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Sleep spindles are bursts of sleep electroencephalogram (EEG) quasirhythmic activity within the frequency band of 11-16 Hz,
characterized by progressively increasing, then gradually decreasing amplitude. The purpose of the present study was to process
sleep spindles with Independent Component Analysis (ICA) in order to investigate the possibility of extracting, through visual
analysis of the spindle EEG and visual selection of Independent Components (ICs), spindle “components” (SCs) corresponding to
separate EEG activity patterns during a spindle, and to investigate the intracranial current sources underlying these SCs. Current
source analysis using Low-Resolution Brain Electromagnetic Tomography (LORETA) was applied to the original and the ICA-
reconstructed EEGs. Results indicated that SCs can be extracted by reconstructing the EEG through back-projection of separate
groups of ICs, based on a temporal and spectral analysis of ICs. The intracranial current sources related to the SCs were found to

be spatially stable during the time evolution of the sleep spindles.

1. Introduction

Sleep spindles are characteristic transient oscillations that
appear on the electroencephalogram (EEG) during nonrapid
eye movement (non-REM) sleep. They are characterized
by progressively increasing, then gradually decreasing wave-
forms with frequencies ranging from 11 to 16 Hz. Sleep
spindles characterize sleep onset, being one of the defining
EEG waveforms of stage 2 sleep. They are affected by
medication, aging, and brain pathology and may be involved
in learning processes [1]. Analyses of scalp-recorded sleep
spindles have demonstrated topographic distinction between
two sleep spindle classes: “slow” spindles, with spectral peak
frequency at around 12 Hz, and “fast” spindles, with spectral
peak frequency at around 14 Hz. Slow spindles are more
pronounced over frontal scalp electrodes, while fast spindles
exhibit mainly parietal and central scalp distribution [2—
5].

Independent Component Analysis (ICA) is a statistical
technique used for solving the Blind Source or Signal Separa-
tion (BSS) problem [6, 7]. Suppose that data measured in an
experiment are expressed through an n-dimensional vector
y(k) = [yl(k),...,yn(k)]T, for k = 1,..., Nample> where
Ngample is the number of measured data time samples. The
BSS problem relates to recovering unknown “source” signals
s1(k),...,sm(k) from their mixtures, that is, the measured
data, without prior knowledge about the mixing mechanism
producing the measured data. Sources and measured data are
related through

y(k) = Ms(k), k=1,..., Nyample, (1)
where M = [my,...,my,] is the unknown “mixing” matrix.
It should be noted that, in the BSS context, the term
“sources” does not refer to physical sources of the measured
data, but to the mathematical entities that could satisfy (1).
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The source signal, for each ICA source s; (j = 1,...,m),
is assumed to represent a random variable, whose sample
values are s;(1),...,5;(Nsmple). The source signal random
variables would be statistically independent if their joint
probability density function (pdf) f(s;---s,) could be
factored as follows:

FGsteossm) = filsi) fa(s2) - = = fin(sm)s (2)

where fj(s;) denotes the marginal pdf of s;.

ICA tries to estimate sources as linear projections of
the measured data, based on the criterion that the resulting
source time courses s;(1),...,5;(Neample) (j = 1,...,m),
that is, the ICA source signal random variables, should be
as statistically independent as possible [6]. Each estimated
source is called an independent component (IC). In a more
general aspect, in the case of time-series data, it is assumed
that each ICA source is generated by a random process, which
is independent of the random processes generating the other
sources.

The solution is in the form

sest(k) = Wy(k), k= L,..., Nsample, (3)

where W is called the “unmixing” matrix. ICs can be
determined up to a multiplicative sign [8], which may vary
across ICs. Due to this indeterminacy, ICs cannot be used for
directly extracting quantitative measures from their values.
Rather their characteristics, such as their waveform mor-
phology, indicate that they represent original independent
sources. Quantitative measures have to be extracted from
“reconstructed” data, which are reprojections of ICs, through
the mixing matrix [9].

When ICA is applied to electrical signals (mixtures)
recorded from the human body, it would be interesting
to investigate whether the current source regions of the
recorded signals, inside the human body, remain spatially
fixed for the duration of the recorded data. This characteristic
of current source regions would have special importance
for EEG data. It might be expressed through the qual-
ification of “spatial stationarity” for the current sources,
meaning that the EEG, reconstructed from a set of ICs, is
generated by current sources which have stable locations
for the duration of the recorded data [9, 10]. The spatial
stationarity characteristic would be desirable because, if ICA
could help in finding spatially stable intracranial current
sources, it might shed light to the localization of various
brain processes. ICA has been extensively used in EEG
signal processing applications, including noise elimination,
component extraction of Event-Related Potentials (ERPs),
and single-trial ERP analysis [10, 11].

In the case of sleep spindles, in the time frame of
a single spindle detected by a human scorer, there often
seems to exist separate spindle “components” (SCs), with
different frequency spectra and/or electrode distribution.
Differentiating SCs in the context of investigating related
intracranial current sources seems challenging, since SCs
might overlap in space and time. In previous work, the
extraction of such SCs has been investigated by applying ICA
to sleep spindle EEG [12].
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Techniques used for solving the inverse problem in order
to detect intracranial current sources of scalp-recorded EEG,
which assume a distributed current source model, have
been extensively used in recent years [13]. In these models,
extended brain areas are represented by a three-dimensional
grid of solution points. Each point is a possible location of
a current source. This approach does not pose restrictions
on the number and focality of sources to be computed.
It is suitable when there are no specific indications about
source locations and extent. On the other hand, the number
of source points can be much larger than the number of
measurement points on the scalp surface. This makes the
inverse problem a heavily undetermined one, resulting in
source distributions that are rather diffuse and extended.
Among the techniques assuming a distributed current source
model, Low-Resolution Brain Electromagnetic Tomography
(LORETA) is one of the most extensively used [14, 15].
LORETA solves the inverse problem by assuming that the
orientations and strengths of neighboring neuronal sources
are correlated, because neuronal activity in neighboring
patches of cortex is expected to be correlated. Mathe-
matically, this assumption is implemented by finding the
“smoothest” of all possible source density distributions.
The LORETA version presented by Pascual-Marqui et al.
in [15] considered a three-shell spherical head model that
was registered to the Talairach human brain atlas [16]. The
solution space was restricted to the cortical gray matter and
the hippocampus.

Based on recent research applying LORETA to visually
detected sleep spindles, there exist indications that the
difference in the frequency and topography of the two
sleep spindle classes reflects electrical activity related to
spindle oscillations at two broadly distinct cortical areas:
fast spindling source activity found posteriorly and slow
spindling source activity found anteriorly [17]. Concordant
LORETA results were obtained in the study of Durka et al.
[18], using multichannel matching pursuit as a preprocess-
ing step for automatic detection and parameterization of
sleep spindles. Furthermore, indications for the existence
of different and independent cortical circuits generating
the two classes of spindles have been provided by a study
of electrocorticographic (EcoG) potentials from electrodes
located in the prefrontal cortex [19]. On the other hand,
the two frequency classes have also been attributed to
a single mechanism, the duration of hyperpolarization-
rebound sequence in thalamocortical neurons. Accordingly,
long hyperpolarizations generate slower EEG frequencies,
while short hyperpolarizations create faster EEG frequencies
[20]. Indications for considering both slow and fast spindle
activity as a single event in global thalamocortical coherence
have been provided by a recent magnetoencephalographic
(MEG) source localization study [21]. Also, the neuronal
transition probability model proposed by Merica and For-
tune [22] invokes oscillatory modes of different frequencies
existing simultaneously in one fixed-size neuronal popula-
tion source. The hypothesis that there is only one kind of
sleep spindle and an anterior peak of alpha EEG activity
during non-REM sleep has also been supported [1, 23, 24].
Therefore, the question as to whether there exist one or two
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FiGure 1: Bandpass-filtered 21-channel EEG sleep spindle recording. In each electrode recording plot the first (second) vertical dashed
line indicates the time point of transition from part A (B) of the original single-spindle timeframe topart B (C). Potentials of EEG are in

microvolts.

functionally separate sleep spindle generators, related to the
fast and slow spindle classes, should be considered open.

The aim of the present study is to investigate the
application of ICA to sleep spindle EEG, in order to enable
the localization of intracranial current sources for SCs using
LORETA. The methodology that is proposed may contribute
to the on-going research concerning the existence of distinct
intracranial current sources for the slow and fast spindle
classes. Furthermore, an investigation is carried concerning
whether SCs are generated by intracranial current sources
with stable locations, that is, whether the current sources
for SCs possess a “spatial stationarity” characteristic for the
whole duration of the sleep spindle.

2. Material and Methods

2.1. Sleep EEG Recording Procedure and Preprocessing. A
healthy 27-year-old male subject slept for one night in the
Sleep Research Unit of the Department of Psychiatry at
the University of Athens Medical School. Informed consent
was obtained from the subject, and the study protocol
was approved as appropriate. The all-night polysomnogram
was recorded digitally utilizing a Micromed/BrainQuick
system. The EEG was recorded with 21 electrodes (referential
montage, reference at G2), at positions F8, T4, T6, Fp2, F4,
C4, P4, 02, Fpz, Fz, Cz, Pz, Oz, Fpl, F3, C3, P3, Ol, F7,

T3, T5, of the International 10/20 EEG electrode positioning
system, with sampling frequency 512 Hz. Visual evaluation
of the sleep record was carried out by an experienced
polysomnographer, utilizing standard procedures [25], and
was verified by a second one. The sleep EEG record was
divided into stages and sleep spindles were visually detected
from sleep stage 2, because sleep spindles are more prevalent
in this sleep stage [1]. The sleep spindles were filtered using
a 128th-order finite impulse response (FIR) bandpass filter,
with 3dB cut-off frequencies at 10.5 and 16 Hz, using the
software package Matlab (The MathWorks Inc.).

2.2. Computation of Independent Components. ICA was
applied on the original bandpass-filtered EEG data
(Figure 1), using the FastICA algorithm [26]. In order
to check whether the number of time samples available was
sufficient for providing stable Independent Components
(ICs) [9], the bandpass-filtered EEG data were upsampled 2,
4, 8, and 16 times. For all sampling rates, no differences were
found between the computed ICs.

The ICs, which were produced when a 21 X 21 unmixing
matrix was computed, were composed of short-duration
wavelets, with no apparent spindle-like activity and/or
correspondence to the EEG spindle activity [27]. It should
be noted that this was not due to algorithmic reasons
related to the FastICA algorithm, since the same picture



emerged for ICs when either the infomax [28] or JADE
(Joint Approximate Diagonalization of Figen-matrices) [29]
algorithms were applied, using the EEGLAB package [30].
In addition, this was not due to the number of time
samples available, since the phenomenon was present even
when the signal was highly upsampled (see above). In
order to overcome the problem described above, dimen-
sionality reduction was applied. The original data were
first “centered”; that is, the data vector was transformed
to a zero-mean variable. Then, dimensionality reduction
was applied, in which a subset of the eigenvalues of the
covariance matrix of the “centered” data was retained
[7, 27, 31]. The dimensionality reduction resulted in the
computation of n.4(<21) ICs. neq was selected as the
number of dominant eigenvalues which accounted for 99%
of the total variance of the bandpass-filtered EEG signal.
Consequently, an 7,4 X 21 unmixing matrix was computed
instead of a 21 X 21 matrix. This procedure has been
previously applied in ICA studies, where the dimensionality
of the problem was reduced, by computing a sub-set of
the rows of the unmixing matrix [31, 32]. Extensive trials
showed that the ICs which were computed through this
dimension-reduction technique did not include the short-
duration wavelets mentioned above. Instead, the ICs had
waveforms with spindle-like morphology, that is, waveforms
of gradually increasing and then decreasing amplitude,
lasting for at least 0.5 second.

2.3. Extraction of Spindle Components. The next step in
the analysis consisted of dividing the original single-spindle
timeframe into parts that reflected different spindle-like
patterns, within that spindle. The rationale for such a
temporal division is based on the observation that, within
a single spindle, different spindle-like patterns may appear
sequentially. The division was based on the existence,
in the EEG recordings, of distinct waxing-waning cycles
and/or on the existence of sustained transitions in instan-
taneous spindle frequency from “low” (<12 Hz) to “high”
(=13Hz) frequencies (or vice versa). The division was
done manually on the bandpass-filtered EEG recordings,
before application of ICA. The “division” point was located
at the middle of the transition either from one waxing-
waning cycle to the next one or from a low to a high
(or vice versa) instantaneous spindle frequency. Frequencies
equal to or higher than 14 Hz were considered “high” and,
together with the “borderline-high” frequency of 13 Hz,
were considered as representing the fast spindle class. The
13Hz frequency was included in the fast spindle class,
since the “border” between the spectra of the two spin-
dle classes has been shown to be in the 12-13 Hz band
[5, 33]. Accordingly, frequencies equal to or lower than
12 Hz were considered “low”, representing the slow spindle
class.

After the division of the single-spindle timeframe into
parts according to the decision process stated above, an
inspection of the computed ICs followed. The aim was to
select those ICs which possessed spindle-like morphology
and would best correspond to the previously selected parts
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FiGure 2: Independent Components (ICs) for the data in Figure 1.
The exact IC values do not possess an interest, due to the sign and
multiplicative constant indeterminacy of the results of ICA. The
absolute maximum value of all ICs dictated a common magnitude
range for the representation of the ICs. In each IC plot, the first
(second) vertical dashed line indicates the time point of transition
from part A (B) of the original single-spindle timeframe to part B
(O).

of the single-spindle timeframe, as far as their time duration
and their frequency content were concerned. For each EEG
part, some ICs were grouped together and were considered
as “representative” (main) ICs for that part, according to
the following procedure: For ICs to be considered as rep-
resentative of a spindle part, they should have had spindle-
like waveform extending to at least two-thirds of the entire
time length of the EEG part. Additionally, their maximum-
power frequency should have been in the same spindle
frequency class (slow or fast) as that of the EEG in that
part. However, even if an IC’s spindle-like activity possessed
temporal coincidence and had similar frequency content
with an EEG part, it was not included in the representative
IC group for that part if its spindle-like waveform extended
significantly (i.e., for more than 0.5second) into another
part.

It should be noted that in the process of the approximate
matching of the EEG parts to the spindle-like waveforms
of the ICs, the initially chosen boundaries defining the
EEG parts under examination could be modified. This
modification was based on the information provided by the
morphology of the ICs, because ICs could possess a much
clearer starting and/or stopping point for the signal activity
than the original filtered EEG.

After ICs had been selected as representative of the parts,
the EEG was reconstructed, for the whole time duration of
the spindle, based on the representative (main) ICs of each
part. This led to the extraction, in the reconstructed EEG,
of spindle components (SCs) corresponding to separate EEG
activity patterns within the same spindle.
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F1GURE 3: ICA-reconstructed EEG, based on IC6, corresponding to the SC (SC3), which is dominant in part C of the sleep spindle shown in
Figure 1. In each electrode recording plot the first (second) vertical dashed line indicates the time point of transition from part A (B) of the
original single-spindle timeframe to part B (C). Potentials of EEG are in microvolts.

2.4. Computation of Intracranial Current Sources. Numerous
LORETA studies have used 19 or 21 electrodes of the 10/20
system [34-38]. Based on the results of these previous
studies, the use of 21 electrodes in the present study was
expected to provide acceptable localisation accuracy, despite
the inevitable diffuseness in the current source locations
produced by the method. However, we proceeded into an
investigation of the lower limits of electrode use in LORETA-
based inversions. Simulations were performed in order to
check the extent to which the localization accuracy of the
LORETA technique held, under the restriction of 8 and 16
electrodes available for the inversion. As expected, the com-
puted current source distributions were extended over wide
regions. Nevertheless, for the 16-electrode configuration,
the positions of the local maxima of the computed source
distributions, in conjunction with the topography of the
surrounding “slopes”, corresponded to the correct current
source locations.

The intracranial current sources were computed using
LORETA, for each time sample, for both the original
bandpass-filtered EEGs and the reconstructed ones. Accord-
ingly, 3D distributions of source current density were
estimated at the 2394 cortical locations utilized in LORETA
[15]. The amount of information that was present in the
current density signal sets, for all the time samples, was
overwhelming and did not help in easily extracting infor-
mation about the source distributions that corresponded to

the original EEGs and the SCs. In order to extract such
information in a concise manner, while obtaining an average
measure of the magnitude of the current source density
at each source region, the temporal mean of the current
density amplitude was computed for the whole duration of
the respective spindle part, for each of the 2394 cortical
locations. It was expected that these mean current density
maps would represent faithfully the most active cortical
regions, on the average, for the respective duration of each
spindle part.

3. Results

3.1. Spindle Components. From the set of sleep spindles
available for processing, special attention was paid to spindles
which possessed a spectral bimodality, that is, exhibiting
both slow and fast SCs. Figure 1 shows the multichannel
recordings of such a spindle. The spindle started as a high-
frequency one, with main frequency at 13-14 Hz, and then,
at almost all electrodes, a transition to low frequencies took
place, starting at 12 Hz and then moving to lower frequencies
(10-11 Hz). Based on the visual inspection of the recordings,
the activity at the majority of the electrodes presented
three distinct parts or waxing-waning cycles, suggesting the
existence of 3 SCs, termed hereafter SC1, SC2, and SC3. The
approximate durations of the cycles were 0-0.675 second,
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TaBLE 1: Local maxima of LORETA current source density distributions for the original EEG, for the three parts (A, B, and C, resp.) into
which the single-spindle timeframe was divided. The local maxima greater than or equal to 50% of the global maximum are shown (49% for
the part C subtable). Coordinates are in mm. Origin at anterior commisure. For X, negative values represent left; positive values represent
right. For Y, negative values represent posterior; positive values represent anterior. For Z, negative values represent inferior; positive values
represent superior. Brodmann areas (BA) and both descriptions of the anatomical regions are shown.

Part A
Loca.l Coordinates in Talairach space Brodmann Anatomical region 1 Anétomical (A* Cltz)v’13t Y)
maximum area (BA) region 2 (wA/mm?)
X Y VA
1 4 -81 8 17 Cuneus Occipital Lobe 15.96
2 —52 —67 8 39 Middle Temporal Gyrus Temporal Lobe 13.14
3 —45 —67 15 39 Middle Temporal Gyrus Temporal Lobe 13.14
4 46 —67 15 37 Middle Temporal Gyrus Temporal Lobe 13.08
Part B
Locall Coordinates in Talairach space Brodmann Anatomical region 1 Anjatomical (A* Cﬁ)v’lg y)
maximum area (BA) region 2 (uA/mm?)
Y VA
1 4 -81 8 17 Cuneus Occipital Lobe 14.88
2 46 —67 8 37 Middle Temporal Gyrus Temporal Lobe 12.32
3 —45 —67 15 39 Middle Temporal Gyrus Temporal Lobe 12.20
4 -3 52 1 10 Anterior Cingulate Limbic Lobe 7.80
5 53 3 -13 21 Middle Temporal Gyrus Temporal Lobe 7.76
6 -59 -32 8 42 Superior Temporal Gyrus Temporal Lobe 7.71
Part C
Loca.l Coordinates in Talairach space Brodmann Anatomical region 1 Angtomical (A* Clti)v’13t Y)
maximum area (BA) region 2 5
(yA/mm?)
X Y V4
1 4 -81 8 17 Cuneus Occipital Lobe 6.90
2 46 —67 8 37 Middle Temporal Gyrus Temporal Lobe 6.17
3 —45 —67 15 39 Middle Temporal Gyrus Temporal Lobe 6.00
4 -59 -32 8 42 Superior Temporal Gyrus Temporal Lobe 3.52
5 -3 52 1 10 Anterior Cingulate Limbic Lobe 3.44

0.675-1.375 second, and 1.375-2.3 second, respectively. The
Ist cycle had a main frequency range of 13-14 Hz. The 2nd
cycle presented an “intercycle” transition in many electrodes
from 13 to 12Hz. The 3rd cycle possessed a clear low-
frequency content (10-11 Hz).

The dimensionality reduction process resulted in com-
puting #red 61Cs, presented in Figure2. Each IC
possessed a visually discernible “main” waxing-waning cycle.
By inspecting the starting and ending time of those cycles
and their spectral content, and following the IC selection
procedure described in Section 2.3, IC1, with main (i.e.,
maximum-power) frequency of its spindle-like waveform at
13 Hz, was selected as representative of part A and SCI. Its
spindle-like waveform covered two-thirds of part A and its
extension into part B was less than 0.5 second.

IC2, with main frequency of its spindle-like waveform
at 13 Hz, was selected as representative of part B and SC2,
since its waveform covered almost the entire time length of
part B and did not extend to either parts A or C. IC3, with

main frequency of its spindle-like waveform at 12 Hz, was
also selected as representative of part B and SC2, since its
waveform covered almost the entire time length of part B
and its extension into part C was less than 0.5 second. Finally,
IC6, with main frequency of its spindle-like waveform at
11 Hz, was selected as representative of part C and SC3,
since the waveform extended to more than two-thirds of
part C and did not extend into part B. IC4 possessed a
spindle-like waveform, with main frequencies at 13-14 Hz,
spanning parts A and B. IC4 was not retained, because the
waveform extended to 0.5second in both parts A and B.
IC5 possessed a spindle-like waveform, with main frequency
at 12 Hz, spanning parts B and C. It was not included as
a representative of either part B or C, since its spindle-like
waveform did not extend to at least the two-thirds of the
duration of part B or C. Figure 3 shows the reconstructed
EEG, at 21 electrodes, based on IC6. The reconstructed
EEG represents the spindle-like activity of SC3, which is the
dominant SC in part C. In parts A and B, SC3 presented
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F1GURE 4: Distributions of mean current source activity for part A (see Figure 1). In (a) sources are given for the original EEG. In (b) sources
are given for the reconstructed EEG, representing the dominant spindle component (SC1) in this part. The reconstruction of the EEG was
based on ICI. Each distribution is displayed relative to its own maximum, using three slices (axial, sagittal, and coronal) intersecting at the
point of global maximum of the distribution. Current density values are in ygA/mm?.

a much lower amplitude activity, which could hardly be
characterized as spindle-like. Nevertheless, this activity could
be a precursor to the clear emergence of SC3 in part C.

3.2. Intracranial Current Sources. Concerning the mean cur-
rent source activity corresponding to the original EEG data
for the three parts into which the single-spindle EEG was
segmented, in all three parts the maxima were located at the
cuneus (occipital lobe) and at the temporal lobes, bilaterally
(Table 1). A frontal distribution, with local maximum at the
anterior cingulate, with intensity at 52 and 49% of the global
maximum, appeared in the mean current source activity
maps for parts B and C, respectively (Table 1 parts B and C).

For part A, as mentioned above, the EEG frequency was
high. Therefore, it was expected that the mean current source

activity should appear as activation mainly at posterior parts
(Figure 4(a)). It should be noted that, in the context of
the present work, the term “posterior” is used mainly in
contradistinction to frontal lobes, and it denotes current
sources not only in the occipital lobes but also in the limbic,
parietal, and temporal lobes. The mean current source
activity map (Figure 4(b)) corresponding to SC1 (i.e., the
reconstruction of the EEG based on IC1, for part A, where
IC1 was the main IC) showed the same loci of maximal
activity at the cuneus (occipital lobe) and at the temporal
lobes, bilaterally (Table 2), as those present in the current
sources corresponding to the original EEG for part A.

For part B, the main current sources of the original
EEG remained at the same posterior positions as for part A,
namely, the cuneus and the middle temporal gyri, bilaterally
(Figure 5(a) and Table 1 part B). However, a lower-intensity
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TaBLE 2: Local maxima of LORETA current source density distributions for spindle component SC1 for part A of the single-spindle
timeframe. The local maxima greater than or equal to 50% of the global maximum are shown. Coordinates are in mm. Origin at anterior
commisure. For X, negative values represent left; positive values represent right. For Y, negative values represent posterior, positive values
represent anterior. For Z, negative values represent inferior, positive values represent superior. Brodmann areas (BA) and both descriptions
of the anatomical regions are shown.

. Activity
Loca.l Coordinates in Talairach space Brodmann Anatomical region 1 Angtomlcal ("107%)
maximum area (BA) region 2 5
(uA/mm?*)
X Y V4
4 -81 8 17 Cuneus Occipital Lobe 13.17
-52 —67 8 39 Middle Temporal Gyrus Temporal Lobe 11.06
46 —67 8 37 Middle Temporal Gyrus Temporal Lobe 10.49
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FiGure 5: Distributions of mean current source activity for part B (see Figure 1). In (a) sources are given for the original EEG. In (b) sources
are given for the reconstructed EEG, representing the dominant spindle component (SC2) in this part. The reconstruction of the EEG was
based on IC2 and IC3. Each distribution is displayed relative to its own maximum, using three slices (axial, sagittal, and coronal) intersecting
at the point of global maximum of the distribution. Current density values are in yA/mm?.
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FIGURE 6: Distributions of mean current source activity for part C (see Figure 1). In (a) sources are given for the original EEG. In (b) sources
are given for the reconstructed EEG, representing the dominant spindle component (SC3) in this part. The reconstruction of the EEG was
based on IC6. Each distribution is displayed relative to its own maximum, using three slices (axial, sagittal, and coronal) intersecting at the
point of global maximum of the distribution. Current density values are in ygA/mm?.

frontal component was also seen, at the anterior cingulate. As
mentioned above, for part B the spindle frequency content
remained high, although slower frequencies emerged. There-
fore, the emergence of a lesser frontal source local maximum
seems to be in agreement with the assumption that slow
spindles tend to occur at frontal areas. The mean current
source activity map (Figure 5(b)) corresponding to SC2 (i.e.,
the reconstruction of the EEG based on ICs 2 and 3, for
part B, where ICs 2 and 3 were the main ICs) showed the
same loci of maximal activity, at the cuneus, the temporal
lobes, bilaterally, and the anterior cingulate (Table 3), as
those present in the current sources corresponding to the
original EEG for part B.

For part C, as mentioned above, the original EEG was
of low frequency. Therefore, the observed dominance of

posterior sources for part C of the original EEG (Figure 6(a)
and Table 1 part C) did not agree with the assumption that
slow spindles tend to occur at frontal areas. Figure 6(b)
presents the mean current source activity map corresponding
to SC3 (i.e., the reconstruction of the EEG based on 1C6, for
part C, where IC6 is the main IC). A clear frontal maximal
distribution emerged, with lesser activity at temporal and
parietal areas (Table 4). This was consistent with the low
frequency content of the spindle-like activity that existed in
the reconstructed EEG for part C.

It should be noted that the local maxima of the current
source distribution for the reconstructed EEG based on
IC6 were at the same spatial location for each part of the
reconstructed EEG. However, the amplitude of the current
density of the sources was increasing from part A to B and
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TaBLE 3: Local maxima of LORETA current source density distributions for spindle component SC2 for part B of the single-spindle
timeframe. The local maxima greater than or equal to 50% of the global maximum are shown. Coordinates are in mm. Origin is at anterior
commisure. For X, negative values represent left; positive values represent right. For Y, negative values represent posterior; positive values
represent anterior. For Z, negative values represent inferior; positive values represent superior. Brodmann areas (BA) and both descriptions

of the anatomical regions are shown.

Local Brod Anatomical Activity
oca Coordinates in Talairach space rodmann Anatomical region 1 natomica (*107)

maximum area (BA) region 2 5

(yA/mm?)
Y V4

1 4 —-81 8 17 Cuneus Occipital Lobe 7.89

2 46 —67 8 37 Middle Temporal Gyrus Temporal Lobe 6.65

3 —45 —67 15 39 Middle Temporal Gyrus Temporal Lobe 6.34

4 -3 52 1 10 Anterior Cingulate Limbic Lobe 4.89

5 53 3 -13 21 Middle Temporal Gyrus Temporal Lobe 4.83

6 —-59 -32 8 42 Superior Temporal Gyrus Temporal Lobe 4.39

TaBLE 4: Local maxima of LORETA current source density distributions for spindle component SC3 for part C of the single-spindle
timeframe. The local maxima greater than or equal to 50% of the global maximum are shown. Coordinates are in mm. Origin is at anterior
commisure. For X, negative values represent left; positive values represent right. For Y, negative values represent posterior; positive values
represent anterior. For Z, negative values represent inferior; positive values represent superior. Brodmann areas (BA) and both descriptions

of the anatomical regions are shown.

Local . . . Brodmann . . . . Af tivity
maximum Coordinates in Talairach space area (BA) Anatomical region 1 Anatomical region2 (" 107%)
(pA/mm?)
X Y
1 -3 45 6 10 Medial Frontal Gyrus Frontal Lobe 1.64
2 -38 52 8 10 Medial Frontal Gyrus Frontal Lobe 1.45
3 46 10 36 9 Medial Frontal Gyrus Frontal Lobe 1.41
4 —52 3 -20 21 Middle Temporal Gyrus Temporal Lobe 1.39
5 53 10 8 44 Inferior Frontal Gyrus Frontal Lobe 1.35
6 46 10 1 13 Insula Sub-lobar 1.35
7 -38 17 1 13 Insula Sub-lobar 1.23
8 —45 —46 50 40 Inferior Parietal Lobule Parietal Lobe 1.11
9 —52 —60 36 40 Inferior Parietal Lobule Parietal Lobe 1.00
10 =52 —60 15 22 Superior Temporal Gyrus Temporal Lobe 0.89
11 32 45 29 10 Medial Frontal Gyrus Frontal Lobe 0.87
12 -59 -32 22 40 Inferior Parietal Lobule Parietal Lobe 0.86
13 25 —4 -27 Amygdala ~ Uncus Limbic Lobe 0.86
14 25 38 43 8 Superior Frontal Gyrus Frontal Lobe 0.84

finally C, corresponding to the emergence of SC3 as the
dominant spindle component of part C. Spatial stability for
the local maxima of the current source distribution across
the three parts of the EEG occurred also for SC1, that is, the
EEG that was reconstructed based on IC1, and for SC2, that
is, the EEG that was reconstructed based on IC2 and IC3.

4. Discussion

In the present study, the possibilities offered by ICA pro-
cessing were explored for extracting sleep spindle com-

ponents (SCs), in order to study the structure of sleep
spindles during their temporal evolution. Observation of
morphological characteristics of the obtained ICs and
definition of distinct groups of ICs based on these char-
acteristics proved quite helpful in elucidating such SCs.
The results provide indication that SCs which relate to
a single-spindle EEG recording, and which may not be
easily distinguishable in the original recording, may be
separated using morphological and frequency spectrum
criteria, when these criteria are applied to the original
single-spindle EEG recording and its ICs. The EEGs recon-
structed from the different IC groups clearly indicated
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specific SCs active in consecutive parts of a single spindle.
The sleep spindles were divided into consecutive time
segments (parts) and at each segment the corresponding
SC was found to provide the predominant spindle-like
characteristics of the EEG. The above findings are in
accordance to the feature of ICA processing related to the
“unmixing” of the available recorded data into underlying
components.

One of the benefits of this approach was that the
contribution of the current sources for each SC to the total
EEG current source distribution could be differentiated,
with interesting results concerning the sources of slow and
fast spindle classes. In accordance with previous findings,
we observed that fast SC activity related to activation of
principally posterior brain parts, whereas slow SC activity
related to activation of mainly anterior parts. On the other
hand, there existed cases where the amplitude maxima
of the total EEG current sources for some time parts of
the original EEG were located posteriorly, although the
dominant frequency of the original EEG, at those parts, was
slow.

A consistent finding in the spindles analysed in the
present study was the spatial stationarity of the current
sources for each SC, across consecutive reconstructed EEG
parts of the same spindle. In conjunction with the results
discussed in the previous paragraph, spatial stationarity of
current sources provides an indication that slow and fast
components of a single spindle (which may represent a fre-
quency shift during its duration) may originate in different
parts of the brain and reflect distinct groups of generators
which remain active throughout the spindle duration. The
intensity of these generators may be modulated in time, to
reflect the changes in the frequency content of the spindle as
a function of time.

Future research should include the application of the
proposed technique of SC extraction and related current
source estimation to a set of healthy young adults, and
then to healthy subjects of all ages, in order to investigate
possible age effects on SCs. Furthermore, taking into account
the limitations of LORETA [13], current sources should
be investigated with inversion techniques using different
and/or more comprehensive methodological approaches
than LORETA [39, 40], in order to check whether the present
findings can be replicated with such techniques. An extensive
investigation, from the point of view of inversion techniques,
might also contribute in a more robust manner to the
elucidation of the questions related to the existence and
location of functionally separate sleep spindle generators, for
the fast and slow spindle classes.
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