified in

both EU and JP populations. In these 12 commonly identified

pathways, while 95 and 81 genes are uniquely targeted by disease

predisposing SNPs in EU and JP populations respectively, only 25

genes (as shown in Table S4) are targeted by SNPs in both

populations. In the 7 commonly identified pathways, while 15 of

the SNP targeted genes (STGs, shown in Table S4) are common to

both populations. 62 and 51 of the STGs are unique to EU and JP

populations, respectively. In these 7 commonly found pathways,

there were 724 and 195 SNPs unique to EU and JP populations,

respectively, as well as 6 SNPs which were common. There were

very few commonly affected SNPs/genes and many distinct sets of

SNPs/genes targeting the same pathways for each population.

This finding strongly supports our hypothesis. Hence, if one

follows a gene or SNP oriented approach, crucial information for

disease development mechanism might be missed. Instead, we

emphasize here the importance of a pathway-oriented approach to

investigate the etiology of IA. As shown in Table 1, these 7

pathways in the top 10 are MAPK signaling, Cell cycle, TGF-beta

signaling, Focal adhesion, Adherens junction, Regulation of actin

cytoskeleton, and Neurotrophin signaling pathways. For each

commonly found pathway, we checked the numbers of STGs,

typed SNPs, separately for EU and JP populations, and the

commonality of these entities between the two populations. For

example, in the MAPK signaling pathway, there were 14 and 18

STGs in EU and JP populations, respectively. Among these genes,

2 (MAP3K7, NFATC2, as shown in Table S4) were common,

indicating that the same pathways can be targeted via independent

genes in diverse populations. There were 133 and 43 typed SNPs

in EU and JP populations, respectively, and among these SNPs,

only 1 (rs791062) was common. In addition to these typed SNPs

that were commonly identified in both populations, the commonly

identified SNP targeted genes harbor other disease predisposing

SNPs in different populations. For example, the MAP3K7 gene is

associated with 28 other typed SNPs found in the EU population

but not in the JP population. These observations were true for all

the 7 commonly found pathways and the genes within them.

These results show the relevance of our pathway-oriented

approach and indicate that if there is a problem in these seven

pathways, the disease is more likely to occur.

We also wanted to check the validity of our findings (the

comparison of our significant pathway list with known IA related

pathways). Since there is no such gold standard dataset, we

compared with IA related pathways in KEGG Disease Pathways

Database using ‘‘aneurysm’’ as a keyword. This search returned 3

disease terms and 12 pathways as associated with these disease

terms. These disease terms were: i) H00801, ‘‘Familial thoracic

aortic aneurysm and dissection (TAAD) and Aortic aneurysm

familial thoracic type (AAT)’’; ii) H00800, ‘‘Loeys-Dietz syndrome

(LDS), which is characterized by arterial aneurysms’’; and iii)
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H00579, ‘‘Hereditary angiopathy with nephropathy, aneurysms,

and muscle cramps (HANAC)’’. 7 of these 12 IA related pathways

were also found in our analysis in the top 20 pathway list. These 7

identified pathways were MAPK signaling, TGF-beta signaling,

Calcium signaling, Focal adhesion, Adherens junction, Tight

junction, Regulation of actin cytoskeleton.

Next, we searched for the affected pathways using the gene

expression data obtained from ruptured and unruptured IA

patients of Japanese ethnicity as cases as well as from arteriovenous

malformation feeders with Japanese ethnicity as intracranial

controls [47]. Even though gene expression and GWAS data do

not derive from the same samples, the enriched pathways might

show commonalities. Therefore, we mapped the differentially

expressed genes to PPI and proceeded with the following steps of

PANOGA to detect affected pathways. The top 20 over-

represented KEGG pathways identified for gene expression data

are shown in Table S5. No significant correlation found between

the rankings of the affected pathways, obtained from GWAS and

expression data (Spearman’s r2 = 0.225). The transcriptomics data

only includes genes with significant changes in expression levels.

Whereas, the effect of a SNP, which is found to be significant in

GWAS, could be observed at different levels, e.g., splice variants,

mutant protein products, post-translational modifications, a

possible change in protein folding, a possible change in the

interaction partner of a protein. Compared to the top ten

pathways identified GWAS in EU and JP populations, the

Ribosome pathway is also found by GWAS data on the Japanese

population (with 5th ranking); ErbB signaling pathway and

Proteasome pathways are also found by GWAS data on European

population (with 4th and 6th rankings, respectively); Adherens

Junction (AJ), Focal Adhesion (FA) and Neurotrophin Signaling

(NS) pathways are also found by GWAS data on both Japanese

and European populations (with 1st and 7th (AJ), 5th and 2nd

(FA), 7th and 10th rankings (NS), respectively). In these 6

pathways (Adherens junction, Focal adhesion, ErbB signaling,

Neurotrophin signaling, Ribosome, Proteasome pathways), 25 out

of 379 genes were commonly identified with GWAS results.

Among these genes, PTPRB gene, as part of the Adherens

Junction pathway, is known to have a crucial role in blood vessel

remodeling and angiogenesis. Even though this gene is not found

to be differentially expressed in the Japanese population,

rs1561798 variant, which is found in this gene, is found to be

significant in the GWAS of both European and Japanese

populations. Interestingly, another gene expression study on IA

by Pera et al. found this gene to be differentially expressed in the

Polish population [48]. Although the PTPRB gene is not found to

be differentially expressed in the JP population, PANOGA was

able to identify this gene as important for the IA development

mechanism using GWAS data in the EU and JP populations.

Discussion

The pathway and network oriented analysis of GWAS data in

two different populations together with gene expression data gave

us the tools to investigate the pathogenesis of IA. The genes that

are found to be targeted by disease predisposing SNPs are shown

to be involved in several biological pathways including MAPK

signaling, Cell cycle, TGF-beta signaling, Focal adhesion,

Adherens junction, Regulation of actin cytoskeleton, and Neuro-

trophin signaling pathways. Since these pathways are known to

have a role in the regulation of cell growth, tissue remodeling,

inflammation, and wound healing, they are likely to contribute to

the pathophysiology of IA. In addition to these top ten pathways,

here, we also would like to discuss in detail the identified signaling

pathways from the top 20 list that are functionally relevant to the

pathogenesis of IA.

The mitogen-activated protein kinases (MAPKs) are serine-

threonine kinases that are involved in intracellular signaling

related with several cellular activities such as cell proliferation,

differentiation, survival, death and transformation [49,50].

Laaksamo et al. studied the expression and phosphorylation of

the 3 major MAPKs in unruptured and ruptured human IAs: c-

Jun N-terminal kinase (JNK), p38, and extracellular signal-

regulated kinase [51]. Their study shows that JNK and p38

expression have a role in IA growth; and JNK activity and

expression have possible roles in rupture [51]. As shown in Table 1,

this pathway is identified at 1st and 8th rankings with

P = 3.53E227, P = 2.70E218 in EU and JP populations, respec-

tively. As shown in Figure 1 in red, and in Table S4, in this

pathway, MAP3K7 (TAK1) and NFATC2 genes are identified in

our method both by EU and JP GWAS. There are 28 typed SNPs

on the MAP3K7 gene according to EU GWAS and 2 typed SNPs

according to JP GWAS; and among those SNPs, only 1 SNP is

identified in both studies. As shown in the KEGG pathway map in

Figure 1, the TAK1 gene is shown to have a downstream effect on

Wnt signaling and the pathways of proliferation, inflamation, and

anti-apoptosis. Additionally, as part of this pathway, HSPA1L,

PRKCA, BRAF, RPS6KA2, MAP3K2, MAP4K2, PPP3CA,

MAPK10, FGF12, FLNB, CHUK, MAP3K12 genes are uniquely

found in EU population (shown in blue in Figure 1) and DUSP10,

RAF1, NR4A1, NFKB1, CACNG2, CDC25B, FOS, PLA2G4A,

RPS6KA3, MAP3K5, RASGRP3, RASGRF1, MAPK14, RAC1,

NFATC4, CACNA1C genes are uniquely found in JP population

(shown in yellow in Figure 1).

Several putative risk genes were suspected to play a role in cell-

cycle progression, potentially affecting the proliferation and

senescence of progenitor-cell populations that are responsible for

vascular formation and repair [39]. As shown in Table 1, Cell-

cycle pathway is identified at 2nd and 4th rankings with

P = 2.35E225, P = 2.81E219 in EU and JP populations, respec-

tively.

The transforming growth factor-beta (TGF-beta) signaling

pathway is known to play a role in aortic aneurysms and also

has a possible role in aneurysms in general [52]. Additionally,

TGF-beta signaling is shown to drive aneurysm progression in

multiple disorders, including Marfan syndrome [53]. It is reported

that the therapies that inhibit this signaling cascade are already in

clinical trials in mice [53]. As shown in Table 1, this pathway is

identified at 3rd and 9th rankings with P = 6.26E224,

P = 2.41E217 in EU and JP populations, respectively. In our

analysis, we detected 15 and 9 SNP targeted genes in EU and JP

populations, respectively. As shown in Table S4, 5 of these genes

(SMAD6, SMAD3, SMAD2, SMURF1, TGFB2) are identified in

both populations; and 2 of these 5 genes, SMAD3 and SMAD6,

have common typed SNPs. SMAD2 in this pathway harbors 28

typed SNPs in the EU population which is not observed in the JP

population. In Figure 2, the KEGG pathway map of TGF-beta

signaling shows that the SMAD6 gene (shown in red) is targeted by

typed SNPs in JP population and it inhibits the formation of

SMAD2/3 complex (shown in pink). The colors of the genes in

Figure 2 indicate the number of targeted SNPs in JP population

per base pair of the gene, from red to white. SMURF1 (shown in

pink) inhibits TGFBR2 (shown in pink with blue border), which

also binds to TGFB (shown in pink). The TGFBR2 gene is found

to be differentially expressed. As a downstream effect, the

SMAD2/3 complex (shown in pink) is affected as well as the

transcription factors, co-activators, and co-repressors. As shown in

Figure 2, this cascade of events leads to angiogenesis and
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neogenesis. Our method detected ten additional genes (ACVR2B,

SMAD9, SMAD7, GDF5, SMAD4, SMAD1, BMP7, BMPR1B,

BMPR1A, BMP6) that are affected in the EU population, but not

in the JP population. These genes are not colored in Figure 2.

Calcium is a key signaling ion that controls many different

cellular processes, such as gene transcription, synaptic activity,

muscle contraction, cell-cell communication, adhesion, and cell

proliferation [54,55]. The calcium signaling pathway has a

significant role in regulating a great variety of neuronal processes

[56]. As shown in Table 1, we identify this pathway in 20th

and12th rankings with P = 3.27E215, P = 1.37E215 in EU and

JP populations, respectively. In this pathway, we suspect a

mechanism related to autocoids and GPCRs for IA disease

development. As shown in Table S4 and in red in Figure 3,

GPCR, Gq, PLCB1 genes are detected in our methodology both

by EU and JP GWAS. These genes are found on our suspected

autocoid path in calcium signaling pathway. There are 44 marker

SNPs on PLCB1 gene according to EU GWAS and 1 marker SNP

according to JP GWAS; furthermore, none of those SNPs are

identified in both studies. As part of our suspected autocoid path,

Kuo et al. has shown the association of a polymorphism of ITPKC

(inositol-trisphosphate 3-kinase C, IP3-3KC) with the susceptibility and

aneurysm formation in KD patients in a Taiwanese population

[57]. ITPR1 (inositol 1.4.5-trisphosphate receptor, type 1, IP3R) is

identified in our analysis as part of a Calcium signaling pathway

and it is also found as differentially expressed between aneurysm

patients and controls in JP population. The calcium signaling

pathway’s high rank in our analysis and our suspected autocoid

path within this pathway also corroborate recent reports that

Clazosentan is in a phase III trial to reduce vasospasm caused by

Endothelin A autocoid [58,59].

In this article, we have described the advantages of a network

and pathway-oriented analysis of GWAS data on different

populations. Starting with two independent GWAS, which are

conducted on two different populations, we have shown that most

of the affected pathways are shared between populations. But, in

different populations, different SNP targeted genes are found to be

affected in these commonly found pathways. In other words, same

pathways can be targeted via independent genes in different

populations. Even though there are not so many common disease

predisposing SNPs and commonly targeted genes between two

populations, the identification of 7 common pathways in the top

10 pathways showed the relevance of our pathway-oriented

approach.

Figure 1. KEGG pathway for MAPK signaling. The set of genes shown in blue includes genes that are found by EU GWAS; yellow includes genes
that are found by JP GWAS; red includes genes that are found both by EU and JP GWAS.
doi:10.1371/journal.pone.0057022.g001
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As explained in the Introduction section of the manuscript, one

advantage of studying different populations in GWAS is that the

risk variants can vary in their occurrence across populations

[23,24]. For example, while the high-risk variant at MYBPC3

gene is observed with a frequency of ,4% in cardiomyopathy

patients in Indian populations; this variant is rare or absent in

other populations [25]. Another reason is the difference in allele

frequencies and biological adaptations among populations, which

in turn affects the detectability and importance of risk variants.

The identification of a variant might be easier in some populations

when compared to that of other populations since the particular

histories of recombinations, mutations, and divergences of

genealogical lineages in the various populations affect the

mappability of a variant. This situation is observed in the variants

of TCF7L2 and KCNQ1 genes in type 2 diabetes [26,27].

Additionally, environmental factors, diet, or population specific

genetic differences might also have a role on the disease causing

affected pathways specific to a population.

It should be kept in mind that pathway-based analyses, like the

one presented here, are limited to our knowledge of cellular

processes. The biological functions of most of the genes in the

genome are unknown. Since network and pathway tools make use

of functional information from gene and protein databases, they

are biased toward the well-studied genes, interactions, and

pathways. Also, this study only evaluates the variants associated

with genes represented in the protein-protein interaction network.

Nevertheless, there is a scope for the development of related

methodologies to increase the power to detect associations in these

genes. As shown in this paper, attempts maybe initiated to

overcome such limitations via combining information from several

sources (functional properties of SNPs, PPI network) and the

genetic association of a SNP with the disease.

In the past, drug development was limited to a few hundred

targets, which were deeply understood. As a result of advances in

molecular technologies, thousands of new potential drug targets

have been discovered, but their mechanisms of action and

potential ‘‘druggability’’ are as of yet not well understood. GWAS

are one such example of these advances in molecular technologies

that uncovers well-validated genetic risk factors for common

diseases [60,61]. Several known drug targets are identified in

GWAS; and it is estimated that previously unknown targets are

buried in the treasure of GWAS data [12]. In addition to the

hidden drug targets, GWAS analyses are thought to provide

several potential opportunities for clinical intervention [12]. With

rapid technological developments and continuous data production

in the field of GWAS, more and more datasets are expected to be

available in the near future. To pay off the huge investments in

GWAS, new strategies are expected to be developed [11]. The

Figure 2. KEGG pathway map for TGF-beta signaling pathway. The shade of red color in genes indicates the number of targeted SNPs in JP
population per base pair of the gene. Red refers to the highest targeted gene, whereas white refers to a gene product, not targeted by the SNPs. Blue
border indicates that the gene is found to be differentially expressed.
doi:10.1371/journal.pone.0057022.g002
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analysis of epistatic relationships of the identified variants in

GWAS or the assessment of combined risk for groups of

functionally associated genes (defined by PPI networks or

pathways) is advocated to significantly increase the amount of

common complex disease risk information that can be extracted

from GWAS data sets [11,62]. In this respect, we propose a novel

method for the identification of pathway markers using GWAS

data in different populations. By applying our method on the IA

dataset, we have shown that while the shared pathways between

the EU and the JP populations explain the general mechanisms of

IA disease development, the pathways that are identified by

population specific GWAS also need to be examined to gain a

more comprehensive understanding of IA pathogenesis. Each

population may search for disease causing factors targeting the

genes within these affected pathways. Population specific function

altering modifications within these pathways can be used as

markers for early diagnostics as part of preventive health care.

Rather than the population, the same method can be extended to

individuals to identify modifications occurring on the genes within

the marker pathways. Hence, we can determine individual causes

of disease development that may be exploited for drug develop-

ment and personalized therapeutic applications. More important-

ly, our method also gives the functional effect of the SNP’s on the

targeted genes in marker pathways; furthermore, this information

can be exploited for individual therapy applications rectifying the

impact of these function-altering factors.

Materials and Methods

Genetic Association Data of Intracranial Aneurysm
Two intracranial aneurysm (IA) genome wide association study

(GWAS) datasets have been used in this study. The first GWAS is

a multicenter collaboration in Finnish, Dutch and Japanese

cohorts totaling 5891 cases and 14,181 controls [39]. This study

tested ,832,000 genotyped and imputed SNPs using the Illumina

platform. In personal communication with the authors, upon our

request, JP population specific data was removed and EU

population specific results were obtained, including 2780 cases

and 12,515 controls. The second GWAS tested 312,712 SNPs on

1069 Japanese IA patients and 904 Japanese controls using the

HumanHap300 or HumanHap300-Duo Genotyping BeadChips

(Illumina) [40]. For both datasets, SNP data and the genotypic p-

values of association for each tested SNP (calculated via Cochran-

Armitage trend test) were obtained from our collaborators.

Protein-protein Interaction (PPI) Data
A human protein-protein interaction (PPI) data-set was

obtained from the supplementary material of [63]. This dataset

is composed of two high quality systematic yeast two-hybrid

experiments [64,65] and PPIs obtained from literature by manual

curation [64]. The integrated set of PPIs contains 61,070

interactions between 10,174 genes.

Figure 3. KEGG pathway for calcium signaling. The set of genes shown in blue includes genes that are found by EU GWAS; yellow includes
genes that are found by JP GWAS; red includes genes that are found both by EU and JP GWAS.
doi:10.1371/journal.pone.0057022.g003
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Gene Expression Dataset
A list of differentially expressed genes along with their p-values

was obtained from the study of Krischek et al. [47]. In this study,

four unruptured and six ruptured IA specimens, collected during

42 months, were used as cases. Four arteriovenous malformation

(AVM) feeders, which were obtained during microsurgical

resection, were used as intracranial control tissue. The average

age of the IA patients was 56.4 years, and that of the controls was

60.25 years. All patients and controls were of Japanese ethnicity.

All tissue samples were profiled using oligonucleotide microarrays

(Agilent Technologies). In the original study, in order to find out

the differentially expressed genes between the aneurysmal cases

and the controls, the analytical tools in the GeneSpringGX v11

was utilized. The statistical significance of the difference between

the gene expression levels was calculated via the Student’s t-test

[47]. In our study, we used those genes showing significant

difference at the false discovery rate of 0.05 according to the

Benjamini and Hochberg procedure [66].

Network and Pathway-Oriented GWAS Analysis
Starting with a list of SNPs associated with disease in GWAS,

PANOGA identifies SNP targeted KEGG pathways. In our study,

GWAS results are used in the form of SNP rs ids vs. p-values,

where the p-values refer to the genotypic p-values of association

for each tested SNP. We only focused on SNPs with nominal

evidence of association (P,0.05) in a GWAS, following the study

in [14]. PANOGA proceeds in nine steps, as outlined in Figure 4.

In most post-GWAS analyses, computing gene-wise P values is one

of the key steps. In this respect, our methodology firstly calculates

SNP-wise statistics, secondly it assigns SNPs to genes, and finally it

calculates gene-wise statistics, as shown in the steps (i) to (v) of

PANOGA protocol in Figure 4.

Calculation of SNP-wise statistics (Steps (i) and

(ii)). Inspired by the Saccone et al’s study [67], the SNP-wise

statistics used in our methodology combines the functional scores

of SNPs with genotypic p-values. As it is well known, SNPs might

have different functional impacts such as: an effect on transcrip-

tional regulation by changing TFBS’s activity; premature termi-

nation of amino-acid sequence (generate a stop codon); alteration

in the splicing pattern or efficiency by disturbing splice site, exonic

splicing enhancers (ESE) or silencers (ESS); a change in protein

structures or properties by altering single amino acids or changing

the frame of the protein-coding region; regulation of protein

translation by affecting microRNA (miRNA) binding sites activity.

Among the existing SNP functional effect prediction tools, step (i)

of PANOGA utilizes SPOT [67] and F-SNP [68] web-servers.

SPOT score [67] takes into account SNP/gene transcript

functional properties (including nonsense, frameshift, missense

and 59 and 39-UTR designations), impact of an amino acid

substitution on the properties of the protein product from

PolyPhen server [69,70], evolutionary conserved regions from

ECRbase [71], and all possible LD proxies - SNPs with r2 over a

predefined threshold in a specific HapMap sample [72]. On the

other hand, F-SNP score incorporates: functional effects of SNPs,

predicted at the splicing, transcriptional, translational, and post-

translational levels [68]. F-SNP Score is defined in the range of

[0,1], where 0 means the functional consequence of a SNP on the

gene product is negligible and 1 means the functional consequence

of the SNP on the gene product is serious [73]. SPOT scores are

not limited to a range of [0,1]; hence, we normalized SPOT scores

to this range. To be able to calculate SNP-wise statistics, we

followed Saccone et al’s formulation [67] in step (ii) as following.

In this step, PANOGA combines the functional scores (FS)

obtained from SPOT and F-SNP web-servers with GWAS p-

values (P/10̂FS) [67] and calculates a weighted p-value, Pw, for

each score, for each SNP [21].

Assigning SNPs to genes (Step (iii)). In step (iii), SNPs are

assigned to genes using SPOT’s SNP to gene assignment module

[67]. SPOT considers all known SNP/gene transcript associations

and their functional impacts; and then it assigns the SNP to the

gene with the highest priority [67]. To generate those SNP/gene

transcript associations, SPOT program utilizes information from

the PolyPhen method of predicting the effect of an amino acid

substitution on the properties of the protein product [69,70].

Those effects can be directly detected from DNA and RNA

sequences, like nonsense and missense amino acid substitutions,

untranslated regions, coding regions, and frameshifts. SPOT [67]

also takes into account evolutionary conserved regions from

ECRbase [71], and all possible LD proxies - SNPs with r2 over a

predefined threshold in a specific HapMap sample [72]. Hence, by

prioritizing all known SNP/gene transcript consequences, propi-

tious association signals found in GWAS are not lost at the SNP to

gene transition step.

Calculation of gene-wise statistics (Steps (iv) and

(v)). Once the SNPs are assigned to genes, one needs to

calculate gene-wise statistics using the attributes of those SNPs. In

step (iv), SPOT [67] and F-SNP [68] Pw-values are assigned to

each gene as two separate attributes. If more than one SNP is

assigned to the same gene, the most widely applied method in the

field is to select the SNP with the smallest P value among all SNPs

mapped to a gene [74]. Following this tradition, in such cases,

SPOT and F-SNP Pw values of all these SNPs are taken into

account and lowest SPOT and F-SNP Pw values are assigned to

the gene. In step (v), a possible overlap of the input SNPs with

known Transcription Factor Binding Sites (TFBS) at TRANSFAC

[75] is also checked. If this TF is not already found in step (iii), this

TF is added to our list by transferring its SPOT and F-SNP Pw-

values from its associated SNP.

Sub-network Identification (Steps (vi) and (vii)). In step

(vi), genes with two separate weighted P-values (Pw values) are

mapped to a human protein protein interaction network. By using

the Pw values of the genes and network topology, step (vii) aims to

find out active sub-networks in the human PPI network using

jActive Modules algorithm [76]. Although this algorithm was

originally developed for microarray gene expression data, steps (i)-

(v) of PANOGA successfully adapts GWAS data to be used with

this algorithm. In terms of GWAS data, the jActive Modules

algorithm integrates the network topology with the calculated Pw-

values of each gene to extract potentially meaningful active sub-

networks. Here, an active sub-network refers to a connected

subgraph of the interactome that has high total significance of

genotypic p-values of the disease-predisposing SNPs with respect

to the controls. It should be noted that in this algorithm, an

identified sub-network with a high score is not necessarily the sub-

network that includes the genes with very significant genotypic p-

values. Instead, the identified sub-network can be composed of

many genes with moderately significant genotypic p-values.

Hence, this algorithm helps to discover groups of genes that

display seemingly negligible association with aneurysm when

evaluated individually but when considered as a group, display

strong association.

Based on the aggregate degree of genetic association with IA (S

score), we identified 482 significant sub-networks for EU

population specific dataset and 376 significant sub-networks for

JP population specific dataset. In this analysis, only the sub-

networks with S.3 were reported as significant, as stated in the

original publication [76]. Previously, we focused only on the

highest scoring sub-network. However, we noticed that the scores
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of the identified sub-networks were very close to one other. We

also realized that the highest scoring sub-network does not cover

the initial PPI network; thus, we loose information. In the

improved PANOGA, our response to this challenge is to combine

pathway enrichment results of the identified sub-networks. At this

stage, due to the nature of the search algorithm, several of these

Figure 4. Outline of our assessment process. In steps (i) to (v), a gene-wise Pw-value for association with disease was computed by integrating
functional information. In step (vi), Pw-values were loaded as two separate attributes of the genes in a PPI network. In step (vii), active sub-networks
of interacting gene products that were also associated with the disease, are identified. In step (viii), genes in an identified active sub-network were
tested whether they are part of functionally important KEGG pathways. Lastly, step (ix) integrates the functional enrichments of the generated sub-
networks.
doi:10.1371/journal.pone.0057022.g004
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sub-networks overlap extensively in their component genes.

Overlap threshold parameter defines the max level of identity

between the constituent genes of any two identified sub-networks,

in terms of percent. e.g. Overlap threshold parameter 0.8 indicates

max 80% of the genes from one sub-network can be identical to

the genes of another sub-network. When this parameter is set as

too high, identical genes appear in any two different sub-networks.

When this parameter is set as too low, moves to the different parts

of the network is not abled. In PANOGA, with the generated sub-

networks, we wanted to cover the whole human protein protein

interaction network as much as possible. But at the same time, we

did not want to include the same genes over and over in our sub-

networks. To this end, starting with 0, we experimented

PANOGA with 0.1 increments of the overlap threshold values.

In this experiment, we compared the coverage of the PPI network.

The coverage of the PPI network was 20%, 22%, 37%, 46%, 39%,

and 32% for overlap threshold values 0, 0.2, 0.4, 0.5, 0.6, 0.8,

respectively. As a result of this experiment, we decided to set the

overlap threshold parameter as 0.5, which resulted in the

maximum coverage. So, in PANOGA, rather than focusing on

the highest scoring sub-network, we found all significant sub-

networks that overlap less than 50% with each other.
Pathway Identification (Steps (viii) and (ix)). Following

the identification of sub-networks, we evaluated whether these sub-

networks were biologically meaningful in step (viii) of PANOGA.

For each sub-network, we computed the proportion of the genes in

an identified sub-network that are also found in a specific human

biochemical pathway, compared to the overall proportion of genes

described for that pathway. KEGG pathways that might have a

role in IA disease mechanism are identified separately for the EU

population and JP population by including the pathway in our

final list, if it is found as significant for at least one of the identified

sub-networks. We used two-sided (Enrichment/Depletion) test

based on the hypergeometric distribution to examine the

association between the genes targeted by IA predisposing SNPs

and the genes in each KEGG pathway. To correct the P-values for

multiple testing, the Bonferroni correction procedure is applied. In

this pathway identification step, we used the command-line

version of ClueGO_v1.4 on hundreds of the identified sub-

networks [77]. While an identified sub-network represents only

one part of the whole interaction network, the identified pathways

for this sub-network represent one aspect of the disease. Since the

human complex diseases are multifactorial, by discovering the

pathways from different sub-networks, we aimed to enlighten

different aspects of the disease. To this end, step (ix) integrates the

functional enrichments of the generated sub-networks. If a KEGG

pathway is found to be statistically significant for at least one of the

active sub-networks with S score .3, PANOGA adds this pathway

as associated with disease into our final list of significant KEGG

pathways. For each identified KEGG pathway in our final list,

PANOGA also counts the number of associated SNPs from

GWAS, the number of regulatory SNPs among those disease

predisposing SNPs (SNPs located on TFBSs or miRNAs), the

number of SNP-targeted genes, the number of sub-networks that

this pathway is found to be statistically significant [45]. PANOGA

is applied separately to the GWAS of IA on EU and JP

populations.

Network and Pathway-Oriented Microarray Data Analysis
First of all, 1418 differentially expressed genes are mapped into

PPI network and their p-values are used as gene attributes.

Secondly, sub-network identification is conducted using jActive

Module [76]. Lastly, in the functional enrichment step, genes are

assigned into functionally relevant KEGG pathways by combining

a network-oriented approach with pathway-oriented approach, as

developed in [21].
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