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Abstract

Relation extraction typically involves the extraction of relations between two or more entities 

occurring within a single or multiple sentences. In this study, we investigated the significance of 

extracting information from multiple sentences specifically in the context of drug-disease relation 

discovery. We used multiple resources such as Semantic Medline, a literature based resource, and 

Medline search (for filtering spurious results) and inferred 8,772 potential drug-disease pairs. Our 

analysis revealed that 6,450 (73.5%) of the 8,772 potential drug-disease relations did not occur in 

a single sentence. Moreover, only 537 of the drug-disease pairs matched the curated gold standard 

in Comparative Toxicogenomics Database (CTD), a trusted resource for drug-disease relations. 

Among the 537, nearly 75% (407) of the drug-disease pairs occur in multiple sentences. Our 

analysis revealed that the drug-disease pairs inferred from Semantic Medline or retrieved from 

CTD could be extracted from multiple sentences in the literature. This highlights the significance 

of the need of discourse-level analysis in extracting the relations from biomedical literature.
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Introduction

Information extraction (IE) aims to automatically extract information from text. To 

understand and extract information from text, IE systems should look at the text as whole 

and not only sentences separately. Researchers in the discourse domain agree that usually 

sentences/clauses are not understood in isolation [1]. Researchers in IE have studied 

discourse-level analysis [2] in applications such as question answering and dialogue 

generation. Of course, discourse-level analysis is built on top of sentence-level analysis and 

its performance somehow depends on sentence level. One of the well-studied parts of 

discourse-level analysis is identifying relation between sentences (clauses), called discourse 

relation. These types of relations could be contrast or explanation-evidence [1].
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Two main tasks in IE are named entity recognition (NER) and relation extraction. In relation 

extraction, IE systems identify the relation between two or more entities where the entities 

could be located in one or multiple sentences. Identifying the latter type of relations needs 

discourse-level analysis such as coreference resolution which can be challenging.

The goal of this paper is to asess the need of discourse-level analysis for relation extraction 

and indirectly evaluate the amount of information that IE systems are missing if they just 

focus on sentence level. First, to perform this experiment, Semantic Medline [3] is used to 

generate a list of potential literature-based discoveries. The potential discoveries are limited 

to drug-disease relations as potential drug repositioning candidates. Then, we implement two 

kinds of searches on top of Medline abstracts to find any evidence of these discoveries, 1) 

Sentence-level search: we looked for pairs in the sentence 2) Discourse-level search: the 

whole abstract was searched. Comparing the results of these searches indirectly evaluates the 

amount of relations that IE systems can extract from sentence-level v.s. discourse-level 

analysis.

Background

Relation Extraction

The IE pipeline usually begins with NER which has been very well studied and various 

types of methods such as dictionary-based, rule-based, and machine learning algorithms 

have been applied to NER [4], [5]. After NER, the main task in IE is identifying relations 

among the entities. Relations could be binary or they could involve more than two entities. 

Most of relation extraction systems focuson relations in a single sentence [6]. It is imperative 

for a relation extraction system to extend beyond clauses and sentences and handle complex 

discourse-level analysis.

The importance of discourse-level analysis is well known and the analysis has been studied 

in several applications such as: question-answering systems [7]–[9], automatic dialogue 

generation [10], etc. Besides, there are several studies on extracting discourse-level relations. 

Marcu and Echihabi [1] developed an unsupervised approach to classify four types of 

relations between sentences/clauses. The goal here was extracting the relation between two 

or more entities that are mentioned in multiple sentences. Bach and Badaskar [6] reviewed 

some of these types of relation extraction systems and their applications. The methods for 

extracting such relations, often range from a simple distance based criteria to a more 

complex one that employs statistic and linear algebraic approaches [11] to extract explicit 

and implicit semantic relations from text.

In the biomedical domain, researchers developed various IE systems to extract different 

types of biomedical relations [12]–[16]. Quan et al [13] proposed two systems, unsupervised 

and semi-supervised to extract protein-protein interactions and gene-suicide associations. 

Their systems employed dependency parsing. Bundschus et al [14] developed biomedical 

relation extraction using conditional random fields. Their system identified relations 

between diseases and treatments; also relations between genes and diseases. All these 

systems just focused on relations within a single sentence and often ignored relations 

involving entities across sentences. In general, extracting relations that involve entities 
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mentioned in two separate sentences is a complex one and requires special NLP techniques 

such as coreference resolution and complex semantic analysis.

Literature-based discovery

Literature-based discovery (LBD) aims to find a connection/correlation between concepts 

using scientific literature. Therefore, LBD is one kind of special relation detection we are 

interested in. Many LBD systems have been developed in the biomedical domain to generate 

new hypotheses that potentially could lead to new discoveries. Swanson [17] first introduced 

this approach and applied it to find a correlation between migraine and magnesium. After 

that, a number of studies followed his approach and had interesting discoveries. The 

important part of LBD is how to decide that two concepts are correlated. The most 

commonly used approaches are co-occurrence analysis [18], Association Rules [19], TF-

IDF, Z-Score, and Mutual Information Measure [20]. Yetisgen-Yildiz and Pratt [20] briefly 

discussed these approaches and meanwhile Andronis et al. [21] reviewed literature mining 

systems which identify potential drug repurposing candidates. Another approach to identify 

correlated concepts is using semantic relations [22]. Hristovski et al. proposed [22] using 

semantic predications to enhance LBDs. In this study, semantic predications are used to 

create a list of potential LBDs (drug-disease pairs). The generated LBDs in this study are 

potential drug repurposing candidates.

Semantic Medline, semantically enhanced with predicates extracted by SemRep [23] from 

Medline titles and abstracts, contains approximately 70 million semantic predications. 

Predications are triplets of Subject, Predicate, and Object where the subject and object are 

biomedical entities (drug, gene or disease in our study), and predicate shows the type of 

relation between the entities such as inhibits, interaction with, associated with, etc. The 

predications are stored in a relational database called Semantic Medline Database 

(SemMedDB). It has been used in many studies to facilitate knowledge discovery [24], [25].

In this study, we plan to assess the need of going beyond sentences for extracting relations. 

Our goal in this study is to highlight the need and asess the amount of relations, relation 

extraction systems that are potentially missing if they just focus on sentence-level analysis. 

For this purpose, following Swanson’s model, a list of potential drug-disease relations is 

generated from literature. The extracted LBDs are assumed as relations between drugs and 

diseases that could be mentioned implicitly or explicitly in literature. Two kinds of searches 

are conducted to identify any evidence of these relations in the sentence level or discourse 

level of Medline abstracts.

Methods

Our study contains two steps: 1) generating a list of drug-disease pairs based on LBDs and 

2) using the discoveries to evaluate the drug-disease relation extraction by comparing the 

extractions from a single sentence to the one from multiple sentences.

Generating LBDs

In the first step, we generated a list of potential relations between drugs and diseases. We 

followed Swanson’s model [17] to generate a list of LBDs. According to Swanson’s model 
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if one scientific study notes a correlation between concept A (Starting concept) and concept 

B (Linking concept), and another study mentions a correlation between concept B and 

concept C (Target concept), then there might be a correlation between concept A and C. In 

our study, drug is the starting concept and disease the target concept, gene serves as a 

conceptual link between the two leading to the generation of a list of potential drug-disease 

relations.

In contrast to commonly used approaches such as document-level or sentence-level co-

occurrence of entities or concepts to generate LBDs, we used semantic predications as 

evidence for correlation between entities [22]. For example, from the following two 

predications from SemMedDB:

• Flecainide (Drug) INTERACTS WITH SCN5A (Gene)

• SCN5A (Gene) ASSOCIATED WITH Heart Failure (Disease)

The system generates Flecainide-Heart Failure as a potential new drug-disease pair. Figure 1 

shows the architecture of our LBD process.

There are two major reasons for our choice of using semantic predication to generate LBDs 

1) semantic predication takes biological meaning into consideration 2) the semantic type of 

the interaction and the contextual information about the interaction such as NEGATION 
allow us to filter unnecessary predications: NEGATIVE TREATS, NEGATIVE 
ASSOCIATED WITH, etc. At this point, we do not consider any threshold based on a 

frequency measure to further eliminate drug-disease pairs. We believe that using a frequency 

measure will eliminate potentially novel relations from our initial list.

In order to further refine the drug-disease pairs to be relevant for LBD, we used Timeline 

profiles to narrow down the drug-disease pairs with literature evidence. We only considered 

drug-disease pairs where the first literature evidence appeared after their related drug-gene 

and gene-disease pairs. Equation (1) clarified our Timeline profile:

(1)

where Ysp(Drug-Gene) indicates the publications’ date of all Medline abstracts that contain 

at least one semantic predication between Drug-Gene. For Drug-Disease, we considered 

publications that contain at least one co-occurrence of the entities. For example, assume two 

studies in 2003 and 2005 reported an association between Drug A and Gene B; and three 

studies in 2006, 2008, and 2009 mentioned an association between Gene B and Disease C. 

The left hand side of the equation would be Max (Min (2003, 2005), Min(2006, 2008, 

2009)) = 2006. So if Drug A and Disease C appeared together in any publication before 

2006, we do not consider Drug A-Disease C as a potential discovery.
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Evaluating sentence and discourse-level relation extraction

After generating LBDs, we used the drug-disease pairs identified earlier to evaluate their co-

occurrence in literature, thereby estimating the need for discourse-level analysis in relation 

extraction. So, we have a list of drug-disease relations that potentially could be mentioned in 

the scientific literature. In the second step, we searched Medline abstracts to find any co-

occurrence (evidence) of drug and disease pairs. We categorized the drug-disease pairs with 

at least one evidence in Medline, into two groups, i) sentence-level relation and ii) discourse-

level relation. For a given pair, if the drug and the disease appeared in a single sentence in at 

least one of the abstracts, we classified it as a sentence-level relation, otherwise we 

considered it as a discourse-level relation.

In order to assess the true validity of the drug-disease pairs we used the Comparative 

Toxicogenomics Database (CTD) [26], manually curated biological relations as our 

reference standard. CTD contains annotations of biological relations from various categories 

such as chemical-disease, gene-disease, drug-gene associations along with the corresponding 

PubMed citation. We compared the drug-disease pairs identified by the system against the 

chemical-disease associations in CTD. We considered our pair to be valid only if there was a 

match in the PubMed citation in addition to the drug-disease pairs.

Results

Retrieval of LBD relations

In order to generate potential LBD pairs, we started with 1,710 approved drugs from 

DrugBank [27]. We extracted 4,096 drug-gene (A-B) unique pairs where the drugs were 

restricted to our chosen list of 1,710 along with the semantic predicates from SemMedDB. 

For all the genes mentioned in A-B pairs we further retrieved 2,741 gene-disease (B-C) 

relations from SemMedDB. With gene being the common link between Drug-Gene and 

Gene-Disease, we inferred 71,842 drug-disease (A-C) relations. Further analysis revealed 

that only a small fraction of (118) of the 71,842 drug-disease pairs had an overlap in terms 

of abstracts from which the drug-gene (A-B) and gene disease (B-C) pairs were identified. 

We also found 14,451 drug-disease pairs catalogued in SemMedDB since they co-occurred 

in the same sentence. We have 57,391 drug-disease pairs also indirectly inferred through the 

Swanson’s model of LBD and not present in SemMedDB. The results of our study is 

illustrated in Figure 2.

Comparison of sentence level and discourse level

We further attempted to assess the level of textual extraction required to identify the drug-

disease relations (A-C pairs). We searched Medline using “Drug AND Disease” as the 

query, to find any evidence of the identified pairs in the first step. We found only 37,719 

(52.05%) of the 71,842 drug-disease pairs with at least one literature evidence.

Timeline analysis (Eq 1) further narrowed down the number of drug-disease pairs to 8,772 

(23.25%) from 37,719. 6,450 drug-disease relation pairs (73.52%) out of 8,772 identified 

earlier transcend sentence boundaries, demanding the requirement of discourse-level 

analysis for textual extractions.
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We performed additional analysis on the remaining 2,322 drug-disease relational pairs, 

which had at least one literature evidence as sentence-level co-occurrence. For these 2,322 

pairs, we found 89,805 literature evidences, which indicated that there were more than one 

literature evidence for each pair. Further composite analysis revealed that there were far 

more literature evidences across sentences than from a single sentence as shown in Figure 3.

We further carried out an assessment to validate the 8, 322 drug-disease pairs against a 

curated resource (CTD). We found that only 537 (6.4%) of them matched the gold standard. 

The low match was due to the fact that in addition to the match in the drug and disease 

names we also considered an agreement in the cited literature. Further analysis revealed that 

only 130 (24.20%) of the 537 that matched the gold standard occurred in a single sentence 

while the rest (75.80%) appeared across different sentences. If we ignored the match in the 

literature citation then we found 17,094 drug-disease pairs in CTD, which was significantly 

higher than the earlier one.

Discourse-level analysis may impact Time lag of LBD

We performed another interesting analysis to study whether discourse-level analysis would 

have a positive impact on the time lag due to the reporting of causal pairs (drug-gene/gene-

disease) and the appearance of drug-disease pairs in the scientific literature. Figure 4 plots 

the cumulative percentage which represents a cluster of drug-disease pairs observed at a time 

zone at both sentence level and discourse level. The trend shows that performing discourse-

level analysis would significantly advance the identification of the drug candidate for a 

specific disease.

Discussion

In this paper, we attempted to assess the need for performing discourse-level analysis to 

extract biological relations that might potentially lead to serendipitous discovery. We found 

that biological relations quite often transcend clausal sentences and hence demand 

mechanisms to connect information across such boundaries. Using drug-disease relation 

discovery as an example, the description of 23,268 potential drug-disease relations across 

sentence boundaries against the 14,451 relations within sentences indicates the importance 

of a discourse-level analysis requirement to extract these relations from biomedical 

literature.

Across all experiments we observed a consistent trend that drug-disease relations that 

occurred across sentences outnumbered the ones within sentences. Our evaluation against a 

curated resource such as CTD also reinforces this fact. Results from two experiments need 

attention 1) Frequency of drug-disease relation co-occurrence at sentence level against the 

discourse level (Figure 3) was skewed towards the latter than the former. 2) The time lag 

analysis where the discourse-level analysis would have significantly reduced the time lag 

between the scientific reporting of causal pairs (drug-gene/gene-disease) and drug-disease 

relational pairs. This shows the need for advance discourse-level analysis approaches to 

extract information from literature in time and its ability to hasten the pace of discovery.
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Another significant observation is the amount of potential false-positive drug-disease 

relations identified through literature mining. We observed a substantial reduction in the 

number of drug-disease relations when we compared the literature based drug-disease pairs 

with that of curated resource CTD. The reduction among the discourse-level pairs is far 

greater (3.3 times) when compared to the ones from the sentence level (2.5 times). As a note 

of caution discourse-level analysis might potentially extract more false positives, provided 

one does not explore sophisticated linguistic/statistical approaches to handle them.

As a final note we would like to mention that the way we generate the seed pairs of drug-

disease relations in this study, coupled with our timeline based restriction analysis reinforces 

that the goal of our study is centered on LBD of novel relations. However we also 

understand the limitations of this study. Simple sentence-level or document-level co-

occurrence information does not imply any biological relation between entities. As pointed 

out earlier, simple discourse-level analysis has the danger of extracting more false positives. 

In certain tangential areas of research such as drug repurposing certain techniques [28], [29] 

were explored to reduce the false positives.

Conclusion

In this paper, we investigated the extent of the need of discourse-level analysis for drug-

disease relation extraction from biomedical literature. We used Semantic Medline to extract 

LBDs and then, based on co-occurrence analysis, we collected any evidence of the 

discoveries in Medline abstracts. We categorized the evidence into two categories, sentence 

level and discourse level. From subsequent analysis we infer that there is a potential to miss 

more than 70% of drug-disease relations when we extract information from the sentence 

level. This clearly demonstrates the need for deeper discourse-level analysis, which may 

translate to significant improvement in the state of the art of NLP techniques.

In the near future, we plan to explore much more sophisticated NLP approaches, a 

significant departure from the co-occurrence based extraction which may lead to significant 

improvement in the state of the art.
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Figure 1. 
Architecture of our LBD system. In this system, the starting concept is drug, the linking 

concept is gene, and the target is disease that leads to drug-disease discoveries. Our system 

uses Semantic predications as evidence of correlation between the concepts.
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Figure 2. 
Results of our study
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Figure 3. 
Comparison of frequencies of drug-disease relations’ co-occurrence in a single sentence 

versus multiple sentences
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Figure 4. 
Comparing the time gap between the first co-occurrence of discovery and the causal pairs 

(Sentence level versus discourse level)
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