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Abstract

The fractionof thehumangenomethat is functional is aquestionofbothevolutionaryandpractical importance. Studiesof sequence

divergence have suggested that the functional fraction of the human genome is likely to be no more than�15%. In contrast, the

ENCODE project, a systematic effort to map regions of transcription, transcription factor association, chromatin structure, and

histone modification, assigned function to 80% of the human genome. In this article, we examine whether and how an analysis

based on mutational load might set a limit on the functional fraction. In order to do so, we characterize the distribution of fitness of a

large,finite,diploidpopulationatmutation-selectionequilibrium. Inparticular, ifmeanfitness is�1, thefitnessof thefittest individual

likely tooccur cannotbeunreasonablyhigh.Wefindthatatequilibrium, thedistributionof logfitnesshas variancenus,whereu is the

per-base deleterious mutation rate, n is the number of functional sites (and hence incorporates the functional fraction f), and s is the

selectioncoefficientofdeleteriousmutations. Ina large (N ¼ 109Þ reproducingpopulation, thefitnessof thefittest individual likely to

exist is�e5
ffiffiffiffiffi
nus
p

. These results apply tobothadditive and recessive fitness schemes. Ourapproach is different frompreviouswork that

compared mean fitness at mutation-selection equilibrium with the fitness of an individual who has no deleterious mutations; we

show that such an individual is exceedingly unlikely to exist. We find that the functional fraction is not very likely to be limited

substantially by mutational load, and that any such limit, if it exists, depends strongly on the selection coefficients of new deleterious

mutations.
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Introduction

The total proportion of the human genome that is functional

has been a question of intense interest. It has long been

known that, across different species, genome size does not

bear a close relationship to apparent complexity: for example,

the lungfish genome is 60 times larger than the human ge-

nome, and there is a three-order-of-magnitude range of ge-

nome sizes in angiosperms. This is the C-value paradox

(Thomas 1971; reviewed by Gregory [2005]).

A natural definition of “functional” is “selected for at the

organismal level,” which implies the possibility of deleterious

mutation (Graur 2013). Evolutionary studies that examine di-

vergence from related organisms (reviewed by Ponting and

Hardison [2011], and see Rands et al. 2014), some of which

also utilize intraspecies variation (e.g., Ward and Kellis 2012;

Gulko et al. 2015), suggest that 3–15% of the human ge-

nome is subject to purifying selection, with methods that

account for rapidly evolving yet still constrained sequences

(e.g., Meader et al. 2010) tending to fall on the higher end

of this range.

The ENCODE project (ENCODE Project Consortium 2012)

was a large-scale systematic effort to map regions of tran-

scription, transcription factor association, chromatin structure,

and histone modification in the human genome. Regions

assigned to any of these mappings were considered by the

ENCODE authors to be functional, leading to a total estimate

of 80% of the human genome as functional. The discordance

between the ENCODE estimate and those of other studies,

together with ENCODE’s expansive definition of functional-

ity—one seemingly divorced from an evolutionary ap-

proach—led to criticism (Doolittle 2013; Graur et al. 2013)

of the ENCODE estimate. Indeed, such a high fraction of

functionality would be difficult to reconcile with the fact

that one half to two-thirds of the human genome consists
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of inactivated transposable elements (International Human

Genome Sequencing Consortium 2001; de Koning et al.

2011). Nor does a high estimate for the proportion of the

human genome that is functional help to resolve the C-value

paradox (Doolittle 2013).

Consideration of mutational load may set a limit on the

functional fraction. By comparing the population mean fitness

at mutation-selection equilibrium to that of an individual who

possesses no deleterious mutations, Graur (2017) reached the

conclusion that, for likely values of the human per-base del-

eterious mutation rate, the functional fraction must be small.

In this article, we present a different approach to analyzing

mutational load and the human functional fraction. We do

not take the fitness of an individual with zero deleterious

mutations to be a meaningful value, because in a finite pop-

ulation of realistic size such an individual will never exist.

Instead, we consider the fitness of the fittest individual likely

to exist in a finite population. We conclude—while making no

claims about the actual functional fraction as determined by

comparative studies—that a mutational load argument is un-

likely to set a low limit on the functional fraction of the human

genome, and that any attempt to set such a limit must take

into account the fitness effects of new deleterious mutations.

Theoretical Development

The Mutational Load

There are various definitions of a genetic load “L” in the lit-

erature. Perhaps the most frequently used definition (Crow

1970) is

L ¼ wmax � �w

wmax
: (1)

Here, �w is the mean population fitness and wmax is the fitness

of individuals of the fittest possible genotype. There are many

kinds of loads; in this case, we are concerned with the load

due to recurrent deleterious mutation, that is, the mutational

load. Note that the form of (1) leaves open the question of

what exactly is represented by wmax.

Although (1) is a useful measure of the proportion by

which mean fitness is lower than the maximum, we find

that the key quantity to consider in relation to the functional

fraction of the genome is

wmax

�w
; (2)

the factor by which the maximum fitness is greater than the

mean. When mean fitness is 1, this reduces simply to wmax. In

our analysis, we assign wmax to the fitness of the fittest indi-

vidual likely to exist in a finite population. The analysis of

Graur (2017) is rather different but is concerned with the

quantity 1= �w where wmax ¼ 1; hence, both analyses are ul-

timately concerned with the value of (2).

Fitness Model, Assumptions, and Parameter Values

We define a functional site as one at which a deleterious

mutation is possible, and these are the only sites that we

consider. For a single functional site, we define A as the nor-

mal nucleotide at this site and M as the mutant nucleotide

that imparts a reduced fitness when homozygous: relative to

the fitness of the AA genotype, the fitness of the MM geno-

type is multiplied by 1� s, where s> 0. The fitness of the

heterozygote depends on whether an additive or recessive

fitness arrangement is employed. We assume a mutation

rate of u from A to M.

The value of u is very small and following common practice

we ignore terms of order u2 in our development, as well as

the exceedingly small effect of back mutations from M to

A. Empirical estimates of human mutation rates include all

mutations that occur. However, not all mutations, even at a

functional site, are necessarily deleterious. We use v to denote

the empirically estimated rate of mutation per base pair in the

human genome and p to denote the probability that a muta-

tion is deleterious. Then, u ¼ vp is the probability of a dele-

terious mutation at a functional site. We adopt the value

v ¼ 1:2� 10�8 in agreement with recent studies (Lesecque

et al. 2012; Besenbacher et al. 2015; Milholland et al. 2017).

Graur (2017) provides evidence that 0.4 is a reasonable value

for p, the probability that a mutation at any functional site is

deleterious, and we also adopt this value.

In addition to the parameters v, u, p, and s defined above,

we define g as the number of base pairs in the diploid human

genome and f as the proportion of sites in the genome that

are functional. This implies that the number of functional dip-

loid sites in the genome is n ¼ ð1=2Þfg, with the factor 1/2

accounting for the fact that a site encompasses two homol-

ogous base pairs. We consider only these n functional sites.

We adopt the recent estimate g ¼ 6:4� 109 (Schneider et al.

2017), except when directly comparing with Graur (2017) in

which a slightly different value is used.

It is harder to choose a value for s, first because published

estimates of s rely on indirect methods with large resulting

standard errors, and second because the value of s surely

differs from site to site, and probably substantially. Lesecque

et al. (2012) recognize the site-to-site variation in s and illus-

trate their analysis by considering the cases

s ¼ 10�3; s ¼ 10�2, and s ¼ 10�1. This corresponds to the

Eyre-Walker et al. (2006) and Eyre-Walker and Keightley

(2007) estimates that in humans most functional sites have

a value of s in the range 10�3 to 10�1. Boyko et al. (2008) find

that roughly one-third of nonsynonymous mutations have

s< 0.0001, one-third have 0:00001 < s < 0:01, and one-

third have s> 0.01. For convenience, we choose a value s ¼
10�2 for some of our calculations; but we report results for a

range of values from s ¼ 10�2 to s ¼ 10�4 (table 1).

We will later assume a reproducing population size of

N ¼ 109. This is a value that the human population has
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only recently attained and is very conservative in the sense

that it is the one least favorable to our arguments that the

functional fraction is not very limited by mutational load. To

summarize, unless noted otherwise we will use the following

parameter values in some of our calculations:

g ¼ 6:4�109; u ¼ vp ¼ 5�10�9; s ¼ 10�2;N ¼ 109: (3)

The quantity nus will enter often into our calculations below.

For example, with the parameter values in (3) and with

f¼ 0.05, a value included in table 1, nus ¼ 0.008.

The features of our model as defined above are compatible

with the model of Graur (2017), and we have accordingly

adopted much of the same notation, except that for nota-

tional convenience we use u where he uses ldel.

Results

The Additive Case

We first consider the additive fitness, or no dominance, case,

because other authors appear to focus on this case. For any

given functional site, the relative, or proportional, genotype

fitnesses are of the following additive form:

Genotype AA AM MM

Fitness 1 1� 1

2
s 1� s:

(4)

The equilibrium frequency of A at each such site is 1� ð2u=sÞ
so that population mean fitness at each site is the well-known

value 1� 2u (Crow and Kimura 1970).

The size of the human population has expanded greatly in

the last 10,000–100,000years, but this is a relatively recent

phenomenon on evolutionary time scales. It is reasonable to

assume that over the long time scales in which the fundamen-

tal features of the genome have been shaped, mean absolute

fitness has been close to 1, that is, the population size has been

constant. Other authors (e.g., Haldane 1937; Graur 2017)

have made this assumption, which we follow by multiplying

the fitnesses by a common factor such that the mean fitness is

1. This normalization leads to the following well-known geno-

type fitnesses and frequencies (Crow and Kimura 1970):

Genotype AA AM MM

Fitness ð1�2uÞ�1 ð1�2uÞ�1 1�1

2
s

� �
ð1�2uÞ�1ð1�sÞ

Frequency p1¼ 1�2u

s

� �2

p2¼
4u

s
1�2u

s

� �
p3¼

2u

s

� �2

:

(5)

According to (5), the fitness of an individual who is AA at all n

functional sites is ð1� 2uÞ�n � e2nu. A main point of this

article is that no individual of this genotype will ever exist in

a natural population, so no calculation that depends on such

an individual (i.e., assigns wmax to such a value) is empirically

relevant. The probability that a randomly chosen individual is

AA at all n functional sites is 1�ð2u=sÞ½ � 2n� e�4nu=s. With

the parameter values in (3) and with f¼ 0.05, this is about

e�320. Similar calculations arise with other plausible parameter

values. No individual who is AA at anything approaching n

sites will ever appear in a natural population.

The Distribution of Whole-Genome Fitnesses

With these considerations in mind, our aim is to calculate the

whole-genome distribution of fitnesses and establish a meth-

odology for defining an upper limit to f based on the fitnesses

of individuals who are likely to actually exist in a real popula-

tion. To do this, we employ the single-site model of (5) and

adopt the following assumptions to move from a single site to

a whole-genome analysis: all functional sites share the same

values for u and s described above; there is a multiplicative

fitness relationship among functional sites; and there is no

linkage disequilibrium between functional sites.

We first find the distribution of the whole-genome fitness

W of a randomly chosen individual whose genome comprises

n ¼ ð1=2Þfg functional sites, when site fitness and frequency

values are as given in (5). The fitness of an individual who is

AA at x sites, AM at y sites, and MM at z sites (x þ y þ z ¼ n)

is ð1� 2uÞ�nð1� s=2Þyð1� sÞz. The probability that an indi-

vidual is AA at x sites, AM at y sites and MM at z sites is

n!

x!y!z!
px

1py
2pz

3:

From this, the mean of W is, from multinomial distribution

formulae,

ð1� 2uÞ�n
X

x

X
y

X
z

n!

x!y!z!
px

1 p2 1� 1

2
s

� �� �y

½pz
3ð1� sÞ�z

¼ ð1� 2uÞ�n p1 þ p2 1� 1

2
s

� �
þ p3ð1� sÞ

� �n

:

Table 1

Fitness Values wmax of the Fittest Individual Likely to Occur in a Population

of Size N ¼ 109, According to (12), for a Range of Values for the

Functional Fraction and the Selection Coefficient, Assuming That Mean

Fitness Is Standardized to 1

Functional Fraction (f)

0.02 0.05 0.10 0.25 0.50 1.0

s 0.0001 1.03 1.05 1.07 1.11 1.15 1.22

0.001 1.09 1.15 1.22 1.37 1.56 1.88

0.01 1.33 1.56 1.88 2.72 4.11 7.39

All sites AA 1.90 4.95 24.45 3.0 x 103 8.9 � 106 7.9 � 1013

NOTE.—The parameters u and g are as given in (3). The bottom row shows, for
comparison, the fitness of the fittest possible individual in the additive model (13),
who is AA at all sites—but who will never exist in a real finite population.
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Given the values in (5), the mean of W is

ð1�2uÞ�n

1�2u

s

� �2

þ4u

s
1�2u

s

� �
1�1

2
s

� �
þ 2u

s

� �2

ð1�sÞ
" #n

:
(6)

The variance of W is

ð1�2uÞ�2n

1�2u

s

� �2

þ4u

s
1�2u

s

� �
1�1

2
s

� �2

þ 2u

s

� �2

ð1�sÞ2
" #n

�1:

(7)

The mean of W is ð1� 2uÞ�nð1� 2uÞn ¼ 1, as expected. If

terms of order u2 are ignored, the variance of W is

Variance of W ¼ ð1þ usÞn � 1 � enus � 1: (8)

When parameter values are as given in (3) and f¼ 0.05 this

variance is about 0.00803, so that the standard deviation in

fitness is about 0.0896. The idealized fittest possible individual

has fitness ð1� 2uÞ�n � 4:95, about 44 standard deviations

above the mean. This corresponds to the previously calculated

probability e�320 that such an individual exists. The same con-

clusion arises for other plausible parameter values. No such

idealized individual will arise in practice.

The fitness ð1� 2uÞ�nð1� s=2Þyð1� sÞz referred to

above does not have a normal distribution. However, the log-

arithm of this fitness, namely

log w ¼ �n logð1� 2uÞ þ y logð1� s=2Þ þ z logð1� sÞ,
can be taken as having a normal distribution because for all

practical purposes both y and z approximately have a normal

distribution. (All logarithms are natural.) Therefore, to a suffi-

ciently accurate approximation, the fitness W of an individual

taken at random has a lognormal distribution (as illustrated in

fig. 1, most clearly for the case s¼ 0.01).

The mean l and the variance r2 of log W can be found

from the known mean 1 of W and known variance of W given

in (8). These give

elþð1=2Þr2 ¼ 1; ½e2lþr2 �½er2 � 1� ¼ enus � 1: (9)

From this,

r2 ¼ nus and l ¼ � 1

2
nus: (10)

The above calculation can be confirmed by that of Lesecque

et al. (2012), who use different notation and a slightly differ-

ent variance formula. Lesecque et al. consider the case nu ¼
10 (equivalent, for the parameters given in (3), to f¼ 0.625),

s=2 ¼ 0:01 and calculate the probability that W takes a value

between 0.5 and 2 to be 97%. This is the probability that log

W takes a value between �log 2 ¼ �0:69315 and

þlog 2 ¼ þ0:69315. With the values nu ¼ 10 and s=2

¼ 0:01; log W has mean�0:05 and variance 0.1. The prob-

ability that log W takes a value between �log 2 and þlog 2

is found from the normal distribution to be 97%, in agree-

ment with the calculation made by Lesecque et al. (2012).

Thus, only about 3% of individuals have a fitness outside the

range 0.5–2.0 for these parameter values. Calculations using

other plausible parameter values lead to the same conclusion,

namely that the variance of the fitness W is small and that the

great majority of individuals have an easily achieved fitness.

The Fitness of the Fittest Individual Likely to Exist

We now calculate, for the additive case, the fitness of the

fittest individual who is likely to exist in a reproducing popu-

lation of a plausible size. The mean number nð2u=sÞ2 of MM

sites in a randomly chosen individual is of order u2 and thus is

very small, so that MM sites can be ignored in the calculations.

Lesecque et al. (2012) also do this. The focus is therefore on

AA and AM sites.

If terms of order u2 are ignored, the mean number of AA

functional sites in a randomly chosen individual is n� ð4nu=sÞ
¼ n – m and the mean number of AM functional sites in a

randomly chosen individual is m, where m ¼ 4nu=s. We as-

sume that the fittest individual likely to appear in the popu-

lation is AA at n�mþ r functional sites and is AM at m – r

functional sites, where the value of r has to be determined. To

calculate r, we assume that the number of functional sites at

which a randomly chosen individual is AM has a Poisson

FIG. 1.—Simulated fitness distributions for the parameters u ¼ 5� 10�9; g ¼ 6:4� 109, and f¼0.25. The dashed line shows the fitness of the fittest

individual likely to exist in a population of size N ¼ 109, as given by (12).
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distribution with mean m. (Lesecque et al. [2012] also make

this Poisson distribution assumption.) This assumption implies

that the standard deviation of this number of sites is
ffiffiffiffi
m
p

. We

conservatively assume a population of reproducing individuals

of size 109. Using the normal approximation to the Poisson,

the fittest individual who is likely to appear in a reproducing

population of size 109 will therefore be AA at about n�m

þ5
ffiffiffiffi
m
p

sites and AM at about m� 5
ffiffiffiffi
m
p

sites. Thus,

r ¼ 5
ffiffiffiffi
m
p
¼ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4nu=s

p
.

It follows that when the mean population fitness is 1 the

fitness requirement for the fittest individual who is likely to

appear in a population of size 109 is

ð1� 2uÞ�n � 1� 1

2
s

� �ð4nu=sÞ�5
ffiffiffiffiffiffiffiffiffi
4nu=s
p

: (11)

Because ð1� 2uÞ�n � e2nu; 1� s=2ð Þ4nu=s � e�2nu, and

1� s=2ð Þ�5
ffiffiffiffiffiffiffiffiffi
4nu=s
p

� e5
ffiffiffiffiffi
nus
p

, this is approximately

e5
ffiffiffiffiffi
nus
p

: (12)

This is the fitness requirement for the value of wmax that is

most likely to be empirically relevant to the human popula-

tion, under our model. Figure 1 illustrates this value for

f¼ 0.25 and varying s, and table 1 presents the value of

wmax likely to actually occur according to (12) for a range of

values for f and s. For both figure 1 and table 1, g, u, and N

have the values given in (3). The strong influence of s on the

result is apparent: only for the highest value of s and the

highest values of f does there seem to be any potential diffi-

culty in realizing the values of wmax presented in table 1. Thus,

we conclude that, first, there is not any very strong case for

limiting the functional fraction from a mutational load stand-

point, and, second, any such argument depends strongly on,

and must take into account, the selection coefficients of

newly arising deleterious mutations.

Comparison of Results

We now compare the above findings with those of Graur

(2017). The fertility requirements computed by Graur (2017)

for the additive case are implicitly based on the fitness of an

idealized individual. As we show above, an individual who is

AA at all sites is vanishingly unlikely to exist.

The values in (5) show that the maximum fitness possible,

that of an “optimal” individual who is AA at all n functional

sites in the genome, is wmax ¼ ð1� 2uÞ�n � e2nu. Because

the mean fitness is 1, this value is a measure of the quantity

defined in (2):

wmax

�w
¼ e2nu: (13)

We confirm this calculation is essentially the same made by

Graur (2017) for the case f¼ 0.10. Graur assumes that

g ¼ 6:114� 109 so that according to our model n ¼ ð1=2Þ
fg ¼ 3:06� 108. When u ¼ 5� 10�9; e2nu ¼ e3:057 ¼ 21.

For the case f¼ 0.20, with the other parameter values

unchanged, e2nu ¼ 452. These values (21 and 452) are nearly

the same as the tabled values in Graur (2017) for f¼ 0.05 and

f ¼ 0:10; respectively. The factor-of-two difference in f is due

to the fact that Graur, erroneously in our view, treats the total

number of sites as the number of haploid sites, not the num-

ber of diploid sites, that is, omits the factor 1/2 in

n ¼ ð1=2Þfg.

With the numerical values in (3) and with f¼ 0.05 the ex-

pression in (13) is about 4.95, substantially higher than the

1.56 that results from the use of (12).

Graur argues that the quantity defined in (13) cannot be

higher than some reasonable value for humans. He interprets

this quantity as the mean fertility, that is, the average number

of offspring per adult conditional upon survival to reproduc-

tion. He sets this maximum value at 1.8, based on historical

data, which corresponds to 3.6 offspring per mating pair. This

limits 2nu to about 0.6. Because n ¼ ð1=2Þfg, this sets a limit

on the value of f. With the values g and u given in (3), this

limiting value for f is about 0.02—quite low indeed.

Our interpretation of the quantity wmax= �w is more liberal

than Graur’s: We do not interpret it as mean requisite fertility,

because we are not using a pure viability selection model, but

as the fitness of the fittest individual. Thus, our interpretation

of the approach of Graur yields somewhat higher possible

values for f than occur in Graur (2017), as shown in the bot-

tom row of table 1, but still almost certainly no higher than

f¼ 0.10 given the parameter values in (3).

The Recessive Case

We next discuss the recessive case, in which the single-site

fitnesses differ from (4) in that the fitness of the heterozygote

is equal to the fitness of the AA homozygote. As in the addi-

tive case, we normalize so that the mean fitness is 1. This leads

to the following fitness table:

Genotype AA AM MM

Fitness ð1�uÞ�1 ð1�uÞ�1 ð1�uÞ�1ð1�sÞ

Frequency 1�
ffiffiffi
u

s

r� �2

2

ffiffiffi
u

s

r
1�

ffiffiffi
u

s

r� �
u

s

:

(14)

As in the additive case, an individual of the highest possible

theoretical fitness will never exist in any population of a size

relevant to humans. The probability that an individual taken at

random from the population is either AA or AM at all n func-

tional sites in the genome is 1� u=sð Þn � enu=s. If we assume

the parameter values in (3) and put f¼ 0.05, this probability is

e�80. The same conclusion is reached with other reasonable

parameter value choices.

Mutational Load and Functional Fraction of Human Genome GBE
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We next calculate realistic whole-genome fitnesses making

the same simplifying assumptions as those made for the ad-

ditive case.

The Distribution of Whole-Genome Fitness

We define W as the fitness of an individual taken at random.

With site fitnesses as given in (14) and the various assump-

tions made above, the whole-genome mean of W is 1 and the

whole-genome variance of W is found from (14) and multi-

nomial distribution formulae to be

ð1� uÞ�2n 1� u

s
þ u

s
ð1� sÞ2

h in

� 1 � enus � 1: (15)

This leads to the same asymptotic formula (8) that applied in

the additive case. The fitness of an individual who is either AA

or AM at all functional sites is ð1� uÞ�n. When f¼ 0.05 and

other parameter values are as in (3), this is about e0:8 � 2:23,

�14 standard deviations above the mean. As stated for the

additive case, such an individual will never exist. The same

conclusion holds for other plausible parameter values.

The fitness W of a randomly chosen individual who is AA at

x sites, AM at y sites, and MM at z sites is ð1� uÞ�nð1� sÞz.
Thus, the fitness of this individual does not have a

normal distribution. However, to a close approximation, log

W ¼ �n logð1� uÞ þ z logð1� sÞ has a normal distribution

because z has approximately a normal distribution. Therefore,

to a close approximation, W has a lognormal distribution. The

mean l and variance r2 of log W can be found from the

known mean (1) and known variance (enus � 1) of W using

standard formulas relating parameters in a normal distribution

and the parameters in the corresponding lognormal distribu-

tion. It is found that

elþð1=2Þr2 ¼ 1; ½e2lþr2 � � ½er2 � 1� ¼ enus � 1: (16)

From this, r2 ¼ nus and then l ¼ �ð1=2Þnus. These are the

same formulae as found for the additive case in (10).

The Fitness of the Fittest Individual Likely to Exist

We now find the fitness of the fittest individual likely to ap-

pear in the population. Because there are n functional sites

and the probability that an individual is MM at a given func-

tional site is u/s, the mean number of MM sites in a randomly

chosen individual is k ¼ nu=s. We assume that the actual

number of MM sites carried by a randomly chosen individual

has a Poisson distribution with parameter k. The standard

deviation of this distribution is
ffiffiffi
k
p

. This distribution can be

approximated by a normal distribution with mean k and stan-

dard deviation
ffiffiffi
k
p

. The properties of the statistics of extreme

values of normal random variables show that in a population

of 109 reproducing individuals, the individual with the smallest

number of MM sites will have about k � 5
ffiffiffi
k
p

such sites, or

5
ffiffiffi
k
p

fewer than the mean (of k). It follows that this individual

is AA or AM at 5
ffiffiffi
k
p

sites more than the mean number n – k

of these sites. From (14) the fitness of an individual having this

number of AA or AM sites is

ð1� uÞ�nð1� sÞk�5
ffiffi
k
p
: (17)

This is approximately enu � e�sk � e5s
ffiffi
k
p

. Because k ¼ nu=s;

e�sk ¼ e�nu and e5s
ffiffi
k
p
¼ e5

ffiffiffiffiffi
nus
p

, the expression in (17)

becomes

e5
ffiffiffiffiffi
nus
p

: (18)

Note that this is exactly the same formula as in the additive

case (12), so that the results shown in the first three rows of

table 1 apply to the recessive case as well as the additive case.

Similarly, figure 1 is illustrative for both cases.

Discussion and Further Considerations

The Wright–Mayr Viewpoint

A main point of this article is that no individual with the the-

oretical maximum fitness, given the fitness model, will ever

exist in a real population. This point is not new. It was made by

Wright (1977, p. 481) in his discussion of Haldane’s (1957)

evolutionary, or substitutional, load concept, which was also

based on a nonexistent “optimal” individual. Wright states

that “if many loci are involved, the genotype that combines

the [optimal] genotypes at all loci is in general so rare theo-

retically that neither it nor anything approaching it exists in a

finite population.” Dobzhansky (1957), in response to Muller

(1950), noted that for both flies and humans, “perhaps [indi-

viduals with no deleterious mutations] would be a superfly

and a superman, but the fact is that such have never existed

on earth.” Mayr (1970) makes the same point in stating that

“the whole approach [to Haldane-based load calculations] is

misleading. It is based on a set of assumptions that have no

real validity, primarily that of the existence of an optimal ho-

mozygous genotype.” Lesecque et al. (2012) describe an in-

dividual of optimal homozygous genotype as an “idealized”

individual and Agrawal and Whitlock (2012) state that such

an individual is unlikely to exist. Charlesworth (2013) states

that “the mean fitness of a population relative to the fitness

of a hypothetical optimal genotype that has a very low chance

of being present in the population is essentially irrelevant.”

Henn et al. (2015) describe calculations involving wmax as ide-

alized and refer to the challenge of finding an empirically

relevant wmax. Our equation (12) is relevant to this question.

The Wright–Mayr view, and that of the authors cited

above, is the one adopted here. Wright also noted that

Crow’s (1970) definition of load (eq. 1) is flexible in that it

relates to the “fitness requirement of actually or theoretically

available [geno]types.” At the whole-genome level, “actually

available” concerns real populations and “theoretically

available” concerns idealized populations. We believe that
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the appropriate choice is “actually available,” which is the

Wright–Mayr viewpoint.

Remarks on the Haldane Load

Agrawal and Whitlock (2012) define the load as in (1), so that

for them the load in the additive case is L ¼ 1� e�2nu, and

make two comments about this formula. First, they state that

the fact that this load formula is independent of s has led to a

“misleading sentiment” among theoretical population

geneticists who then feel that nothing need be known about

the value of s or about ecological considerations in assessing

loads. We agree, and believe that load calculations that ignore

s are not realistic (see table 1) and have influenced population

genetics theory for far too long. Second, they state that there

is very little empirical evidence that Haldane’s (1957) load

theory, based on the formula L ¼ 1� e�2nu, is even approx-

imately correct. A likely reason for this lack of evidence is that

Haldane’s theory, being based on this formula, is not empir-

ically relevant to populations with parameters similar to those

for humans.

In humans, nu is on the order of 1–10. For most microbes,

in contrast, nu� 1. For example, for Escherichia coli, esti-

mates of nu are on the order of 10�4 (Kibota and Lynch

1996). If s¼ 0.001, then�90% of such a bacterial population

would have no deleterious mutations, in contrast to the case

of human populations in which no individual with zero dele-

terious mutations would ever occur. For many microbes, then,

Haldane load theory may be appropriate.

The Stochastic Effect of Finite Population Size

In the calculations above, we have in effect assumed in the

recessive case that the mean number of MM sites in a ran-

domly chosen individual is nu=s. This calculation ignores sto-

chastic effects in a population of finite size. Lesecque et al.

(2012) show, for the recessive case, that when these effects

are taken into account a slightly more accurate expression for

this mean is nup=4s. This adjustment would not materially

change the main points of our analysis, and we suspect that

a similar result holds for the additive case. We caution that any

stochastic model (the Wright–Fisher model or alternatives)

must make assumptions that are unlikely to be accurate for

a real population, so that any inferences into the differences

between load in finite and infinite populations are of limited

value.

The Value of N

Our choice N ¼ 109 is intended to be extremely conservative.

Of all the parameters involved, the value chosen for N in a

population that has subdivided and increased substantially in

size over hundreds of thousands of years is possibly the most

problematic. All the calculations above, and many in the lit-

erature, assume random mating. Henn et al. (2015) consider

in detail the fact that for many thousands of years random

mating is an unreasonable assumption, given the division of

the human population into different subgroups, based largely

on geographical dispersion. This dispersion also bears on the

reasonable choice for N. Henn et al. also consider complica-

tions due to the effects of population-size bottlenecks and the

“prodigious rate” of growth in the size of the human popu-

lation, increasing from a few hundred thousand about

13,000 years ago to several millions 4,000 years ago. The

conclusions that we reach about possible values of f continue

to hold, and are strengthened by, any reasonable choice for

the various values of the human population size over the last

200,000 years.

Other Fitness Models

When h is positive a fitness model generalizing (5) is

Genotype AA AM MM

Fitness ð1�2uÞ�1 ð1�2uÞ�1ð1�hsÞ ð1�2uÞ�1ð1�sÞ

Frequency 1� u

hs

� �2 2u

hs
1� u

hs

� � u

hs

� �2

:

(19)

The case h ¼ 1=2 corresponds to the additive model. The

“Haldane load” ð1� 2uÞ�n is independent of h. It might

then be expected that the realistic load generalizing (12) is

also independent of the value of h, but this is not so. It is

found after some algebra that with fitness and frequency

values as given in (19), the mean of w is 1 but the variance

of w is no longer as given in (8) but is, instead, e2nuhs � 1.

From this, the mean l and variance r2 of log w are no longer

as given in (10) but are, instead,

l ¼ �nuhs and r2 ¼ 2nuhs: (20)

Henn et al. (2015) state that the average value of h in (19)

across various nonhuman organisms is about 0.25. If the av-

erage value h¼ 0.25 applies also in humans, these amended

values strengthen the conclusions reached in this article for

the additive case.

Stochasticity of Number of Offspring

Two individuals with the same intrinsic fitness do not neces-

sarily have the same number of offspring: stochastic effects

have to be taken into account. Lesecque et al. (2012) quantify

this by discussing three models: an asexual model, a monog-

amous diploid model, and a freely interbreeding diploid

model, and for each model calculate the probability P(0)

that an individual has (in the monogamous diploid case, a

couple have) no offspring. They consider the effect of the

value of nu on P(0) for a given value of s and produce very

interesting graphs describing this effect (their fig. 4). Our in-

terest is the effect of s on P(0) for a given value of nu. The
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graphs in figure 4 of Lesecque et al. (2012) show that the

value of P(0) increases very slowly with s in all three cases. The

number of offspring for an individual is determined more by

stochastic effects than by the individual’s intrinsic fitness. The

reason for this is the fact that the variance in fitness as given in

(10) is very small.

Other Kinds of Loads

Load-based arguments seeking to limit the value of f need not

remain limited to the mutational load. The substitutional load

and the segregational loads also depend to some extent upon

f and might be considered as well. The criticisms of load argu-

ments by Wright, Mayr, and others referred to above were

made with respect to one or both of these loads. If these loads

were taken into account as well as the mutational load the

possible values of f would be smaller. However, these load

calculations are subject to the same criticisms that we have

made for the mutational load.

Generalization to �s

In this section, we extend our analysis to consider several

classes of deleterious mutations. Suppose that there are k

different mutant types M1;M2; . . . ;Mk, having respective

mutation rates u1; u2; . . . ; uk and relative fitnesses 1 (for

AA), 1� si=2 (for AMi), and 1� si (for MiMi). We assume

that each of these mutants is in mutation-selection balance,

so that the frequency of AA is 1�
P

i4ui=si½1� ðui=siÞ�, the

frequency of AMi is 4ui=si½1� ð2ui=siÞ� and the frequency of

MiMi is ð2ui=siÞ2. Fitnesses are now normalized so that the

mean fitness is 1. This leads to the fitness values ð1� 2uÞ�1

for AA, ð1� 2uÞ�1ð1� si=2Þ for AMi, and ð1� 2uÞ�1 ð1
�siÞ for MiMi, where u ¼

P
ui.

Under the assumptions made in the article, the whole-

genome variance in fitness is then

ð1�2uÞ�2n 1�
X

i

4ui

si
1�ui

si

� �
þ
X

i

4ui

si
1�2ui

si

� �
1�1

2
si

� �2
"

þ
X

i

2ui

si

� �2

ð1�siÞ2
#n

�1:

If terms of order u2
i are ignored, this variance is

ð1þ
X

i

uisiÞn � 1 � en
P

i
ui si � 1:

This is a generalization of equation (8). It follows that where

nus occurs above the more general expression n
P

iuisi can be

written. Similarly, the expression s appearing in table 1 can be

written more generally as �s ¼
P

iuisi=u:

The fitness W of an individual taken at random does not

have a normal distribution. However, to a close approxima-

tion, log W has a normal distribution. The mean l and vari-

ance r2 of this distribution can be found immediately from (9)

by replacing nus by n
P

iuiss: l ¼ ð1=2Þn
P

iuisi and

r2 ¼ n
P

iuisi.

Summary and Conclusions

The per-nucleotide rate of mutation and the total size of the

human genome appear to be fairly well established. The frac-

tion f of the human genome that is functional remains uncer-

tain. We have shown that when considering the likely

maximum realized fitness in a finite population, the limit to

f is by no means low. This result stands in contrast to argu-

ments that depend on the fitness of an individual who pos-

sesses the theoretical maximum fitness of the particular

model employed. Such arguments appear to establish a rather

low limit for f but suffer from the flaw that such an individual

is only vanishingly likely to exist. Calculations that purport to

establish a load should, in our view, be based on the distribu-

tion of actual fitnesses that are expected to exist in a real

population. As we have shown, the properties of this distri-

bution depend not just on nu (the number of de novo dele-

terious mutations per individual) but also on s, the selection

coefficient against deleterious mutations.

Using the approach of Graur (2017) and adopting the most

plausible value for the human per-base-pair deleterious mu-

tation rate, the limit to f is �2–10%. In contrast, we have

shown that when considering the likely maximum realized

fitness in a finite, persisting human population, much higher

values for f, with considerable uncertainty introduced by the

unknown value of the parameter s, are plausible (table 1).

We stress that we, in this work, take no position on the

actual proportion of the human genome that is likely to be

functional. It may indeed be quite low, as the contemporary

evidence from species divergence and intraspecies polymor-

phism data suggests. Many of the criticisms of the ENCODE

claim of 80% functionality (e.g., Doolittle 2013; Graur 2013)

strike us as well founded. Our conclusion is simply that an

argument from mutational load does not appear to be partic-

ularly limiting on f.
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