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Abstract. The thick filaments of the nematode 
Caenorhabditis elegans contain two myosin heavy 
chain isoforms A and B and paramyosin, the products 
of the myo-3, unc-54, and unc-15 genes, respectively. 
Dissociation of paramyosin from native thick filaments 
at pH 6.36 shows a biphasic function with respect to 
NaC1 concentration. Electron microscopy of the re- 
maining structures shows 15-nm core structures that 
label with monoclonal anti-paramyosin antibody at 

72.5-nm intervals. Purified core structures also show 
72.5 nm repeats by negative staining. Structural analy- 
sis of native thick filaments and dissociated structures 
suggests that the more dissociable paramyosin is re- 
moved radially as well as processively from the fila- 
ment ends. Minor proteins with masses of 20, 28, and 
30 kD cosediment stoichiometrically with paramyosin 
in purified core structures. 

S 
TABL~ thick filaments are distinguishing features of the 
specialized contractile systems of muscle cells. Thick 
filaments are assemblages of myosin(s), the actin-based 

motor molecules, which self-associate through the a-helical 
coiled coils of their rodlike domains. In muscle cells of non- 
vertebrates, myosin associates with the o~-helical coiled-coil 
protein paramyosin (pm)' (Szent-Gy6rgyi et al., 1971) 
which shares both sequence and structural homology with 
the myosin rod. In the nematode, Caenorhabditis elegans, 
the combination of genetic, molecular, and structural analy- 
sis has been applied to understanding the assembly of thick 
filaments which contain myosin and pm (Anderson, 1989; 
Epstein and Fischman, 1991). 

Although models for the structure of coiled coils and their 
self-association by ionic bonds have been presented for myo- 
sin and pm (McLachlan and Karn, 1982, 1983; Kagawa et 
al., 1989), little experimental three-dimensional structural 
information exists for either individual myosin/pm rods or 
their organization within the backbones of thick filaments. 
The lengths (diameters) of thick filaments vary histologically 
and phylogenetically from 1.53 t~m (15 nm) in vertebrates to 
10 #m (25 nm) in the nematode C. elegans to 30 #m (100 
nm) in the barnacle (Levine et al., 1976; Mackenzie and Ep- 
stein, 1980). Although these dimensions vary between 
sources, they are highly homogeneous within each type of 
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1. Abbreviations used in this paper: mhc A, myosin heavy chain A; mhc 
B, myosin heavy chain B; pm, paramyosin. 

muscle cell. Several mechanisms have been proposed to 
explain the regulation of assembly underlying these phe- 
nomena including cumulative strain (Davis, 1986), a vernier 
between distinct types of copolymerizing molecules (Hux- 
ley, 1963), and internal template molecules (Epstein et al., 
1985). However, none of these mechanisms have been tested 
directly with respect to thick filaments. Understanding the 
substructure of nematode thick filaments seems likely to 
provide insights into these questions concerning the assem- 
bly and interactions of myosin and pm. 

The thick filaments of C. elegans contain two myosins 
composed either of myo-3 encoded myosin heavy chain A 
(mhc A) or of unc-54 encoded myosin heavy chain B 
(mhc B). Mhc A is restricted to the central regions of the 
filaments (Miller et al., 1983), and myo-3 null mutants do 
not assemble thick filaments (Waterston, 1989). Mhc B as- 
sembles in the polar regions of the thick filaments (Miller et 
al., 1983), and unc-54 null mutants still assemble thick illa- 
ments with mhc A substituting along their normal lengths 
(Epstein et al., 1986). C. elegans thick filaments contain pm 
(Waterston et al., 1974; Harris and Epstein, 1977) which is 
encoded by unc-15 (Waterston et al., 1977); unc-15 null mu- 
tants produce abnormal thick filaments with myosins A and 
B scrambled in the central zones and polar 15-nm wide hol- 
low structures that contain mhc B (Mackenzie and Epstein, 
1980; Epstein et al., 1986). Mhc A and pm therefore appear 
to play critical roles in the assembly of thick filaments in C. 
elegans. 

Dissociation of myosin and pm from isolated thick illa- 
ments of C. elegans produces 15-rim wide hollow structures 
in which mhc B and pm were not detectable by gel elec- 
trophoresis or antibody labeling (Epstein et al., 1985). Im- 
portantly, mhc A remains in the central zones. These C. ele- 
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gans core structures are similar in appearance to core 
structures produced from Limulus (Levine et al., 1982; 
1983; Woodhead, J. L., R. J. C. Levine, and H. A. King. 
1986. J. Cell Biol. 109:267a), however, the Limulus struc- 
tures contain pm. Further analysis of purified native thick 
filaments from C. elegans reveals several additional proteins 
associated with both intact filaments and core structures (Ep- 
stein et al., 1988). However, •30% of the pm remained with 
these core structures. These results, therefore, cannot ex- 
clude a model in which both pm and additional proteins con- 
tribute to the core structure. 

In the present work, we have obtained higher yields and 
purity of thick filaments from C. elegans in order to further 
study the core structure problem. Two populations of pm 
have been defined on the basis of their differential dissocia- 
tion. The more soluble pm dissociated with mhc B while the 
less soluble pm remains associated with mhc A and three mi- 
nor proteins, P20, P28, and P30 in the core structures. 

Materials and Methods 

Nematode Growth and Strains 
N2 (wild type) C elegans larvae were synchronized by starvation at the L1 
stage, and then grown on peptone enriched nematode growth medium for 
42 h at 19"C, resulting in a relatively homogeneous L4 population (Schachat 
et al., 1978; Epstein et al., 1988). Nematodes were washed to remove ex- 
cess bacteria, purified from debris by density sucrose purification, and 
washed again five times. Two volumes of O.C.T. (Miles, Ekbart, IN) were 
added for each gram of nematodes and worms were slowly frozen to -80°C 
for 30 rain and subsequently stored in liquid N2. 

Preparation of Sections 

Unless stated otherwise all buffers for isolating and handling filaments con- 
tained the following relaxing buffer; 80 mM KCI, 10 mM MgCI2, 1 mM 
EIYrA, 5 mM ATP, 6.6 mM potassium phosphate (pH 6.35 at room temper- 
ature). In addition, all buffers contained 1 #g/mi of the following protease 
inhibitors; chymostatin, pepstatin, leupeptin, soybean trypsin inhibitor 
(Boehringer-Mannheim Corp., Indianapolis, IN), N-benzoyl-L-arginine 
ethyl ester (BAEE), and p-toluidinyl sulfonyl-L-arginine methyl ester 
(TAME) (all Sigma Chem. Co., St. Louis, MO). All procedures were per- 
formed at 0°C unless otherwise stated. Frozen nematodes were sectioned, 
and the sections were washed and detergent treated as described previously 
(Epstein et al., 1988) with the following modifications. Half molar sucrose 
was added and DTT was not used. Detergent-treated sections were 
resuspended in 3 ml of a homogenization buffer consisting of relaxing buffer 
with 0.5 M sucrose, 0.5% Triton X-100 and 1 mM DTT. Sections were 
homogenized with a glass homogenizer (Wheaton, Millville, NJ) 24 times 
taking care not to break the surface to produce bubbles or frothing or press 
the sections against the bottom of apparatus. Sections were pelleted in a 15- 
ml conical polycarbonate tube (Coming Inc., Coming, NY) in a tabletop 
centrifuge (IEC, Boston, MA) at setting #3 for 3 rain and the supernatant 
was carefully aspirated and discarded. This limited homogenization was 
repeated on the pelleted sections twice. The decanted supernatants became 
less turbid after each homogenization step. 

Isolation of Filaments 
Prepared sections were resnspended in 4 ml of homogenization buffer and 
homogenized as described by 600 strokes performed over 1 h. Sections were 
transferred to a conical 15-mi tube and pelleted in the cold room in tabletop 
centrifuge at setting #7 for 15 rain. The supernatant was carefully removed 
and placed in a 15-mi polypropylene centrifuge tube (Coming) and cleared 
in JA-13 rotor (Beckman Instrs., Palo Alto, CA) at 6,200 rpm (6,000 g) for 
30 rain at 4"C. The resultant supernatant (6.2 K supernatant) was carefully 
removed from top to bottom leaving ,ul00 #1 of supernatant over the pellet. 
The pellet contained nuclei and chromatin fragments which could trap and 
aggregate isolated filaments. Isolated filaments were concentrated by spin- 
ning the 6.2 K supernatant (3.8 ml) at 11,000 rpm (15,000 g) in two thin 
wall polyallomer centrifuge tubes (Beckman Instrs.) in a SW 50.1 rotor at 
2.5°C (15 K pellet). Table I shows the several steps in the purification of 
thick filaments as monitored by myosin, pm, and associated proteins. 

Dissociation of Filament Proteins by Titration with 
NaC1 and pH 

Pelleted isolated filaments (15 K pellet) from 2 gm of nematodes were 
resuspended in 500 #1 of relaxing buffer (containing 0.5 M sucrose and 
1 mM DTT), and divided equally between 14 microcentrifuge tubes. Fila- 
ments were repeileted 30 rain at 12,000 rpm in a JA-13 rotor, and the super- 
natant discarded. 1 ml of dissociation buffer was formulated as follows. 200 
#1 of 5 × relaxing buffer stock was mixed with 5 M NaCI and double dis- 
tilled 1-120 to achieve the desired final salt concentration. For samples in 
which the pH was elevated, 33 mM phosphate in the 5× relaxing buffer 
stock was substituted with 20 mM glycine, 20 mM MES, 20 mM MOPS, 
and 20 mM Tricine resulting in a solution with a broad range of buffeting 
capacity. The pH was adjusted with NaOH at room temperature. 80 #1 of 
dissociant (0°C) was added to samples, repipetted vigorously, and allowed 
to sit 5 min on ice. Samples were spun in the same tube for 70 rain at 12,000 
rpm in a JA 13 rotor. 

Purification of Filaments on Analytical 
Sucrose Gradients 
Each 15 K pellet was vigorously resuspended in 1 ml of filament compatible 
buffer suitable for DNase I digestion (72 mM NaCI, 3 mM MgCI2, 3 rnM 
ATP, 0.5 M sucrose, 15 mM Tris-HCl, pH 6.5). Approximately 1 mg of 
bovine pancreatic DNase I (protein grade, Pharmacia LKB Biotechnology, 
Piscataway, NJ) was sprinkled onto 1 ml of buffer and allowed to dissolve. 
The solution was carefully repipetted with a wide bore pipette and 500 #1 
was carefully added to each tube of resnspended 15 K pellet and allowed 
to incubate 20 rain at room temperature. Each tube was chilled on ice and 
carefully layered onto an 18 nil, 18-33% (wt/vol) velocity sucrose gradient 
made with relaxing buffer containing 1 mM DTT. Gradients were spun for 
9 h at 7,000 rpm in an SW 28 rotor at 2.5°C. Filament purification is 
markedly improved by longer spins at g < 10,000. Gradients were fraction- 
ated from the bottom into 12 fractions. Equivalent fractions were pooled 
from the gradients, and filaments were pelleted in polyallomer tubes in SW 
50.1 at 20,000 rpm for 5 h. Pellets were solubilized in sample dilution buffer 
and separated on 6-12% polyacrylamide gels. 

Purification of Filaments on Preparative 
Sucrose Gradients 
5 ml of isolated filaments (6.2 K supernatant) were loaded per 9 ml 18-33 % 
sucrose gradient and spun in 38 ml polyallomer centrifuge tube (PCK2, 
Gaithersburg, MD) with a SW 28 rotor at 4,000 rpm for 12 h at 2.5°C. A 
single 5 ml fraction starting at 2.5 ml from the bottom of the gradient was 
removed. 

Repurification of filaments on Sucrose Gradients 
For rcpurification of dissociated filaments, KC1 was replaced by the more 
powerful dissociant KSCN. 50 mM KSCN achieves the same level of dis- 
sociation as 400 mM NaCI. 7.6 ml of filaments purified on preparative gra- 
dients were dissociated by slowly adding 3.8 ml of a solution containing 120 
mM KSCN and 150 mM Tris-HCl, pH 7.5. Dissociation filaments were 
layered onto six 18-33% sucrose gradients containing 100 mM NaC1, 1 
mM MgCI2 3 m_M ATP, 1 mM DTT, and 25 mM Tris-HCl (pH 7.5). Gra- 
dients were spun, fractionated, and analyzed as described for analytical 
purification of filaments with the exception of the 32 h run time. Fractions 
were pelleted at 25,000 rpm for 9 h. As a control, native filaments were 
repurified by diluting 7.6 nd of filaments purified on preparative gradients 
with 3.8 rnl of relaxing buffer containing I mM DTT. Diluted filaments were 
loaded onto three 18 ml gradients, spun, fractionated, and analyzed as de- 
scribed for analytical purifcation of filaments. 

Analysis of Myosin Solubilized during 
l~lament Isolation 

Soluble myosin in the 6.2 K supematant was separated from filament bound 
myosin by layering 700 #1 of supernatant (differs from supernatants de- 
scribed above with respect to added 1 mM PMSF) on a 2.5-rnl 18-33 % na- 
tive gradient also containing 1 mM PMSE Filaments were pelleted through 
the gradient by centrifugation in SWS0.1 rotor at 8,000 rpm for 15 h. 1.5 
ml was removed from the top of the gradient and immediately treated with 
0.38 ml of SDS sample buffer. The gradient pellet was resuspended in 1.875 
ml of sample buffer. Equal volumes of supernatant and pellet were loaded 
onto SDS-PAGE and the resulting amounts of myosin determined by den- 
sitometry. 
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Gel Electrophoresis 
The gel electrophoresis, Coomassie-blue staining, and destaining protocols 
used were as previously described (Epstein et al., 1985, 1988) with the fol- 
lowing modifications. Samples were loaded with a buffer containing 3 % 
glycerol. With the exception of untreated sections, which were immediately 
solubilized by heating 90 s in boiling water, all samples were heated at 80"C 
for 10 min before loading. Electrophoretic current was kept at 7 mA (40 V) 
until dye front had moved half the distance of the gel, alter which current 
was increased to 20 mA. Gels were stained and destalned in a solution of 
45% methanol, 10% acetic acid. Densitometry of Ccomassie-blue stained 
bands was analyzed using a model 620 Videodcnsitometer 0Bio-Rad Labs., 
Riehmund, CA). Linearity over a 20-fold range of Coomassie-bhie stained 
protein was achieved by determining the "cross-product area" of each band. 
The maximal horizontal distance and the central vertical distance was deter- 
mined for each band, and their product calculated. 

Electron and lmmunoelectron Microscopy 
Procedures for electron microscopic examination of native- and antibody- 
labeled thick filaments has previously been described (Epstein et al., 1985; 
Miller et al., 1983). Monoelonal antibodies 5.6 (anti-mhc A), 28-2 (anti- 
rnhc B), and 5-23 (anti-pro) were reacted at 1, 10, and 50/~g/ml, respec- 
tively. The secondary antibody, affinity-purified goat anti-mouse (Cappel 
Luss, Durham, NC) was used at 20 ~g/ml. Electron microscopy of porified 
materials were prepared from unpelleted gradient fractions. Length deter- 
minations of native and dissociated filaments were made by measuring 
lengths on photographic enlargements of electronmicrographs. Magnifica- 
tions were calibrated with eatalase crystals. Structures (native or dis- 
sociated) were classified into three groups based upon the degree of anti- 
mhc A labeling: no label, label at one end but not exhibiting a complete 
central zone, and structures with full length central zones (1.8 #m). 

Results 

Improved Isolation of Thick Filaments 
Fig. 1 shows the protein compositions of the early steps in 
isolating thick filaments from C. elegans. The initial homog- 
enization preferentially removed nuclei and ribosomes from 
the sections (compare Fig. 1 B to Fig. 1 C). The sections 
were then more extensively homogenized with smaller 
amounts of nuclei and ribosomes still being released as evi- 
denced by histones and ribosomal proteins. The extract was 
clarified of large aggregates of various structures including 
filaments, nuclei, and debris by sedimentation at 6,200 g 
(6.2 K supernatant). The protein composition of the 6.2 K 
supernatant was very similar to the composition of the 3 x 
homogenized sections shown in Fig. 1 C. Thick filaments 
can be concentrated by centrifuging the 6.2 K supernatant at 
15,000 g and collecting the thick filament-containing 15 K 
pellet (Fig. 1 D). Thin filaments, ribosomes, and other spe- 
cies of lower S value were enriched in the 15 K supernatant. 
Thick filaments and core structures were further purified on 
gradients for certain experiments (see below). 

Dissociation of Paramyosin from Thick Filaments 

The dissociation of the three major body wall thick filament 
proteins mhc A, and rnhc B, and pm with KC1 has been ex- 
amined previously leading to the identification of core struc- 
ture (Epstein et al., 1985). From those experiments, it ap- 
peared that myosin and pm were extracted almost completely 
from filaments at 400 mM KCI. A smooth core structure 
with a thickened central region that reacts with anti-mhc A 
antibodies remained. However, the smaller amounts of fila- 
ments then available and increased levels of impurities inter- 
fered with the analysis of low levels of pm by gel electropho- 
resis and densitometry. Current dissociation experiments 
(Fig. 2) treating more highly purified filaments with a mix- 

Figure 1. Gel electrophoresis of selected steps in the enrichment of 
thick filaments. (25 ~g of total protein per lane). Limited gentle 
homogenization before isolation resulted in sections enriched in 
filaments. Untreated section (,4), Triton X-100-treated sections (B), 
3x  homogenized pellet (C), and isolated filaments pelleted to re- 
duce actin and ribosomal contaminants (D). 
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Figure 2. Dissociation of myosin heavy chains and paramyosin from 
thick filaments. 15 K pellet filaments were aliquotod and rq~llctcd.  
Pellets were resuspended with modified buffer, which had addi- 
tional NaC1 as described along X-axis. In addition, some sample s 
were subjected to NaCI treatment (700 raM) at elevated pH. All 
samples were rcpelleted 1.1 h at 12,000 rpm. Myosin heavy chaing 
(closed squares) and pm (open circles) were quantitated by video 
densitometry of Coomassie blue-stained SDS gels. 
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ture of 100 mM KC1 and added NaCI resemble the previous 
work in that a majority of both myosin and pm are extracted 
from filaments with 500 mM mixed salt concentration (NaC1 
is a slightly milder dissociant than KC1). However, at con- 
centrations of mixed salt greater than 500 mM (pH 6.35) and 
less than 800 mM (pH 8.0), a plateau level of pm (~30%) 
remains pelletable. The sedimentation of soluble pm, with 
a sedimentation coefficient of less than 4, cannot account for 
this plateau. Comparison of these results with previous ex- 
periments indicated that the pro-containing structures re- 
maining at plateau conditions were likely to be core struc- 
tures. 

Core Structures Contain Paramyosin 

Native filaments were incubated with 400 mM NaCI-100 
mM KCI, pH 6.34, leading to partial dissociation and exam- 
ined by electron microscopy. Fig. 3 A shows an untreated na- 
tive filament obtained from the 15 K pellet with a diameter 
of 25 nm. Dissociated structures (Fig. 3 B) showed the same 
diameter as previously described for core structure (15 rnn) 
(Levine et al., 1982). A faint repeat of 72.5 nm was visible 
in the dissociated structures. 

The core structures were reacted with anti-pro monoclonal 
antibody (mAb 5-23) at 50/~g/ml followed by secondary an- 
tibody in order to verify the existence of pm on dissociated 
structures. Lower concentrations of anti-pm, 1.0 and 10.0 
/zg/ml, do not detectably label the core structures (Epstein 
et al., 1985). Fig. 3 C shows the strong reaction of these anti- 
bodies at regular 72.5 nm intervals along the dissociated 
structures. This monoclonal antibody did not label native 
filaments under conditions that the anti-mhc A and anti-mhc 
B labeled (data not shown). Neither secondary antibody 
alone reacted with core structures and secondary anti-mhc 
B (mAb 28.2). Anti-robe A (mAb 5.6) labeled the central 
regions of core structures verifying previous work (Epstein 
et al., 1985). The locations of the anti-pro reactions indi- 
cated that core pm may extend to the central mhc A-contain- 
ing regions of core structures (Epstein et al., 1985). 

Length and Symmetry of Filaments 
and Core Structures 
Previous results of this laboratory show that the average 
length of isolated core structures, 3.2 #m, was significantly 
shorter than the initial native thick filaments, 7.3 #m (Ep- 
stein et al., 1985, 1988). Our previous models for filament 
dissociation proposed that pm dissociates radially. However, 
the present observation that the less dissociable pm is the 
major component of a shortened substructure raises the pos- 
sibility that the more dissociable fraction of pm could have 
been removed processively from the ends of filaments. A 
second mechanism for the shortening of core structures is 
mechanical shearing. 

To distinguish between these mechanisms for pm dissocia- 
tion and reduction in the lengths of structures, both isolated 
native thick filaments and dissociated core structures were 
analyzed in terms of their overall lengths, the presence of in- 
tact central mhc A-containing zones, and the symmetry of 
the overall structure about these zones. The central zones 
were identified by reaction with anti-robe A (mAb 5.6) which 
produces prominent labeling of the central 1.8/~m zones of 
native filaments (Miller et al., 1983). The very center of 
these rnhc A-containing zones, the 0.15 ~m long structural 

Figure 3. Labeling of core structures by anti-pm. 15 K pelleted 
thick filaments (,4) were treated with 500 mM mixed NaCI-KCI, pH 
6.35 (B), and then reacted with 50/~g/ml monoclonal antibody 
(mAb 5.23) followed by 20 ~,g/ml affinity-purified goat anti-mouse 
secondary antibody (C). Samples were negatively stained with 2 % 
uranyl acetate and viewed by electron microscopy. Bar, 100 nm. 

bare zone which contains only the rods of myosin molecules, 
remains unlabeled because mAb 5.6 reacts with the S2 hinge 
region of mhc A (Epstein et al., 1986). Structures that did 
not contain these zones or only incomplete ones were con- 
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sidered to be products of shearing. The remaining structures 
were considered to be products of dissociation; symmetrical 
filaments and core structures could be the products of 
processive and/or radial dissociation. These possibilities 
were distinguished by comparing the lengths of the initial 
filaments and dissociated core structures. The distribution of 
pm along the long axis was assumed to be uniform for the 
calculations below. 

Fig. 4 A shows the lengths and central zone characteristics 
of isolated thick filaments. The mean length of filaments with 
complete central zones was 7.1 #m. This length, itself, is 
shorter than the 9.7 #m length estimated from polarized light 
microscopy from body-wall muscle A bands in situ (Macken- 
zie and Epstein, 1980) and may result, in part, from the pro- 
cessive solubilization of 22 % of myosin, predominantly mhc 
B (see below), during isolation. Shearing also plays a role 
since 6.5% of the filaments lack centers, and the filaments 
with centers exhibited some lack of symmetry (Fig. 4 C). 

The average length of dissociated structures was 3.2 #m 
(Fig. 4 B). However, 27% did not show mhc A-labeled cen- 
tral zones. The dissociated structures with complete central 
zones showed a mean length of 3.9 t~m and a small deviation 
from symmetry similar to that of the isolated filaments (Fig. 
4 D). These experiments indicated that the lengths of core 
structures with centers were 55 % of the lengths of the origi- 
nal isolated filaments with centers and represented 89 % of 
the mass of total core structures based upon the length distri- 
bution. Processive loss of length alone or together with 
shearing (11% of the mass) cannot, therefore, numerically 
account for the dissociation of 70 % of pm from the initial 
filaments. We conclude that a significant fraction of pm dis- 
sociated radially in the production of core structures in addi- 
tion to processive dissociation and shearing. 

Purification o f  Native Filaments 

The dissociation experiments as monitored by gel elec- 
trophoresis and electron microscopy suggested the presence 
of two populations of pm in thick filaments. Pm molecules 
in the more readily dissociated population may associate 
with myosin molecules of the filament cortex and other pm 
molecules whereas pm molecules in the less dissociable 
population would be associated within the core structures. 
One possible explanation for decreased dissociation of the 
internal population may be the presence of additional pro- 
teins which interact with the pm in the core structures. 
Sedimentation on velocity sucrose gradients has been used 
previously in order to search for minor thick filament pro- 
teins (Morimoto and Harrington, 1973; Epstein et al., 
1988); however, because of the smaller amounts of isolated 
filaments available in the 1988 nematode experirnents, it was 
not possible to isolate and purify a sufficient quantity of 
structures for the clear identification of proteins by Coomas- 
sie blue staining. 

The improved isolation procedure described above is suit- 
able for the higher yield purification of filaments (Fig. 5 A). 
The results of this purification are similar to those described 
previously, but resulted in about 23 #g of highly purified 
thick filaments from each gram of nematodes (Table I). Fig. 
5 A (lanes 5-8) show that the peak fractions containing thick 
filament-associated myosin and pm were well separated from 
structures of lower S value and allowed the detection by 
Coomassie blue staining of thick filament-associated minor 
proteins present at levels of 1% or greater. 

A number of minor proteins consistently copurified with 
thick filaments (Fig. 5 A). By SDS-PAGE, a set of protein 
bands were detected between myosin and pm. Their levels 

Figure 4. Length and sym- 
metry of filaments and COle 
structures. 15 K pelleted thick 
filaments and 15 K pelleted 
thick filaments dissociated by 
adding 400 mM NaC1 were al- 
lowed to attach to grids and 
subsequently reacted with 
mAb 5.6 (anti-mhc A) fol- 
lowed by secondary antibody. 
Histograms of lengths of na- 
tive filaments (A, n = 403) 
and dissociated structures (B, 
n = 280) arc subdivided 
into three groups: structures 
that lack antibody labeling 
(white), structures with some 
antibody labeling but lack true 
central zones (grey), and 
structures with complete cen- 
tral zones (dark grey). The 
symmetry of the structures 
which contain centers was 
analyzed by plotting length of 
the longest arm left of the ori- 
gin and the length of the short- 

est arm right of the origin for both native (C) and dissociated (D) filaments. Note that the Gaussian curves and means were calculated 
from the total data whereas the histograms were constructed by grouping the data into the indicated bins. 
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Figure 5. Purification of na- 
tive filaments and core struc- 
tures: demonstration of minor 
core associated proteins. Both 
native filaments (A) and core 
structures (B) were purified 
on four parallel 18 ml 18- 
33% sucrose gradients at 
7,000 rpm. Native filaments 
(15 K pellet) sedimented for 
9 h at a distance consistent 
with 500 S particles. Core 
structures (KSCN dissociated 
filaments from preparative gra- 
dients) sedimented for 32 h at 
a distance consistent with 150 
S particles. Single lane (C) is 
an enlargement of lane B6 
showing three putative core 
structure-associated proteins. 
Putative core proteins (PCP) 
refer to the subset of minor 
components which are found 
in both native filaments and 
core structures. 

correlated with the amounts of myosin heavy chain present. 
In immunoblots, these bands label with either anti-rnhc A or 
anti-mhc B (data not shown). Previous experiments demon- 
strated that the nematode homogenates when analyzed im- 
mediately lack these bands, suggesting that these proteins are 
breakdown products of myosin heavy chains. The gel region 
between pm and the myosin light chains (Fig. 5 A) contained 
a prominent band at 28 kD, two prominent bands at 30 kD, 
and two faint bands at •20 and 32 kD. Monoclonal anti- 
myosin and anti-pm antibodies did not show reaction with 
any bands in this region (data not shown). 

Purifu:ation of Dissociated Filaments 

Because the majority of myosin and pm molecules have been 
dissociated, core structures should have a significantly lower 
S value than native filaments. Therefore, sedimentation ve- 
locity experiments would be useful for separating core struc- 
tures and their associated proteins from other species. Al- 
though NaC1 was useful in titrating the dissociation of thick 

filaments, filaments dissociated in NaC1 aggregate upon 
sedimentation into higher S value complexes. KSCN, a 
stronger dissociant, does not result in the large scale aggre- 
gation of unpelleted structures. Densitometric analysis of 
pelleted core structures generated by 50 mM KSCN and 500 
mM mixed chloride salts (100 mM KCI, 400 mM NaC1) 
demonstrated that conditions were comparable, and 50 mM 
KSCN was used to dissociate native filaments in order to 
produce purifiable cores. 

To preselect only thick filament-associated proteins, thick 
filaments were first partially purified on preparative gra- 
dients. In such preparations, five minor protein bands be- 
tween 20-32 kD were prominent. Thick filaments were then 
dissociated with 50 mM KSCN and resedimented over a sec- 
ond set of gradients. Fig. 5 B shows that at the same rotor 
speed, dissociated filaments required 32 h to sediment a dis- 
tance traveled in 9 h by native filaments. As a control, native 
filaments were repurified on similar gradients and showed an 
identical mobility to 15 K pellet filaments. This experiment 
suggested that the apparent sedimentation constant of 500 S 

Table L Isolation and Purification of Thick Filaments 

Total protein 
(rag) 

TFAP~ 
Myosin* PM 

(rag) (rag) (rag) (%) Fold purification 

Untreated sections~ 108 
Triton X-100 pellet 20 
3X Homogenized pellet 13 
15 K × g Pellet of isolated filaments 0.80 
Gradient purified filaments 0.026 

3.10 1.15 4.77 4.4 1.0 
3.10 1.15 4.77 23.8 5.4 
2.34 0.80 3.52 27.1 6.2 
0.23 0.11 0.382 47.8 10.9 
0.012 0.0067 0.023 92.4 21.0 

* Myosin values represent the sum of myosin heavy chains and light chains. 
TFAP, thick filament associated proteins (Myosin, pm and PCPs), the values obtained for putative core proteins (PCP) in the purified filaments are used in evalu- 

ating TFAP and are assumed to be a fixed ratio relative to myosin and pro. 
§ Because the level of nonfilament associated proteins in the whole homogenate obscures the densitometric measurement of myosin and pm, the total amount of 
individual TFAPs are assumed to be the same as the TX-100 pellet. 
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be interpreted cautiously. Densitometric analysis of nonfila- 
merit containing supernatants of native filament extracts 
demonstrate that 22 % of myosin is solubilized during isola- 
tion and purification. Summing the soluble myosin and the 
fraction of assembled myosin in the isolated thick filaments 
results in a molar ratio of myosin to paramyosin of 1.0:1.2. 
This value is similar to the ratio of A and B myosin heavy 
chains:pm (mol/mol) of 1.0:1.1 measured previously by den- 
sitometry of immunoblots of L4 worm homogenates (Honda 
and Epstein, 1990). 

Several Polypeptides Are Associated with 
Purified Core Structures 

SDS-PAGE of the fraction most enriched in core sedimenta- 
tion velocity gradient was analyzed by densitometry in order 
to determine the relative proportion of protein constituents. 
Myosin, as monitored by myosin heavy chain, was present 
at 5% and pm at 69% by weight of total Coomassie blue- 
stained material. Fig. 5 C shows that only three of the five 
previously noted thick filament-associated polypeptides were 
enriched with the core structures. The three polypeptides at 
30, 28, and 20 kD account for 10, 11, and 5 % of core protein 
mass, respectively, and would exist in core structures at mo- 
lar ratios to molecular pm (a dimer of two 100-kD polypep- 
tides) of 1.0, 1.2, and 0.80, respectively (Table ID. 

Electron Microscopy of  Purified Core Structures 

In contrast to previous work with more heterogeneous mate- 
rial, purified core structures showed a pronounced repeat of 
72.5 nm containing three subregions of low stain penetration 
(Fig. 6, B-D). These repeats were relatively faint in purified 
native filaments (Fig. 6 A). Along the length of many core 
structures, regions in which four or more longitudinal, stain- 
excluding strands could be observed in projection, but their 
location did not precisely coincide with the 72.5 nm repeats. 
By inspection, the pattern of the repeats was clearly polar. 

Discussion 

We have reexamined the complex substructure of thick fila- 
ments and their core structures in C. elegans, grlth the avail- 

Figure 6. Electron microscopy of purified filaments and core struc- 
tures. Gradient purified core structures (B-D) are compared with 
purified native filaments (A). Samples were negatively stained with 
2% uranyl acetate. Bar, 100 run. 

for native filaments was reduced substantially upon partial 
dissociation to an apparent 150 S for the core structures. The 
existence of core structures within the peak fractions was 
confirmed by electron microscopy (Fig. 6, B-D). 

The myosin and pm in the cortex of purified thick filaments 
appear to have 1:1 stoichiometry, however, this result must 

Table II. Polypeptide Components of Thick Filaments and 
Core Structures 

Polypeptide Thick filament Core structure Soluble 

Mhc A and B* 2.88 0.035 2.85 

Pm 3.3 1.0 2.3 
P32 0.29 - 0.29 

P30a 0.5 0.5 - 
P30b 0.5 - 0.5 
P28 0.65 0.65 - 

P20 0.42 0.42 - 

MLC 2.88 0.035 2.85 

Values represent the molar ratio of filament polypeptides to core pm polyl~p- 
tide. Values for MLC are based upon myosin heavy chains. Actual stoichio- 
metric relationship of associated core proteins may be doubled since both 
myosin heavy chain and pm exist as dimers. 
* Myosin value is the summation of filament bound myosin as well as myosin 
released upon isolation. 
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ability of increased amounts and purity of nematode thick 
filaments, titration with salts and pH distinguishes two popu- 
lations of pro based upon their differential dissociations. The 
less dissociable population ofpm, •30% of the total, is the 
major protein component of core structures. Processive loss 
of pm from filament ends cannot fully explain the 70 % dis- 
sociation ofpm since the resulting core structures show 55 % 
of the lengths of isolated thick filaments. A significant por- 
tion of the pm, *45 %, must be dissociated by other mecha- 
nisms. Radial dissociation of this pm appears to be the most 
likely alternative mechanism while the contribution of shear- 
ing is relatively minor. The presence of pm has been verified 
by labeling with anti-pm antibodies at regular intervals of 
72.5 run in all but the most central regions of isolated core 
structures. Native thick filaments react along their entire 
lengths with anti-pm mAb except for their central zones in 
immunofluorescence microscopy experiments (Epstein et 
al., 1993). This finding is consistent with our assumption of 
a uniform distribution of pro in the polar regions of thick fila- 
ments in order to estimate radial and longitudinal dissocia- 
tion of pin. Our calculations of radial dissociation may be un- 
derestimates rather than overestimates because the clear 
tapering of the thick filaments suggests that there may be less 
non-core paramyosin near the poles than towards the center 
of the filaments (Epstein et al., 1985). 

The greater yields and purification of thick filaments than 
obtained previously (Epstein et al., 1985, 1988) allow the 
identification of three proteins with Mrs of 20, 28, and 30 
kD as additional putative components of core structures. 
These polypeptides are detectable by Coomassie blue in the 
current samples of purified core structures whereas in the 
previous preparations of thick filaments, the lower levels of 
additional bands required silver staining for their detection. 
P20, 28, and 30 differ from all but possibly polypeptide j 
previously described (Epstein et al., 1988). The other poly- 
peptides in the 100-200-kD range are cross-reaedve with 
anti-mhc A mAb as detected by sensitive alkaline phospha- 
tase-linked secondary antibody (Deitiker, P. R., D. L. Casey, 
and H. F. Epstein, unpublished work). A polyclonal antise- 
rum has been raised to P28; this antibody reacts with P28 
but not pm on immunoblots (Deitiker, P. R., and H. F. Ep- 
stein, unpublished results). The very large gene product of 
unc-22 in C. elegans, twitchin, is detectable in purified thick 
filaments only at low levels by immunoblots with anti-twitchin 
antibody; most of the twitchin cosediments at about llS with 
the nonfilamentous 22 % of myosin (Valenzuela, M., P. R. 
Deitiker, H. F. Epstein, and G. Benlan, unpublished results). 
The apparent stoichiometfies of the 20, 28, and 30 kD poly- 
peptides with core pm molecules are about 1:1:1:1. The puri- 
fication of core structures has allowed the visualization of 
72.5 nm axial repeats reminiscent of the well known para- 
crystalline organization of pm as well as more complex sub- 
structures that require further elucidation. 

The presence of pm in core structures modifies the model 
of filament structure (Fig. 7) that proposed the coaxial as- 
sembly outside to inside of myosin, pm, and a non-pm core 
structure (Epstein et al., 1985). However, the existence of 
two populations of pm may be related to two sets of differen- 
tial interactions of pm with other proteins as well as with it- 
self (Epstein et al., 1988). The more easily dissociable pm 
would interact primarily with myosin molecules in the thick 
filament cortex and secondarily with the underlying core 
structures. The less easily dissociable pm would interact pri- 

Figure 7. Model of thick filament substructures in C elegans. One 
half of a filament is depicted schematically. (A) The myosin cortex 
with its central mhc A zone and its polar mhc B zone. (B) The more 
dissociable paramyosin compartment. (C) The core structure con- 
taining the less dissociable paramyosin and the putative core pro- 
teins. 

marily with other pm molecules and possibly, the associated 
core proteins I'20, P28, and P30. The information regarding 
pm in this report is limited to the mhc B-containing polar 
regions of nematode thick filaments. The composition and 
organization of the filament backbones in the mhc A-contain- 
ing central zones is not known. 

The two populations of pm might also differ at the level 
of posttranslational modification. Previous work suggests 
that nematode pln exists in several phosphorylation states 
(Schriefer and Waterston, 1989) and that the cortical pm is 
phosphorylated preferentially upon solubilization whereas 
the remaining core structure pm does not readily accept 
phosphoryl transfer in vitro (Dey et al., 1992). The differ- 
ences between the two pm populations in both their assembly 
and dissociability may possibly be related to differential 
phosphorylation. 

Genetic results also suggest the possible role of modifica- 
tion in the assembly of thick filaments. The pm in unc-82 
mutants has been reported to show altered phosphorylation 
(Schriefer and Waterston, 1989). Uric-82 mutants also pro- 
duce multifilament assemblages similar to those of uric-15 
mutants with changes in single charges (Epstein et al., 
1987). These observations suggest that the model of Gengyo- 
Ando and Kagawa (1991) in which the uric-15 mutations re- 
duce the stability of myosin-pm interactions normally within 
wild-type thick filaments and thereby enhance the pm-pm 
interactions that are predominant in the mutant multifila- 
merit assemblages could also apply to the uric-82 mutations. 
These considerations would provide additional support for a 
possible role of phosphorylation in the formation of myosin- 
pm interactions within the more cortical regions of the thick 
filament. 

The possibility that alternative pm isoforms exist as in 
Drosophila (Becker et al., 1992) cannot be formally ex- 
cluded. However, there appears to be only one major mRNA 
species encoding pm by Northern blot analysis (Honda and 
Epstein, 1990; Kagawa et al., 1989). Since the e1214 prema- 
ture chain termination allele of uric-15, the known nematode 
pm gene, shows complete or nearly complete loss of pin 
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(Waterston et ai., 1977; Mackenzie and Epstein, 1980), 
there does not appear to be a second gene that could encode 
30% of the pm. 

The polar arrangements of 72.5 nm repeats in the electron 
micrographs of the anti-pm antibody-labeled isolated core 
structures and the negatively stained purified core structures 
are consistent with the P1 arrangement proposed for syn- 
thetic paracrystals of purified pm (Cohen et al., 1971, 1987), 
with the prediction of optimal stagger between pm molecules 
based upon analysis of the amino acid sequence (Kagawa et 
al., 1989), and the distance in the sequence between the sin- 
gle charge mutation e73 and its revertant m209 (Gengyo- 
Ando and Kagawa, 1991). However, each 72.5 nm repeat in 
the nematode core structures contains three sub-regions of 
differing lengths that exclude negative stain. This pattern ap- 
pears more complex than the simple alternation of stained 
and stain-excluded subregions seen with the P1 paracrystals. 
In one of these subregions, a number of strandlike structures 
(most usually four) are seen. These strands may represent 
projections of subfilaments composed of coiled-coil pm rods. 
The relative complexity of these patterns compared to those 
of synthetic paracrystals of purified pm may be caused by in- 
teractions of the pm with the additional proteins of the core 
structures. Preliminary three-dimensional reconstructions 
of these electron micrographs of purified core structures sug- 
gest the presence of globular proteins inside sheaths of heli- 
cally arranged paramyosin-containing subfilaments (Schmid, 
M., G. Lu, P. R. Deitiker, I. Ortiz, and H. E Epstein, un- 
published results). 

The present results provide a basis for further understand- 
ing of the roles of the core proteins pm, P20, P28, and P30 
in the assembly and three-dimensional structure of thick fila- 
ments. The molar stoichiometry of dimeric pm molecules to 
the associated core polypeptides is consistent with the latter 
acting as molecular cross-linkers of pm within the core 
structure. Our model is distinct from the proposals for the 
subfilaments of scallop striated muscle thick filaments which 
may contain myosin, pm, and high molecular weight acces- 
sory proteins (Vibert and Castellani, 1989; Castellani and 
Vibert, 1992). The production of specific antibodies to P20, 
P28, and P30 may permit verification of their location in the 
core structures and characterization of their sequences 
through molecular cloning. Further analysis of the phos- 
phorylation of pm is needed to clarify the role of this 
modification in thick filament structure and assembly. The 
availability of purified core structures with evident periodic 
substructures may permit more detailed structural analysis 
of the molecular interactions within the backbones of thick 
filaments of C. elegans. 

This paper is dedicated to the memory of Professor William F. Harrington 
who encouraged us in this work. We are indebted to our colleagues Irving 
Ortiz, Douglas Casey, Michael Schmid, and Wall Chiu for assistance, en- 
couragement, and suggestions. Ritesh Mathur contributed to the filament 
purification experiments. 

This research was supported by grants from the National Institute of 
General Medical Sciences and the Muscular Dystrophy Association. 

Received for publication 11 December 1992 and in revised form 6 July 
1993. 

References 

Anderson, P. 1989. Molecular genetics of nematode muscle. Annu. Rev. Genet. 
23:507-525. 

Becker, K. D., P. T. O'Donnell, J. M. Heitz, M. Vito, and S. I. Bernstein. 
1992. Analysis of Drosophila paramyosin: identification of a novel isoform 

which is restricted to a subset of adult muscles. J. Cell Biol. 116:669-681. 
Castellani, L., and P. Vibert. 1992. Location of paramyosin in relation to the 

scallop striated muscle. J. Muscle Res. Cell Motil. 13:174-182. 
Cohen, C., A. G. Szent-Gy6rgyi, and J. Kendrick-Jones. 1971. Paramyosin 

and the filaments of the molluscan ~catch" muscles. I. Paramyosin: structure 
and assembly. J. Mol, Biol. 56:223-237. 

Cohen, C., D. E. Lariat, and D. A. D. Parry. 1987, Amino acid sequence and 
structural repeats in schistosome paramyosin match those of myosin. Biosci. 
Rep. 7: i 1-16. 

Davis, J. S. 1986. A model for length-regulation in thick filaments of vertebrate 
skeletal myosin. Biophys. J. 50:417-422. 

Dey, C. S., P. R. Deitiker, and H. F. Epstein. 1992. Assembly-dependent phos- 
phorylation of myosin and paramyosin of native thick filaments in 
Caenorhabditiselegans. Biochem. Biophys. Res. Commun. 186:1528-1532. 

Epstein, H. F., and D. A. Fischrnan. 1991. Molecular analysis of protein as- 
sembly in muscle development. Science (Wash. DC). 251:1039-1044. 

Epstein, H. F., D. M. Miller, I. Ortiz, and G. C. Berliner. 1985. Myosin and 
paramyosin are organized around a newly identified core structure. J. Cell 
Biol. 100:904-915. 

Epstein, H. F., I. Ortiz, and L. A. Traeger Mackinnon. 1986. The alteration 
of myosin isoform compartmentation in specific mutants of Caenorhabditis 
elegans. J. Cell Biol. 103:985-993. 

Epstein, H. F., G. C. Berliner, and I. Ortiz. 1987, Assemblages of multiple 
thick filaments in nematodes. J. Muscle Res. Cell Motil. 8:527-536. 

Epstein, H. F., G. C. Berliner, D. L. Casey, and I. Ortiz. 1988. Purified thick 
filaments from the nematode Caenorhabditis elegans: evidence for multiple 
proteins associated with core structures. J. Cell Biol. 106:1985-1995. 

Epstein, H. F., D. L. Casey, and I. Ortiz. 1993. Myosin and paramyosin of 
Caenorhabditis elegans embryos assemble into nascent structures distinct 
from thick filaments and multi-filament assemblages. J. Cell Biol. 
122:845-858. 

Gengyo-Ando, K., and H. Kagawa. 1991. Single charge change on the helical 
surface of the paramyosin rod dramatically disrupts thick filament assembly 
in Caenorhabditis elegans. J. biol. Biol. 219:429-441. 

Harris, H. E., and H. F. Epstein. 1977. Myosin and paramyosin of Caenorhab- 
ditis elegans: biochemical and structural properties of wild type and mutant 
proteins. Cell. 15:709-719. 

Honda, S., and H. F. Epstein. 1990. Modulation of muscle gene expression in 
Caenorhabditis elegaus: differential levels of transcripts, mRNAs, and poly- 
peptides for thick filament proteins during nematode development. Proc. 
Natl. Acad. Sci. USA. 87:876-880. 

Huxley, H. E. 1963. Electron microscopy of native and synthetic protein fila- 
ments from striated muscle. J. MoL Biol. 7:281-308. 

Kagawa, H., K. Oenkyo, A. D. McLachian, S. Brenner, and J. Kam. 1989. 
Paramyosin gene (uric-15) of Caenorhabditis elegans. Molecular cloning, 
nncleotide sequence and models for thick filament structure. J. Mol. Biol. 
207:311-333. 

Levine, R. J. C., M. Elfvin, M. M. Dewey, andB. Walcott. 1976. Paramyosin 
in invertebrate muscles. II. Content in relation to structure and function. J. 
Cell Biol. 71:273-279. 

Levine, R. J. C., R. W. Kensler, M. Stewart, andJ. C. Haselgrove. 1982. Mo- 
lecular organization of L/mulus thick filaments. In Basic Biology of Muscles: 
A Comparative Approach. B. M. Twarog, R. J. C. Levine, and M. M. 
Dewey, editors. Raven Press, New York. pp. 37-52. 

Levine, R. J. C., R. W. Kensler, M. C. Reedy, W. Hofmann, and H. A. King. 
1983. Structure and paramyosin content of tarantula thick filaments. J. Cell 
Biol. 97:186-195. 

Levine, R. J. C., R. W. Kensler, and P. Levitt. 1986. Crossbridge and back- 
bone structure of invertebrate thick filaments. Biophys. J, 49:135-138. 

Mackenzie, J. M., and H. F. Epstein. 1980. Paramyosin is necessary for deter- 
ruination of nematode thick filament length in vivo. Cell. 22:747-755. 

McLacldan, A. D., andJ. Karn. 1982. Periodic charge distribution in the myo- 
sin rod amino acid sequence match cross-bridge spacings in muscle. Nature 
(Lond.). 299:226-231. 

McLachlan, A. D., and J, Karn. 1983. Periodic features in the amino acid se- 
quence of the nematode myosin rod. J. Mol. Biol. 164:605-626. 

Miller, D. M., I. Ortiz, G. C. Berliner, and H. F. Epstein. 1983. Differential 
localization of two myosins within nematode thick filaments. Cell. 34: 
477-490. 

Morimoto, K., and W. F. Harrington. 1973. Isolation and composition of rabbit 
skeletal thick filaments. J. biol, Biol. 77:165-175. 

Schachat, F., R. L. Garcea, and H. F. Epstein. 1978. Myosins exist as 
homodimers of heavy chains: demonstration with specific antibody purified 
by nematode mutant myosin affinity chromatography. Cell. 15:405-411. 

Schriefer, L., and R. H. Waterston. 1989. Phosphorylation of the N-terminal 
region of Caenorhabditis elegans paramyosin. J. Mol. Biol. 207:451-454. 

Szent-Gy6rgyi, A., C. Cohen, and J. Kendrick-Jones. 1971. Paramyosin and 
the filaments of mollusean "catch ~ muscles. II. Native filaments: isolation and 
characterization. Y. Mol. Biol. 56:239-258. 

Vibert, P., and L, Castellani. 1989. Substructure and accessory proteins in scal- 
lop myosin filaments. J. Cell Biol. 109:539-547. 

Waterston, R. H., H. F. Epstein, and S. Brenner. 1974. Paramyosin of 
Caenorhabditis elegans. J. Mol. Biol. 90:285-290. 

Waterston, R. H., R. M. Fishpool, and S. Brenner. 1977. Mutants affecting 
paramyosin in Caenorhabditis elegans. J. Mol. Biol. 117:679-697. 

Waterston, R. H. 1989. The minor myosin heavy chain, mhcA, of Caenorhab- 
ditis elegans is necessary for the initiation of thick filament assembly. EMBO 
(Fur. Mol. Biol. Organ.) J. 8:3429-3436. 

Deitiker and Epstein Thick Filament Core Structures 311 


