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Paracrine factors secreted by mesenchymal stem cells (MSCs) reportedly modulate inflammation and reparative processes in
damaged tissues and have been explored for knee osteoarthritis (OA) therapy. Although various studies have reported the effects
of paracrine factors in knee OA, it is not yet clear which paracrine factors directly affect the regeneration of damaged cartilage
and which are secreted under various knee OA conditions. In this study, we cultured MSCs derived from three types of tissues
and treated each type with IL-1β and TNF-α or not to obtain conditioned medium. Each conditioned medium was used to
analyse the paracrine factors related to cartilage regeneration using liquid chromatography-tandem mass spectrometry. Bone
marrow-, adipose tissue-, and synovial membrane-MSCs (all-MSCs) exhibited expression of 93 proteins under normal
conditions and 105 proteins under inflammatory conditions. It was confirmed that the types of secreted proteins differed
depending on the environmental conditions, and the proteins were validated using ELISA. The results of Gene Ontology and
Kyoto Encyclopedia of Genes and Genomes pathway analysis using a list of proteins secreted by all-MSCs under each condition
confirmed that the secreted proteins were closely related to cartilage repair under inflammatory conditions. Protein-protein
interaction networks were confirmed to change depending on environmental differences and were found to enhance the
secretion of paracrine factors related to cartilage regeneration under inflammatory conditions. In conclusion, our results
demonstrated that compared with knee OA conditions, the differential expression proteins may contribute to the regeneration
of damaged cartilage. In addition, the detailed information on commonly secreted proteins by all-MSCs provides a
comprehensive basis for understanding the potential of paracrine factors to influence tissue repair and regeneration in knee OA.

1. Introduction

Mesenchymal stem cells (MSCs) can be easily obtained from
different cell sources such as bone marrow (BM), adipose tis-
sue (AT), and synovial membrane (SM). They have self-
renewal and trilineage differentiation potential [1–4]. MSCs
are also known to secrete various paracrine factors including
cytokines, chemokines, growth factors, and extracellular ves-
icles. Paracrine signalling is a form of cell-to-cell communi-
cation in which a cell produces a signal to induce changes
in nearby cells, altering the behaviour or differentiation of
those cells. Paracrine factors secreted by MSCs induce sur-

rounding cells to differentiate into mature cell lines and reg-
ulate tissue inflammation or recovery processes [5]. Thus,
there is increasing evidence that MSCs play a role in regener-
ating damaged tissue through the paracrine effect on sur-
rounding cells [2, 6, 7]. Owing to these characteristics,
MSCs are widely studied for the treatment for various dis-
eases. According to the official database of ClinicalTrials.gov,
630 MSC-based clinical trials have been reported, and 10% or
more of them are actively being conducted to assess the
potential of MSCs for knee osteoarthritis (OA) therapy.

Knee OA is a degenerative disease caused by various fac-
tors, including abnormal mechanical stress, ageing, obesity,
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and genetic factors, and results in inflammation in joints and
degradation of cartilage tissue [8]. The cartilage of the knee
joint where knee OA occurs is difficult to regenerate after
injury due to the nature of cartilage; therefore, therapeutic
treatments are limited to conservative care or artificial joint
surgery [9, 10]. To overcome these therapeutic limitations
and augment cartilage regeneration, various tissue-derived
MSCs are being used for the development of cell therapy
for knee OA treatment [11–14]. According to the results of
recent studies, injecting MSC-conditioned medium (CM)
into the anterior cruciate ligament transection rat model is
sufficient to mediate cartilage regeneration function [11,
15–17]; thus, interest in efficacious knee OA treatments using
MSC-derived paracrine factors has increased [14, 18–21].
However, although several studies have actively investigated
paracrine factors secreted by each type ofMSC obtained from
various tissues under general culture conditions [22–24], it is
still unclear which paracrine factors affect the regeneration of
damaged cartilage.

To elucidate the therapeutic role of paracrine factors
secreted by MSCs, it is necessary to identify the factors that
are commonly secreted by MSCs under various environmen-
tal conditions, since each type of tissue-derived MSC secretes
different paracrine factors [24–26]. However, little is known
about how environmental conditions similar to knee OA

affect paracrine factors [27, 28]. Therefore, in the present
study, we aimed to investigate the major paracrine factors
related to cartilage regeneration by identifying the differences
in the types and characteristics of commonly secreted pro-
teins by BM-, AT-, and SM-MSCs under various conditions.

2. Materials and Methods

2.1. Isolation and Culture of Human BM-, AT-, and SM-
MSCs. The study was approved by the Institutional Review
Board of Yonsei Sarang Hospital (IRB number: YSSR 2020-
09-001), and informed consent was obtained from all donors.

Human BM-MSCs (n = 3) were purchased from the
American Type Culture Collection (Manassas, VA, USA).
The frozen cells were thawed and plated at a density of
5,000 cells/cm2 in a 75 cm2 culture flask with a complete
medium containing alpha modification of Eagle’s medium
(α-MEM; Welgene, Daegu, Republic of Korea), 10% foetal
bovine serum (FBS; HyClone, Logan, UT, USA), and 1%
penicillin-streptomycin (P/S; HyClone).

Human AT (n = 3) were harvested by liposuction sur-
gery. The tissue was digested with 0.3% collagenase type 1
(Worthington-Biochemical, Lakewood, NJ, USA) at 37°C
for 90min with gentle shaking. After digestion, the digested
tissues were washed with phosphate-buffered saline (PBS;
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Figure 1: Representative characterization of bone marrow (BM), adipose tissue (AT), and synovial membrane (SM) mesenchymal stem cells
(MSCs). (a) Phase-contrast microscopy images of MSCs (scale bar = 100 μm). (b) Differentiation potential of MSCs. Adipogenic
differentiation (Oil Red O, top), osteogenic differentiation (Alizarin Red S, middle), and chondrogenic differentiation (Alcian Blue,
bottom). (c) The immunophenotyping of MSCs using flow cytometry. Positive (CD73, CD90, and CD105) and negative (CD14, CD34,
CD45, CD79a, and human leukocyte antigen-DR (HLA-DR)) markers. The histogram is shown with an overlay isotype control.
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HyClone) and the undigested tissues were removed using a
70μm strainer (BD Biosciences, San Diego, CA, USA). The
cells obtained by centrifugation at 645 × g for 5min were
plated at a density of 5,000 cells/cm2 in a 75 cm2 culture flask
with complete medium [29].

Human SM (n = 3) were harvested from the knees of
patients with OA during total knee arthroplasty. The tissue
was placed on a petri dish and finely minced using sterile
scissors. The minced tissue was digested with 0.25%
Trypsin-EDTA (HyClone) at 37°C for 30min. After diges-
tion, 0.3% of collagenase type 1 was added and gently shaken
at 37°C for 90min. Undigested tissues were removed using a
40μm strainer (BD Biosciences), and cells were obtained by
centrifugation at 645 × g for 5min. The obtained cells were
plated at a density of 5,000 cells/cm2 in a 75 cm2 culture flask
with complete medium [30, 31].

All cells used in the experiment were cultured in a
humidified incubator at 5% CO2 at 37

°C. The medium was
changed every 2–3 days, and cells were subcultured at 80–
90% confluence following treatment with 0.25% Trypsin-
EDTA at 37°C for 5min. The cells were washed and har-
vested by centrifugation at 645 × g for 5min and then plated

at a density of 5,000 cells/cm2 [32, 33]. Passage 4 cells were
used for all cell types.

2.2. Flow Cytometry. For flow cytometry analysis, 1 × 105
cells were suspended in 100μL of PBS [33]. The following
monoclonal antibodies were used to stain the cells: fluores-
cein isothiocyanate (FITC) mouse anti-human CD14 (clone
M5E2), FITC mouse anti-human CD34 (clone 581), FITC
mouse anti-human CD45 (clone HI30), phycoerythrin (PE)
mouse anti-human CD79a (clone HM47), and FITC mouse
anti-human leukocyte antigen-DR (HLA-DR; clone G46-6)
were used as haematopoietic or endothelial cell markers.
PerCP-Cy5.5 mouse anti-human CD73 (clone AD2),
PerCP-Cy5.5 mouse anti-human CD90 (clone 5E10), and
PerCP-Cy5.5 mouse anti-human CD105 (clone 266) were
used as MSC-specific markers. As isotype controls, FITC
mouse IgG1 κ (cloneMOPC-21), FITCmouse IgG2a κ (clone
G155-178), PE mouse IgG1 κ (clone MOPC-21), and PerCP-
Cy5.5 mouse IgG1 κ (clone MOPC-21; all from BD Biosci-
ences) were used [34]. Stained cells were acquired using
FACSCalibur (BD Biosciences), and data analysis was per-
formed using CellQuest software (BD Biosciences).
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Figure 2: Mass spectrometry analysis of the conditioned medium for BM-, AT-, and SM-MSCs. (a) Workflow of the preparation of
conditioned medium for LC-MS/MS. (b) Venn diagram of commonly secreted proteins by three donors for each MSC type. A total of 105
and 93 proteins were commonly secreted by BM-, AT-, and SM-MSCs (all-MSCs) under normal and inflammatory conditions, respectively.
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Table 1: The list of commonly secreted proteins identified by all mesenchymal stem cells (MSCs) under normal and inflammatory
conditions.

(a)

Identified proteins of normal condition (105 proteins)
Accession Description Gene symbol

A0A024QYT5 Serpin peptidase inhibitor, clade E SERPINE1

A0A024R1U8 Insulin-like growth factor-binding protein 4 IGFBP4

A0A024R2W4 Dystroglycan 1 DAG1

A0A024R462 Fibronectin 1 FN1

A0A024R6R4 Matrix metallopeptidase 2 MMP2

A0A024R8V7 TIMP metallopeptidase inhibitor 2 TIMP2

A0A024RDW8 Collagen, type IV, alpha 2 COL4A2

A0A087WTA8 Collagen alpha-2(I) chain COL1A2

A0A087X0S5 Collagen alpha-1(VI) chain COL6A1

A0A0A0MT01 Gelsolin GSN

A0A0F7G8J1 Plasminogen PLG

A0A140VJI7 Testicular tissue protein Li 61 ECM1

A0A161I202 Lactoferrin LTF

A0A172Q381 Endosialin CD248

A1L4H1 Soluble scavenger receptor cysteine-rich domain-containing protein SSC5D SSC5D

A4D2D2 Procollagen C-endopeptidase enhancer PCOLCE

A6XND1 Insulin-like growth factor-binding protein 3 IGFBP3

A8K2H4 Cathepsin B CTSB

A8K7Q1 Nucleobindin 1 NUCB1

A8KAJ3 EGF-containing fibulin-like extracellular matrix protein 1 EFEMP1

B2R582 C-type lectin domain family 3, member B CLEC3B

B2R5M9 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase PLOD1

B2RBS8 Albumin ALB

B2RCM5 EG-containing fibulin-like extracellular matrix protein 2 EFEMP2

B2RDW0 Calmodulin 2 (phosphorylase kinase, delta) CALM2

B4DDQ2 Biglycan BGN

B4DNG0 Olfactomedin-like protein 3 OLFML3

B4DPH4 Plasminogen PLG

B4DPQ0 Complement C1r subcomponent C1R

B4DPZ5 Polymerase I and transcript release factor PTRF

B4DU16 Fibronectin 1 FN1

B4E3Q1 Calsyntenin-1 CLSTN1

D0PNI2 Lysyl oxidase LOX

D1MGQ2 Alpha-2 globin chain HBA2

D3DTX7 Collagen, type I, alpha 1 COL1A1

D3YTG3 Target of Nesh-SH3 ABI3BP

D6RF35 Vitamin D-binding protein GC

D9ZGG2 Vitronectin VTN

F8VR42 Dynein regulatory complex subunit 2 CCDC65

F8W6I7 Heterogeneous nuclear ribonucleoprotein A1 HNRNPA1

H0YGS3 Microfibrillar-associated protein 5 MFAP5

H7BZJ3 Protein disulfide-isomerase A3 PDIA3

H7C0V9 Amyloid-beta A4 protein APP

I4AY87 Macrophage migration inhibitory factor MIF

O00391 Sulfhydryl oxidase 1 QSOX1
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Table 1: Continued.

Identified proteins of normal condition (105 proteins)
Accession Description Gene symbol

P00338 L-Lactate dehydrogenase A chain LDHA

P00441 Superoxide dismutase [Cu-Zn] SOD1

P01023 Alpha-2-macroglobulin A2M

P01024 Complement C3 C3

P01033 Metalloproteinase inhibitor 1 TIMP1

P01034 Cystatin-C CST3

P02452 Collagen alpha-1(I) chain COL1A1

P02461 Collagen alpha-1(III) chain COL3A1

P02647 Apolipoprotein A-I APOA1

P05387 60S acidic ribosomal protein P2 RPLP2

P05997 Collagen alpha-2(V) chain COL5A2

P07585 Decorin DCN

P07737 Profilin-1 PFN1

P07942 Laminin subunit beta-1 LAMB1

P08670 Vimentin VIM

P09382 Galectin-1 LGALS1

P09486 SPARC SPARC

P09871 Complement C1s subcomponent C1S

P10599 Thioredoxin TXN

P11047 Laminin subunit gamma-1 LAMC1

P12110 Collagen alpha-2(VI) chain COL6A2

P14543 Nidogen-1 NID1

P18206 Vinculin VCL

P21333 Filamin-A FLNA

P24592 Insulin-like growth factor-binding protein 6 IGFBP6

P26022 Pentraxin-related protein PTX3 PTX3

P30041 Peroxiredoxin-6 PRDX6

P35442 Thrombospondin-2 THBS2

P35555 Fibrillin-1 FBN1

P36955 Pigment epithelium-derived factor SERPINF1

P48061 Stromal cell-derived factor 1 CXCL12

P50454 Serpin H1 SERPINH1

P51884 Lumican LUM

P55290 Cadherin-13 CDH13

P63261 Actin, cytoplasmic 2 ACTG1

P63313 Thymosin beta-10 TMSB10

Q01995 Transgelin TAGLN

Q08629 Testican-1 SPOCK1

Q0Z944 Beta globin HBB

Q12841 Follistatin-related protein 1 FSTL1

Q14767 Latent-transforming growth factor beta-binding protein 2 LTBP2

Q15582 Transforming growth factor-beta-induced protein ig-h3 1 TGFBI

Q16270 Insulin-like growth factor-binding protein 7 IGFBP7

Q16778 Histone H2B type 2-E HIST2H2BE

Q53FA4 Cysteine-rich, angiogenic inducer, 61 variant CYR61

Q53G99 Beta actin variant ACTB

Q59GA0 Thy-1 cell surface antigen variant THY1

Q5M8T4 Connective tissue growth factor CTGF
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Table 1: Continued.

Identified proteins of normal condition (105 proteins)
Accession Description Gene symbol

Q6EMK4 Vasorin VASN

Q6FHC9 STC2 protein STC2

Q6FHW3 DF protein CFD

Q6IAW5 CALU protein CALU

Q6YHK3 CD109 antigen CD109

Q8IUX7 Adipocyte enhancer-binding protein 1 AEBP1

Q99715 Collagen alpha-1(XII) chain COL12A1

V9HWC6 Peptidyl-prolyl cis-trans isomerase PPIB

V9HWE8 Epididymis secretory sperm binding protein Li 47e ARHGDIA

V9HWI5 Cofilin 1 (nonmuscle) CFL1

V9HWK1 Triosephosphate isomerase TPI1

V9HWN7 Fructose-bisphosphate aldolase ALDOA

(b)

Identified proteins of inflammatory condition (93 proteins)
Accession Description Gene symbol

A0A024R1U8 Insulin-like growth factor binding protein 4 IGFBP4

A0A024R462 Fibronectin 1 FN1

A0A024R5Z7 Annexin ANXA2

A0A024R6R4 Matrix metallopeptidase 2 MMP2

A0A024R8V7 TIMP metallopeptidase inhibitor 2 TIMP2

A0A024R969 Chitinase 3-like 1 CHI3L1

A0A024RDA5 Multifunctional fusion protein IL-8; CXCL8

A0A087WTA8 Collagen alpha-2(I) chain COL1A2

A0A087X0S5 Collagen alpha-1(VI) chain COL6A1

A0A0A0MT01 Gelsolin GSN

A0A0S2Z3G9 Actinin alpha 4 isoform 1 ACTN4

A0A161I202 Lactoferrin LTF

A0A1B0GU92 Uncharacterized protein N/A

A0A1U9X7H4 CFB CFB

A4D1W7 Inhibin, beta A (activin A, activin AB alpha polypeptide) INHBA

A4D2D2 Procollagen C-endopeptidase enhancer PCOLCE

A6XND1 Insulin-like growth factor binding protein 3 isoform b IGFBP3

A8K7Q1 Nucleobindin 1 NUCB1

B2R4R0 Histone H4 HIST1H4A

B2R5J8 C-C motif chemokine CCL5

B2RBS8 Albumin ALB

B2RCM5 EGF-containing fibulin-like extracellular matrix protein 2 EFEMP2

B2RDW0 Calmodulin 2 CALM2

B3KQT9 Protein disulfide-isomerase PDIA3

B4DDQ2 Biglycan BGN

B4DLV7 Rab GDP dissociation inhibitor GDI2

B4DMR3 Glia-derived nexin SERPINE2

B4DPQ0 Complement C1r subcomponent C1R

B4E324 Lysosomal protective protein CTSA

B4E3Q1 Calsyntenin-1 CLSTN1

B5MCZ3 Interleukin-6 IL-6
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Table 1: Continued.

Identified proteins of inflammatory condition (93 proteins)
Accession Description Gene symbol

D0PNI1 Epididymis luminal protein 4 YWHAZ

D3DTX7 Collagen, type I, alpha 1 COL1A1

D3YTG3 Target of Nesh-SH3 ABI3BP

D6RF92 C-X-C motif chemokine CXCL6

D9ZGF2 Collagen, type VI, alpha 3 COL6A3

F8W6I7 Heterogeneous nuclear ribonucleoprotein A1 HNRNPA1

I4AY87 Macrophage migration inhibitory factor MIF

O00300 Tumor necrosis factor receptor superfamily member 11B TNFRSF11B

O00391 Sulfhydryl oxidase 1 QSOX1

P01024 Complement C3 C3

P01033 Metalloproteinase inhibitor 1 TIMP1

P01034 Cystatin-C CST3

P02461 Collagen alpha-1(III) chain COL3A1

P04083 Annexin A1 ANXA1

P07585 Decorin DCN

P07737 Profilin-1 PFN1

P07996 Thrombospondin-1 THBS1

P08254 Stromelysin-1 MMP3

P08670 Vimentin VIM

P09341 Growth-regulated alpha protein CXCL1

P09382 Galectin-1 LGALS1

P09486 SPARC SPARC

P09871 Complement C1s subcomponent C1S

P10599 Thioredoxin TXN

P11047 Laminin subunit gamma-1 LAMC1

P12110 Collagen alpha-2(VI) chain COL6A2

P13500 C-C motif chemokine 2 CCL2

P14543 Nidogen-1 NID1

P15018 Leukemia inhibitory factor LIF

P18206 Vinculin VCL

P19875 C-X-C motif chemokine 2 CXCL2

P19876 C-X-C motif chemokine 3 CXCL3

P20809 Interleukin-11 IL-11

P21333 Filamin-A FLNA

P24592 Insulin-like growth factor-binding protein 6 IGFBP6

P26022 Pentraxin-related protein PTX3 PTX3

P35442 Thrombospondin-2 THBS2

P35555 Fibrillin-1 FBN1

P48307 Tissue factor pathway inhibitor 2 TFPI2

P51884 Lumican LUM

P62328 Thymosin beta-4 TMSB4X

P63313 Thymosin beta-10 TMSB10

P98066 Tumor necrosis factor-inducible gene 6 protein TNFAIP6; TSG-6

Q12841 Follistatin-related protein 1 FSTL1

Q16270 Insulin-like growth factor-binding protein 7 IGFBP7

Q16778 Histone H2B type 2-E HIST2H2BE

Q53G71 Calreticulin variant CALR

Q53G75 Matrix metalloproteinase 1 preproprotein variant MMP1
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2.3. In Vitro Differentiation Assay. For adipogenic differenti-
ation, cells were seeded into 12-well plates at a density of 3
× 104 per well. After 2 days, differentiation was induced
using adipogenic differentiation medium (containing α-
MEM, 10% FBS, 1% P/S, 0.5mM of 3-isobutyl-1-methylxan-
thine (Sigma-Aldrich, St. Louis, MO, USA), 1μM of dexa-
methasone (Sigma-Aldrich), 200μM of indomethacin
(Sigma-Aldrich), and 10μg/mL of insulin (Gibco, Waltham,
Massachusetts, USA)) [35]. The medium was changed every
2–3 days for 14 days, and differentiated cells were stained
with Oil Red O (Sigma-Aldrich) according to the manufac-
turer’s instructions.

For osteogenic differentiation, cells were seeded into 12-
well plates at a density of 3 × 104 per well. After 2 days, differ-
entiation was induced using osteogenic differentiation
medium (containing α-MEM, 10% FBS, 1% P/S, 0.1μM
dexamethasone, 50μM of L-ascorbic acid 2-phosphate ses-
quimagnesium salt hydrate (Sigma-Aldrich), and 20mM of
β-glycerophosphate disodium salt hydrate (Sigma-Aldrich))
[36]. The medium was changed every 2–3 days for 14 days,
and differentiated cells were stained with Alizarin Red S
(IHC World, Woodstock, MD, USA) according to the man-
ufacturer’s instructions.

For chondrogenic differentiation, cells were seeded into
12-well plates at a density of 1:2 × 104 per well. After 2 days,
differentiation was induced using chondrogenic differentiation
medium (containing Dulbecco’s minimal EM-high glucose
(HyClone), 10% FBS, 1% P/S, 0.1μM of dexamethasone, 1X
insulin-transferrin-selenium (Gibco), 50μM of L-ascorbic
acid 2-phosphate sesquimagnesium salt hydrate, and 5
ng/mL of transforming growth factor β1 (TGF-β1; Pepro-
Tech, Rocky Hill, NJ, USA)) [37]. The medium was changed
every 2–3 days for 21 days, and differentiated cells were
stained with Alcian Blue 8GX (Sigma-Aldrich) according to
the manufacturer’s instructions.

2.4. Preparation of CM. The BM-, AT-, and SM-MSCs were
maintained under two conditions based on environmental

differences: (i) normal condition: without inflammatory
cytokines (tumour necrosis factor-α (TNF-α; PeproTech)
and interleukin-1β (IL-1β; PeproTech)), and (ii) inflamma-
tory condition: treated with 10 ng/mL of TNF-α and 10
ng/mL of IL-1β [38–41]. To prepare CM, cells were cultured
in a 75 cm2 culture flask in α-MEM containing 10% FBS.
When MSCs were approximately 80–90% confluent at pas-
sage 4, the cells were switched to serum-free α-MEM for
overnight incubation and treated with conditions (i) or (ii)
for 6 h. Cultures were refed with 15mL of serum-free α-
MEM and incubated for 48h. Here, we used serum-free
medium to avoid interference from albumin-enriched FBS.
Then, the CM was collected and filtrated through a 0.2μm
filter to remove cellular debris. Thereafter, the CM was con-
centrated 25-fold using ultrafiltration units with 3 kDa cut-
off filters (Amicon Ultra; Merck Millipore, Watford, UK) at
4000 × g for 1 h [42]. The protein concentration of the CM
was measured using the Pierce BCA Protein Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA) according
to the manufacturer’s instructions.

2.5. In-Solution Digestion. Briefly, 100–200μg of protein was
denatured using 8M urea in 50mM heavy carbonate
ammonium buffer (pH7.8) and allowed to react at room
temperature for 3 h, followed by reduction using 10mM
dithiothreitol for 2h at room temperature. The proteins were
alkylated with 10mM iodoacetamide in the dark at room tem-
perature for 1h and then diluted more than 10-fold using 50
mM ammonium bicarbonate solution. In-solution digestion
was carried out by adding trypsin to the protein solution with
an enzyme-to-protein ratio of 1 : 50 (w/w) at 37°C for 18h.
Finally, formic acid was added to each sample to stop the reac-
tion. Samples were stored at -80°C until further analysis [43].

2.6. Liquid Chromatography with TandemMass Spectrometry.
Liquid chromatography with tandem mass spectrometry
(LC-MS/MS) analysis was conducted by the National Instru-
mentation Center for Environmental Management (NICEM;

Table 1: Continued.

Identified proteins of inflammatory condition (93 proteins)
Accession Description Gene symbol

Q53G99 Beta actin variant ACTB

Q53GY0 Plastin 3 variant PLS3

Q6EMK4 Vasorin VASN

Q6FHZ0 Malate dehydrogenase MDH2

Q6IAW5 CALU protein CALU

Q75MU2 Uncharacterized protein WBSCR1 EIF4H

Q86Z22 Epididymis secretory protein Li 297 SH3BGRL3

Q8IUX7 Adipocyte enhancer-binding protein 1 AEBP1

Q99715 Collagen alpha-1(XII) chain COL12A1

V9HWB4 Epididymis secretory sperm binding protein Li 89n HSPA5

V9HWC6 Peptidyl-prolyl cis-trans isomerase PPIB

V9HWI5 Cofilin 1 CFL1

V9HWN7 Fructose-bisphosphate aldolase ALDOA

V9HWP2 Epididymis luminal protein 35 HSP90B1
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Seoul National University, Seoul, Republic of Korea). The
fractionated peptide samples were analysed using the LC-
MS/MS system, which was a combination of an Easy-nLC
1000 (Thermo Fisher Scientific) and EASY-Spray Ion Source
(Thermo Fisher Scientific) on a Q Exactive Orbitrap Mass
Spectrometer (Thermo Fisher Scientific). Peptides were sep-
arated on a two-column setup with a trap column (Thermo
Fisher Scientific Acclaim PepMap 100 C18 HPLC Columns;
100 μm× 2 cm, nanoViper C18, particle size of 5μm;
Thermo Fisher Scientific, part number 164564) and an ana-
lytical column (Thermo Fisher Scientific; 75 μm i:d:× 50 cm
long, 2μm C18 beads, spherical, fully porous, ultrapure).
The peptide samples were separated using a 180min linear
gradient from 10% to 40% solvent B (100% acetonitrile and
0.1% formic acid) in all samples. The spray voltage was 2.2
kV in a positive ion mode, and the temperature of the heated
capillary was set to 300°C. Mass spectra were acquired in a
data-dependent manner using the top ten methods on the
Q Exactive Mass Spectrometer. Xcalibur software version
3.1 was used to collect MS data. The Orbitrap analyser
scanned precursor ions with a mass range of 350–1,800m/z
with a resolution of 70,000 at m/z 200. The automatic gain
control (AGC) target value was 3 × 106, and the isolation
window forMS/MS was 2m/z. Higher-energy C-trap dissoci-
ation scans were acquired at a resolution of 17,500 and nor-
malised collision energy of 27. The AGC target value for
MS/MS was 1 × 105. The maximum ion injection time for
the survey scan and MS/MS scan was 100ms. Dynamic
exclusion was enabled with an exclusion period of 15 s [44].
Mass data were acquired automatically using MaxQuant ver-
sion 1.6 and Proteome Discoverer 2.3 (Thermo Fisher Scien-
tific). LC-MS/MS analysis was performed thrice on the
samples (triplicates for each MSC type under normal or
inflammatory conditions).

2.7. Bioinformatics Analysis. The original MS/MS file data
were acquired automatically with Proteome Discoverer 2.3

(version 2.3.0.523) for data analysis. Peptides were identi-
fied using SEQUEST-HT against the UniProtKB database
(uniprot-homosapiens-201810) integrated into Proteome
Discoverer. The processing workflow consisted of the follow-
ing nodes: two maximum missed cleavages, peptide length
range of 6–144 amino acids, precursor mass tolerance of
10 ppm, fragment mass tolerance of 0.02Da, cysteine car-
bamidomethylation as a static modification, and oxidation
as a dynamic modification. Peptide validation settings were
identified using a target false discovery rate (FDR; strict) for
peptide-spectrum match (PSM) of 0.01, target FDR (relaxed)
for PSM of 0.05, and peptide filter confidence of at least
high level.

The identified proteins were associated with Gene
Ontology (GO) terms to determine their biological and
functional properties. The three main types of annotations,
namely, cellular components (CC), molecular functions
(MF), and biological processes (BP), were obtained from
the GO website at http://www.geneontology.org.

Protein pathways were generated using Kyoto Encyclope-
dia of Genes and Genomes (KEGG) analysis. In addition, the
identified proteins were entered into the STRING database
(https://string-db.org/) to predict and visualise the protein-
protein interactions (PPI) under various environmental con-
ditions. A representative network was obtained with high
confidence in data settings with a minimum interaction score
of 0.7.

2.8. Enzyme-Linked Immunosorbent Assay. Cell culture
supernatants were collected as described in the preparation
of CM. The concentration of proteins in CM was assessed
using a commercially available enzyme-linked immunosor-
bent assay (ELISA) kit (RayBiotech, GA, USA) according
to the manufacturer’s instructions [45]. Assay kits for the
following proteins were used: human thrombospondin 2
(TSP-2) and human TNF-inducible gene 6 (TSG-6). All
measurements were performed in duplicate.
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Figure 3: Gene Ontology (GO) annotation analysis of the commonly secreted proteins by all mesenchymal stem cells (MSCs) under normal
and inflammatory conditions: (a) molecular function; (b) cellular component; (c) biological process.
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3. Results

3.1. Characterization of BM-, AT-, and SM-MSCs. The human
BM-, AT-, and SM-MSCs derived from each tissue were found
to grow in a spindle-shaped manner (Figure 1(a)). We per-
formed in vitro differentiation assays to confirm the trilineage
differentiation potential of each MSC type. As a result, each
MSC type differentiated into adipocytes, osteoblasts, and
chondrocytes when cultured in the appropriate differentia-
tion medium (Figure 1(b)). Flow cytometry analysis was per-
formed to confirm that MSCs expressed cell surface antigens.
In each MSC type, the positive markers CD73, CD90, and
CD105 were expressed at 95% or higher, and the negative
markers CD14, CD34, CD45, CD79a, and HLA-DR were
expressed at less than 2% (Figure 1(c)). These results demon-
strated that the human tissue-derived cells used in the pres-
ent study had typical MSC characteristics (Supplementary
Figure 1).

3.2. Commonly Secreted Proteins among the Three Types of
MSCs. LC-MS/MS (n = 3 per tissue source) was performed
to identify the proteins secreted by each MSC type under
normal or inflammatory conditions (Figure 2(a)). We con-
firmed that the number of proteins secreted by each MSC
type under normal or inflammatory conditions was 350
and 355 in BM-MSCs, 272 and 234 in AT-MSCs, and 136
and 138 in SM-MSCs, respectively (detailed information
in Supplementary Table 1). Comparison of common
proteins identified 105 proteins under normal conditions
and 90 proteins under inflammatory conditions to be
commonly secreted by BM-, AT-, and SM-MSCs (all-
MSCs; Figure 2(b) and Table 1).

3.3. GO Analysis. GO analysis was performed to confirm the
functional differences between commonly secreted proteins
by all-MSCs under normal and inflammatory conditions.
As a result, in MF, the percentage of “protein binding” of
the secreted proteins under both conditions was confirmed
to be 88% or more, while the percentages of other categories
were 35% or less (Figure 3(a)). In CC, the percentage of
“extracellular” of the secreted proteins under both condi-
tions was confirmed to be 73% or more, and that of the other
categories was 50% or less (Figure 3(b)). In BP, the percent-
age of secreted proteins under both conditions including
“regulation of biological process,” “response to stimulus,”
“metabolic process,” and “cell organization and biogenesis”
was confirmed to be approximately 52% or more, with the
percentages of these categories being higher under inflam-
matory conditions than under normal conditions. The per-
centages of other categories were confirmed to be 40% or
less (Figure 3(c)).

3.4. KEGG Pathway Analysis. KEGG pathway analysis was
conducted to identify signalling pathways related to proteins
commonly secreted by all-MSCs under normal and inflam-
matory conditions. We confirmed that the pathway most
closely related to proteins secreted under both conditions
was “signal transduction.” The main pathways were similar
under both conditions, but the levels of the secreted proteins
were higher under inflammatory conditions than under nor-
mal conditions (Figure 4).

3.5. Changes in PPI Networks Depending on Environmental
Differences. PPI network analysis was performed using the
STRING database to confirm how the interaction networks
of commonly secreted proteins by all-MSCs were altered
because of environmental differences. Thus, excluding
unconnected nodes, the PPI network under normal condi-
tion was composed of 102 nodes and 368 edges. The PPI net-
work under inflammatory condition was composed of 92
nodes and 309 edges (interaction score > 0:7), confirming
three main clusters under each condition. Under normal
conditions, “extracellular matrix (ECM) organization” con-
stituted 13 proteins, primarily including the collagen family,
and “regulation of cell differentiation” constituted 29 pro-
teins, including proteins such as insulin-like growth factor-
binding protein 3/4/7, gelsolin, and stanniocalcin-2. In addi-
tion, “cellular component organization” constituted 5 pro-
teins, including vinculin (VCL) (Figure 5(a)). Under the
inflammatory condition, “ECM organization” constituted
10 proteins, including those from the collagen family, and
“protein metabolic process” constituted 5 proteins, including
matrix metalloproteinase (MMP). Moreover, “response to
stimulus” constituted 12 proteins including C-X-C motif
chemokine 2/3/6/8 and annexin A1 (Figure 5(b)).

3.6. Identification of Proteins with Tissue Regeneration
Potential. We identified proteins related to tissue regenera-
tion among the commonly secreted proteins by all-MSCs
under normal and inflammatory conditions. The categories
affecting tissue regeneration were classified as anti-inflam-
mation, anti-apoptosis, ECM-cell interactions, homeostasis,
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Figure 4: Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis of the commonly secreted proteins by all
mesenchymal stem cells (MSCs) under normal and inflammatory
conditions.
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inhibition of MMPs, and regeneration of chondrocytes. Pro-
teins related to tissue regeneration were found to be secreted
under all or specific environments. Except for the category of
ECM-cell interactions, the number of secreted proteins was
larger under inflammatory conditions than under normal
conditions. We identified that proteins such as TSG-6 and
thrombospondin 1 (TSP-1) are secreted only under inflam-
matory conditions (Table 2).

3.7. Validation of Commonly Secreted Proteins by Three Types
of MSCs under the Two Environmental Conditions. ELISA
was performed to validate the proteins presented in
Table 2. We confirmed that TSP-2 was secreted under both
environmental conditions, whereas TSG-6 was secreted
under inflammatory conditions. The expression level of
TSP-2, confirmed to be secreted under the two conditions,
was higher under the normal condition than under the
inflammatory condition. However, the concentration of
TSP-2 in the CM was not significantly different between the
normal and inflammatory conditions (Figure 6(a)). The

expression level of TSG-6 was surprisingly 15 times higher
under the inflammatory condition than under the normal
condition (Figure 6(b)). The control was serum-free
medium, and no protein was detected in it.

4. Discussion

We investigated proteins predicted to exhibit cartilage regen-
eration potential by confirming the differences and charac-
teristics of proteins commonly secreted by human BM-,
AT-, and SM-MSCs, depending on environmental differ-
ences. Thus far, cartilage repair studies using MSCs derived
from various tissues, including BM, AT, and SM, have
reported these cells to exhibit similar cartilage regenerative
properties despite differences in paracrine factors secreted
by each MSC type [46–48]. Based on these results, we
hypothesised that there are paracrine factors commonly
secreted by MSCs derived from tissues of different origins.
Therefore, MSCs were isolated from each tissue; the cultured
cells were confirmed to possess MSC characteristics defined
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by the International Society for Cellular Therapy. The para-
crine factors secreted by each MSC type were then identified
using LC-MS/MS analysis. The identified proteins were vali-
dated by ELISA, finding differences in the secreted proteins
depending on the tissue origin of MSCs and the presence or
absence of inflammatory factors (Supplementary Table 1).

GO analysis was performed to confirm the properties of
commonly secreted proteins by all-MSCs under normal or
inflammatory conditions. We found that the largest propor-
tion of MF was “protein binding,” suggesting that direct reg-
ulation of PPIs may be a major regulatory process carried out
by proteins secreted by MSCs [49]. BP included “regulation
of biological process,” “response to stimulus,” “metabolic

process,” and “cell organization and biogenesis,” indicating
that processes functionally relevant to commonly secreted
proteins by all-MSCs play an important role in tissue repair
[23, 49].

In addition, KEGG pathway analysis was conducted to
confirm the biological function of paracrine factors com-
monly secreted by all-MSCs, and several pathways related
to regeneration were verified. Environmental information
processing included several pathways such as signal trans-
duction, and the subcategories of signal transduction were
identified in 11 pathways (data not shown). Among these
pathways, the TGF-β signalling pathway is known to be
essential for tissue regeneration by activating Smad signalling

Table 2: The identification of proteins related to tissue regeneration.

Anti-inflammation Anti-apoptosis ECM-cell interactions Homeostasis Inhibition of MMPs Regeneration of chondrocytes

Inflammatory condition

ANXA1 [59, 60]
IL-11 [61]
TSP-1 [62, 64, 69]
TSG-6 [6, 65, 66]
NID1 [67]
TMSB4X [68]

LTF [70]
TMSB4X [68]

LIF [71]
CALR [72]

BGN [73]
COL1A1 [74]
IGFBP3 [75]
DCN [73]
LUM [73]
FBN1 [63]
FN1 [63, 75]
VCL [76]
TSP-1 [63]
TSP-2 [63]
TFPI2 [77]

ANXA1 [59, 60]
VIM [78]

TSG-6 [6, 65, 66]
IGFBP3 [75]
INHBA [80]

TSP-1 [62, 64, 69]
TSP-2 [81, 82]
SERPINE2 [91]

TSP-2 [81, 82]
LTF [70]
MIF [83]

Normal condition
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Figure 6: Validation experiments of key protein expression under various knee OA conditions using ELISA: (a) human TSP-2; (b) human
TSG-6. ∗∗∗P < 0:0001. ns: not significant (n = 9, three donors for each MSC type); N-CM: normal condition-conditioned medium; I-CM:
inflammatory condition-conditioned medium.
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to regulate collagen and aggrecan expression [50, 51]. In
addition, this pathway has been reported to maintain
homeostasis and inhibit the degradation of articular chon-
drocytes by modulating proinflammatory cytokines, even-
tually repairing or regenerating damaged cartilage tissue
[52]. Taken together, each MSC type secreted proteins
related to the TGF-β signalling pathway, and these pro-
teins may contribute to the maintenance and regeneration
of damaged cartilage.

We confirmed that the processes related to repair and
regeneration were more under inflammatory conditions by
GO and KEGG pathway analyses. The mechanism underly-
ing this phenomenon was studied using PPIs. We found that
ECM organization was a process observed under both envi-
ronmental conditions. ECM stores and appropriately sup-
plies factors necessary for cell growth and differentiation
and supports spontaneous regeneration mechanisms to
recover damaged tissues, displaying potential as a therapeutic
avenue [53]. Meanwhile, as expected, a “cluster of responses
to stimuli” was formed under inflammatory conditions.
According to several studies reporting the association of
paracrine factors secreted by MSCs under inflammatory con-
ditions, the secretion and therapeutic effects of MSCs may
be enhanced by inflammatory stimuli and crosstalk [54–56].
In addition, secretion of paracrine factors is reportedly
increased in MSCs stimulated with inflammatory factors
[41, 57]. These findings indicate that paracrine factors con-
tribute to the regeneration of damaged tissue under any
condition. Furthermore, it was confirmed that paracrine
factors secreted under inflammatory conditions are closely
related to the repair and regeneration of cartilage, and several
studies have reported them to regulate endogenous cellular
responses and mediate cartilage regeneration in damaged tis-
sue [6, 58]. Thus, we concluded that paracrine factors
released under inflammatory conditions facilitate the recov-
ery and regeneration of damaged cartilage.

Table 2 [6, 59–91] shows the proteins predicted to be
involved in the regeneration of damaged tissue. It was con-
firmed that ECM-cell interactions included collagen α-1(I)
chain, decorin, biglycan, lumican, VCL, fibronectin 1, TSP-
1, and TSP-2. These proteins are primarily known to consti-
tute cartilage ECM and provide structural support to cells
and tissues. Furthermore, they modulate cellular signals that
can affect tissue organization, cellular proliferation, matrix
adhesion, growth factors, and cytokine responses. They also
reportedly protect the surface of collagen type I and II fibres
from degradation [63, 92–94]. The articular cartilage, a spe-
cialised form of hyaline cartilage, is avascular and has a poor
capacity for self-repair [95]. Therefore, ECM-cell interac-
tions are considered essential for cartilage regeneration, and
the proteins identified herein are similar to those reported
in other studies [94, 96].

Knee OA development has been observed to increase
proinflammatory cytokines such as IL-1β and TNF-α in the
joint cavity, which can trigger chondrocyte apoptosis [97,
98]. In addition, lactoferrin (LTF) was reported to inhibit
IL-1β-mediated chondrocyte apoptosis by regulating the
activity of cyclic AMP-responsive element-binding protein
through protein kinase B signalling. LTF also promoted car-

tilage regeneration by increasing the expression of collagen
type II in a rat OA model. Thus, LTF secreted by human
MSCs can be anticipated to have anti-apoptotic and regen-
erative effects on chondrocytes in damaged cartilage. In a
study of TSP-2, Jeong et al. [82] showed that intra-
articular injection of human umbilical cord blood-MSCs
into an osteochondral defect rat model exerts a regenerative
effect on damaged cartilage through paracrine factors, of
which TSP-2 was the major paracrine player. These findings
demonstrate the therapeutic potential of TSP-2-mediated
paracrine action of human MSCs, which can regenerate car-
tilage in knee OA treatment.

Furthermore, inflammation is accompanied by the
breakdown of the ECM, the main component of articular
cartilage [99]. The synovial fluid of knee OA patients exhibits
a high level of proinflammatory cytokines as well as different
types of MMPs [100]. Synovitis is mostly associated with
gradual progressive damage to cartilage and severe pain.
The pain in knee OAmay be caused by the activation of noci-
ceptive pathways by nerve growth factor, which in turn may
occur due to inflammation. Therefore, inflammation is a
major therapeutic target to relieve OA pain, and alleviation
of inflammation and suppression of MMPs may be key strat-
egies for knee OA treatment [101]. Interestingly, in our
study, we found that TSG-6 and TSP-1 proteins were
secreted only under inflammatory conditions. These proteins
attenuate proinflammatory cytokines and MMPs by modu-
lating the nuclear factor κB pathway and enhance the pro-
duction of collagen type II [65, 102–104]. TSG-6 and TSP-1
have anti-inflammatory and tissue-protective properties
and can enable the regeneration of damaged cartilage.

We confirmed the level of expression depending on the
environment for some of the abovementioned proteins.
TSP-2 was identified in both conditions, and it was con-
firmed that its expression level was similar between the two
conditions. This suggests that TSP-2 is a paracrine factor that
is secreted by MSCs under various conditions and plays an
essential role in cartilage regeneration. TSG-6, which was
only secreted under the inflammatory condition, showed a
dramatically higher expression level under the inflammatory
condition than under the normal condition, supporting the
result that TSG-6 is induced by stimulation by IL-1 and
TNF-α [105].

The limitation of this study is that the identified proteins
could not be confirmed to regenerate damaged cartilage
through actual studies. However, it was meaningful to check
the protein list for paracrine factors secreted by MSCs under
normal culture conditions compared to those secreted under
inflammatory conditions. Moreover, according to recent
studies, the paracrine factors identified in this study have
an effect on cartilage regeneration [62–66]. Thus, commonly
secreted paracrine factors by each MSC type provide valuable
information for understanding the potential of damaged
knee OA regeneration.

5. Conclusions

We identified proteins commonly secreted by human BM-,
AT-, and SM-MSCs under normal and inflammatory
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conditions and consequently found paracrine factors that
are predicted to be closely related to cartilage regeneration
under inflammatory conditions. Therefore, our study sheds
light on paracrine factors as potential therapeutic options
for knee OA.
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Supplementary Materials

Supplementary 1. Supplementary Figure 1: the characteriza-
tions of bone marrow (BM), adipose tissue (AT), and syno-
vial membrane (SM) mesenchymal stem cells (MSCs). (a)
Phase-contrast microscopy images of MSCs (scale bar = 100
μm). (b) Differentiation potential of MSCs. Adipogenic dif-
ferentiation (Oil Red O, top), osteogenic differentiation
(Alizarin Red S, middle), and chondrogenic differentiation
(Alcian Blue, bottom). (c) The immunophenotyping of MSCs
using flow cytometry. Positive (CD73, CD90, and CD105)
and negative (CD14, CD34, CD45, CD79a, and human leu-
kocyte antigen-DR (HLA-DR)) markers. The histogram is
shown with an overlay isotype control.

Supplementary 2. Supplementary Table 1: detailed informa-
tion on proteins secreted by BM-, AT-, and SM-MSC under
normal and inflammatory conditions, respectively.
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